RESNETをWebサービスみたいにしてみた。
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import argparse | |
from flask import Flask, render_template, request, redirect, url_for, jsonify | |
from werkzeug.utils import secure_filename | |
import numpy as np | |
import tensorflow as tf | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
import resnet_model | |
HEIGHT = 32 | |
WIDTH = 32 | |
DEPTH = 3 | |
NUM_CLASSES = 10 | |
parser = argparse.ArgumentParser() | |
# Basic model parameters. | |
parser.add_argument('--model_dir', type=str, default='/tmp/cifar10_model', | |
help='The directory where the model will be stored.') | |
parser.add_argument('--resnet_size', type=int, default=32, | |
help='The size of the ResNet model to use.') | |
FLAGS = parser.parse_args() | |
UPLOAD_FOLDER = './uploads' | |
ALLOWED_EXTENSIONS = set(['png', 'jpg']) | |
app = Flask(__name__) | |
app.secret_key = 'some_secret' | |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER | |
CIFAR_10_CLASSES = ["airplane", "automobile", "bird", | |
"cat", "deer", "dog", "frog", | |
"horse", "ship", "truck"] | |
def allowed_file(filename): | |
return '.' in filename and \ | |
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS | |
def cifar10_model_fn(features, labels, mode): | |
"""Model function for CIFAR-10.""" | |
network = resnet_model.cifar10_resnet_v2_generator( FLAGS.resnet_size, NUM_CLASSES) | |
inputs = tf.reshape(features, [-1, HEIGHT, WIDTH, DEPTH]) | |
logits = network(inputs, mode == tf.estimator.ModeKeys.TRAIN) | |
predictions = { | |
'classes': tf.argmax(logits, axis=1), | |
'probabilities': tf.nn.softmax(logits, name='softmax_tensor') | |
} | |
if mode == tf.estimator.ModeKeys.PREDICT: | |
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) | |
def get_input_fn(img): | |
def input_fn(): | |
data = tf.cast(np.asarray([np.asarray(img)]), tf.float32) | |
dataset = tf.contrib.data.Dataset() | |
dataset = dataset.from_tensors(data) | |
iterator = dataset.make_one_shot_iterator() | |
image = iterator.get_next() | |
return image | |
return input_fn | |
@app.route('/') | |
def index(): | |
message = "Put your image" | |
return render_template('index.html', message=message) | |
@app.route('/post', methods=['POST']) | |
def post(): | |
if request.method == 'POST': | |
if 'file' not in request.files: | |
return jsonify({"message": 'No file part'}) | |
file = request.files['file'] | |
if file.filename == '': | |
return jsonify({"message": 'No selected file'}) | |
if file and allowed_file(file.filename): | |
print(file.filename) | |
filename = secure_filename(file.filename) | |
current_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) | |
file.save(current_path) | |
img = Image.open(current_path) | |
img = img.resize((32,32)).convert('RGB') | |
img.save(current_path) | |
input_fn = get_input_fn(img) | |
cifar_classifier = tf.estimator.Estimator( | |
model_fn=cifar10_model_fn, model_dir=FLAGS.model_dir) | |
ans = cifar_classifier.predict(input_fn) | |
ans_index = list(ans)[0] | |
print(ans_index) | |
return jsonify({ | |
"message": "ok", | |
"filename": file.filename, | |
"answer": CIFAR_10_CLASSES[ans_index['classes']], | |
"probabilities": [float(i) for i in ans_index['probabilities']]}) | |
return jsonify({"message": "ng"}) | |
if __name__ == '__main__': | |
app.debug = True # デバッグモード有効化 | |
app.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment