/ditx40bench.py Secret
Created
March 17, 2025 16:38
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn.functional as F | |
import time | |
def mlp(x, fc1_weight, fc2_weight, proj_weight): | |
fc1_out = F.linear(x, fc1_weight) | |
fc2_out = F.linear(x, fc2_weight) | |
hidden = F.silu(fc1_out) * fc2_out | |
return F.linear(hidden, proj_weight) | |
def single_attention(x, q_weight, k_weight, v_weight, o_weight, n_heads, head_dim): | |
bsz, seqlen, _ = x.shape | |
q = F.linear(x, q_weight) | |
k = F.linear(x, k_weight) | |
v = F.linear(x, v_weight) | |
q = q.view(bsz, seqlen, n_heads, head_dim) | |
k = k.view(bsz, seqlen, n_heads, head_dim) | |
v = v.view(bsz, seqlen, n_heads, head_dim) | |
q = F.layer_norm(q, q.shape[-1:]) | |
k = F.layer_norm(k, k.shape[-1:]) | |
output = torch.nn.functional.scaled_dot_product_attention( | |
q.permute(0, 2, 1, 3), | |
k.permute(0, 2, 1, 3), | |
v.permute(0, 2, 1, 3), | |
).transpose(1, 2).reshape(q.shape[0], -1, n_heads * q.shape[-1]) | |
return F.linear(output, o_weight) | |
def ditblock(cx, global_cond, modcx_weight, | |
attn_q_weight, attn_k_weight, attn_v_weight, attn_o_weight, | |
mlp_fc1_weight, mlp_fc2_weight, mlp_proj_weight, | |
n_heads, head_dim): | |
cxres = cx | |
# modCX | |
mod_input = F.silu(global_cond) | |
mod_output = F.linear(mod_input, modcx_weight) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = mod_output.chunk(6, dim=1) | |
# norm1, modulate | |
cx_norm = F.layer_norm(cx, [n_heads * head_dim]) | |
cx = cx_norm * (1 + scale_msa.unsqueeze(1)) + shift_msa.unsqueeze(1) | |
# attention | |
cx = single_attention(cx, | |
attn_q_weight, attn_k_weight, attn_v_weight, attn_o_weight, | |
n_heads, head_dim) | |
# norm2 | |
cx = F.layer_norm(cxres + gate_msa.unsqueeze(1) * cx, [n_heads * head_dim]) | |
# mlp with modulation | |
cx_mod = cx * (1 + scale_mlp.unsqueeze(1)) + shift_mlp.unsqueeze(1) | |
mlpout = mlp(cx_mod, mlp_fc1_weight, mlp_fc2_weight, mlp_proj_weight) | |
cx = gate_mlp.unsqueeze(1) * mlpout | |
cx = cxres + cx | |
return cx | |
def run_benchmark(): | |
# Set device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Running on device: {device}") | |
# Generate random input tensors with the specified sizes | |
cx = torch.randn(2, 4360, 3072, dtype=torch.float16, device=device) | |
global_cond = torch.randn(2, 3072, dtype=torch.float16, device=device) | |
modcx_weight = torch.randn(18432, 3072, dtype=torch.float16, device=device) | |
attn_q_weight = torch.randn(3072, 3072, dtype=torch.float16, device=device) | |
attn_k_weight = torch.randn(3072, 3072, dtype=torch.float16, device=device) | |
attn_v_weight = torch.randn(3072, 3072, dtype=torch.float16, device=device) | |
attn_o_weight = torch.randn(3072, 3072, dtype=torch.float16, device=device) | |
mlp_fc1_weight = torch.randn(8192, 3072, dtype=torch.float16, device=device) | |
mlp_fc2_weight = torch.randn(8192, 3072, dtype=torch.float16, device=device) | |
mlp_proj_weight = torch.randn(3072, 8192, dtype=torch.float16, device=device) | |
n_heads = 12 | |
head_dim = 256 | |
# Warm-up run | |
print("Performing warm-up run...") | |
with torch.no_grad(): | |
for _ in range(5): | |
ditblock( | |
cx, global_cond, modcx_weight, | |
attn_q_weight, attn_k_weight, attn_v_weight, attn_o_weight, | |
mlp_fc1_weight, mlp_fc2_weight, mlp_proj_weight, | |
n_heads, head_dim | |
) | |
torch.cuda.synchronize() | |
# Benchmark: Run the DiT block 40 times | |
print("Running benchmark...") | |
num_runs = 40 | |
total_time = 0.0 | |
with torch.no_grad(): | |
# Start timer | |
torch.cuda.synchronize() | |
start_time = time.time() | |
# Run DiT block 40 times | |
result = cx | |
for i in range(num_runs): | |
result = ditblock( | |
result, global_cond, modcx_weight, | |
attn_q_weight, attn_k_weight, attn_v_weight, attn_o_weight, | |
mlp_fc1_weight, mlp_fc2_weight, mlp_proj_weight, | |
n_heads, head_dim | |
) | |
# End timer | |
torch.cuda.synchronize() | |
end_time = time.time() | |
total_time = end_time - start_time | |
# Report results | |
print(f"Total time for {num_runs} runs: {total_time:.4f} seconds") | |
print(f"Average time per run: {(total_time / num_runs) * 1000:.4f} ms") | |
if __name__ == "__main__": | |
run_benchmark() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment