Last active
August 26, 2020 11:10
-
-
Save FeryET/60f322cfec4029c1e34f0c2ff1e8ad75 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def plot_topic_clusters(ax, x2d, y, labels): | |
ax.set_aspect("equal") | |
colors = cm.get_cmap("Spectral", len(labels)) | |
for i, l in enumerate(labels): | |
c = colors(i / len(labels)) | |
ax.scatter(x2d[y == i, 0], x2d[y == i, 1], color=c, label=l, alpha=0.7) | |
ax.grid() | |
ax.legend() | |
ax.set(adjustable='box', aspect='equal') | |
return ax | |
title = "PCA Visualization of the Dataset using {}" | |
if use_umap is True: | |
from umap import UMAP | |
dim_reducer = UMAP(n_components=2) | |
title = title.format("UMAP") | |
else: | |
from sklearn.manifold import TSNE | |
dim_reducer = TSNE(n_components=2) | |
title = title.format("TSNE") | |
x_transform = np.concatenate((x_train, x_test)) | |
x_transform = StandardScaler().fit_transform(x_transform) | |
x_transform = dim_reducer.fit_transform(x_transform) | |
x2d_train = x_transform[:x_train.shape[0], :] | |
x2d_test = x_transform[x_train.shape[0]:, :] | |
fig, axes = plt.subplots(ncols=2, sharex=True, sharey=True) | |
plot_topic_clusters(axes[0], x2d_train, y_train, labels) | |
plot_topic_clusters(axes[1], x2d_test, y_test, labels) | |
axes[0].set_title("Train Subset") | |
axes[1].set_title("Test Subset") | |
fig.suptitle(title) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment