Skip to content

Instantly share code, notes, and snippets.

@Fil
Last active October 1, 2017 14:08
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save Fil/14ddff5e46b6fe9341dae91c3c83304b to your computer and use it in GitHub Desktop.
Save Fil/14ddff5e46b6fe9341dae91c3c83304b to your computer and use it in GitHub Desktop.
Gnomonic Cube (Furuti projection #1)
license: mit
Display the source blob
Display the rendered blob
Raw
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
// https://d3js.org/d3-geo-projection/ Version 2.2.0. Copyright 2017 Mike Bostock.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-geo'), require('d3-array')) :
typeof define === 'function' && define.amd ? define(['exports', 'd3-geo', 'd3-array'], factory) :
(factory((global.d3 = global.d3 || {}),global.d3,global.d3));
}(this, (function (exports,d3Geo,d3Array) { 'use strict';
var abs = Math.abs;
var atan = Math.atan;
var atan2 = Math.atan2;
var cos = Math.cos;
var exp = Math.exp;
var floor = Math.floor;
var log = Math.log;
var max = Math.max;
var min = Math.min;
var pow = Math.pow;
var round = Math.round;
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sin = Math.sin;
var tan = Math.tan;
var epsilon = 1e-6;
var epsilon2 = 1e-12;
var pi = Math.PI;
var halfPi = pi / 2;
var quarterPi = pi / 4;
var sqrt1_2 = Math.SQRT1_2;
var sqrt2 = sqrt(2);
var sqrtPi = sqrt(pi);
var tau = pi * 2;
var degrees = 180 / pi;
var radians = pi / 180;
function sinci(x) {
return x ? x / Math.sin(x) : 1;
}
function asin(x) {
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
}
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function sqrt(x) {
return x > 0 ? Math.sqrt(x) : 0;
}
function tanh(x) {
x = exp(2 * x);
return (x - 1) / (x + 1);
}
function sinh(x) {
return (exp(x) - exp(-x)) / 2;
}
function cosh(x) {
return (exp(x) + exp(-x)) / 2;
}
function arsinh(x) {
return log(x + sqrt(x * x + 1));
}
function arcosh(x) {
return log(x + sqrt(x * x - 1));
}
function airyRaw(beta) {
var tanBeta_2 = tan(beta / 2),
b = 2 * log(cos(beta / 2)) / (tanBeta_2 * tanBeta_2);
function forward(x, y) {
var cosx = cos(x),
cosy = cos(y),
siny = sin(y),
cosz = cosy * cosx,
k = -((1 - cosz ? log((1 + cosz) / 2) / (1 - cosz) : -0.5) + b / (1 + cosz));
return [k * cosy * sin(x), k * siny];
}
forward.invert = function(x, y) {
var r = sqrt(x * x + y * y),
z = -beta / 2,
i = 50, delta;
if (!r) return [0, 0];
do {
var z_2 = z / 2,
cosz_2 = cos(z_2),
sinz_2 = sin(z_2),
tanz_2 = tan(z_2),
lnsecz_2 = log(1 / cosz_2);
z -= delta = (2 / tanz_2 * lnsecz_2 - b * tanz_2 - r) / (-lnsecz_2 / (sinz_2 * sinz_2) + 1 - b / (2 * cosz_2 * cosz_2));
} while (abs(delta) > epsilon && --i > 0);
var sinz = sin(z);
return [atan2(x * sinz, r * cos(z)), asin(y * sinz / r)];
};
return forward;
}
var airy = function() {
var beta = halfPi,
m = d3Geo.geoProjectionMutator(airyRaw),
p = m(beta);
p.radius = function(_) {
return arguments.length ? m(beta = _ * radians) : beta * degrees;
};
return p
.scale(179.976)
.clipAngle(147);
};
function aitoffRaw(x, y) {
var cosy = cos(y), sincia = sinci(acos(cosy * cos(x /= 2)));
return [2 * cosy * sin(x) * sincia, sin(y) * sincia];
}
// Abort if [x, y] is not within an ellipse centered at [0, 0] with
// semi-major axis pi and semi-minor axis pi/2.
aitoffRaw.invert = function(x, y) {
if (x * x + 4 * y * y > pi * pi + epsilon) return;
var x1 = x, y1 = y, i = 25;
do {
var sinx = sin(x1),
sinx_2 = sin(x1 / 2),
cosx_2 = cos(x1 / 2),
siny = sin(y1),
cosy = cos(y1),
sin_2y = sin(2 * y1),
sin2y = siny * siny,
cos2y = cosy * cosy,
sin2x_2 = sinx_2 * sinx_2,
c = 1 - cos2y * cosx_2 * cosx_2,
e = c ? acos(cosy * cosx_2) * sqrt(f = 1 / c) : f = 0,
f,
fx = 2 * e * cosy * sinx_2 - x,
fy = e * siny - y,
dxdx = f * (cos2y * sin2x_2 + e * cosy * cosx_2 * sin2y),
dxdy = f * (0.5 * sinx * sin_2y - e * 2 * siny * sinx_2),
dydx = f * 0.25 * (sin_2y * sinx_2 - e * siny * cos2y * sinx),
dydy = f * (sin2y * cosx_2 + e * sin2x_2 * cosy),
z = dxdy * dydx - dydy * dxdx;
if (!z) break;
var dx = (fy * dxdy - fx * dydy) / z,
dy = (fx * dydx - fy * dxdx) / z;
x1 -= dx, y1 -= dy;
} while ((abs(dx) > epsilon || abs(dy) > epsilon) && --i > 0);
return [x1, y1];
};
var aitoff = function() {
return d3Geo.geoProjection(aitoffRaw)
.scale(152.63);
};
function armadilloRaw(phi0) {
var sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0),
sPhi0 = phi0 >= 0 ? 1 : -1,
tanPhi0 = tan(sPhi0 * phi0),
k = (1 + sinPhi0 - cosPhi0) / 2;
function forward(lambda, phi) {
var cosPhi = cos(phi),
cosLambda = cos(lambda /= 2);
return [
(1 + cosPhi) * sin(lambda),
(sPhi0 * phi > -atan2(cosLambda, tanPhi0) - 1e-3 ? 0 : -sPhi0 * 10) + k + sin(phi) * cosPhi0 - (1 + cosPhi) * sinPhi0 * cosLambda // TODO D3 core should allow null or [NaN, NaN] to be returned.
];
}
forward.invert = function(x, y) {
var lambda = 0,
phi = 0,
i = 50;
do {
var cosLambda = cos(lambda),
sinLambda = sin(lambda),
cosPhi = cos(phi),
sinPhi = sin(phi),
A = 1 + cosPhi,
fx = A * sinLambda - x,
fy = k + sinPhi * cosPhi0 - A * sinPhi0 * cosLambda - y,
dxdLambda = A * cosLambda / 2,
dxdPhi = -sinLambda * sinPhi,
dydLambda = sinPhi0 * A * sinLambda / 2,
dydPhi = cosPhi0 * cosPhi + sinPhi0 * cosLambda * sinPhi,
denominator = dxdPhi * dydLambda - dydPhi * dxdLambda,
dLambda = (fy * dxdPhi - fx * dydPhi) / denominator / 2,
dPhi = (fx * dydLambda - fy * dxdLambda) / denominator;
lambda -= dLambda, phi -= dPhi;
} while ((abs(dLambda) > epsilon || abs(dPhi) > epsilon) && --i > 0);
return sPhi0 * phi > -atan2(cos(lambda), tanPhi0) - 1e-3 ? [lambda * 2, phi] : null;
};
return forward;
}
var armadillo = function() {
var phi0 = 20 * radians,
sPhi0 = phi0 >= 0 ? 1 : -1,
tanPhi0 = tan(sPhi0 * phi0),
m = d3Geo.geoProjectionMutator(armadilloRaw),
p = m(phi0),
stream_ = p.stream;
p.parallel = function(_) {
if (!arguments.length) return phi0 * degrees;
tanPhi0 = tan((sPhi0 = (phi0 = _ * radians) >= 0 ? 1 : -1) * phi0);
return m(phi0);
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart(), sphereStream.lineStart();
for (var lambda = sPhi0 * -180; sPhi0 * lambda < 180; lambda += sPhi0 * 90) sphereStream.point(lambda, sPhi0 * 90);
while (sPhi0 * (lambda -= phi0) >= -180) { // TODO precision?
sphereStream.point(lambda, sPhi0 * -atan2(cos(lambda * radians / 2), tanPhi0) * degrees);
}
sphereStream.lineEnd(), sphereStream.polygonEnd();
};
return rotateStream;
};
return p
.scale(218.695)
.center([0, 28.0974]);
};
function augustRaw(lambda, phi) {
var tanPhi = tan(phi / 2),
k = sqrt(1 - tanPhi * tanPhi),
c = 1 + k * cos(lambda /= 2),
x = sin(lambda) * k / c,
y = tanPhi / c,
x2 = x * x,
y2 = y * y;
return [
4 / 3 * x * (3 + x2 - 3 * y2),
4 / 3 * y * (3 + 3 * x2 - y2)
];
}
augustRaw.invert = function(x, y) {
x *= 3 / 8, y *= 3 / 8;
if (!x && abs(y) > 1) return null;
var x2 = x * x,
y2 = y * y,
s = 1 + x2 + y2,
sin3Eta = sqrt((s - sqrt(s * s - 4 * y * y)) / 2),
eta = asin(sin3Eta) / 3,
xi = sin3Eta ? arcosh(abs(y / sin3Eta)) / 3 : arsinh(abs(x)) / 3,
cosEta = cos(eta),
coshXi = cosh(xi),
d = coshXi * coshXi - cosEta * cosEta;
return [
sign(x) * 2 * atan2(sinh(xi) * cosEta, 0.25 - d),
sign(y) * 2 * atan2(coshXi * sin(eta), 0.25 + d)
];
};
var august = function() {
return d3Geo.geoProjection(augustRaw)
.scale(66.1603);
};
var sqrt8 = sqrt(8);
var phi0 = log(1 + sqrt2);
function bakerRaw(lambda, phi) {
var phi0 = abs(phi);
return phi0 < quarterPi
? [lambda, log(tan(quarterPi + phi / 2))]
: [lambda * cos(phi0) * (2 * sqrt2 - 1 / sin(phi0)), sign(phi) * (2 * sqrt2 * (phi0 - quarterPi) - log(tan(phi0 / 2)))];
}
bakerRaw.invert = function(x, y) {
if ((y0 = abs(y)) < phi0) return [x, 2 * atan(exp(y)) - halfPi];
var phi = quarterPi, i = 25, delta, y0;
do {
var cosPhi_2 = cos(phi / 2), tanPhi_2 = tan(phi / 2);
phi -= delta = (sqrt8 * (phi - quarterPi) - log(tanPhi_2) - y0) / (sqrt8 - cosPhi_2 * cosPhi_2 / (2 * tanPhi_2));
} while (abs(delta) > epsilon2 && --i > 0);
return [x / (cos(phi) * (sqrt8 - 1 / sin(phi))), sign(y) * phi];
};
var baker = function() {
return d3Geo.geoProjection(bakerRaw)
.scale(112.314);
};
function berghausRaw(lobes) {
var k = 2 * pi / lobes;
function forward(lambda, phi) {
var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi);
if (abs(lambda) > halfPi) { // back hemisphere
var theta = atan2(p[1], p[0]),
r = sqrt(p[0] * p[0] + p[1] * p[1]),
theta0 = k * round((theta - halfPi) / k) + halfPi,
alpha = atan2(sin(theta -= theta0), 2 - cos(theta)); // angle relative to lobe end
theta = theta0 + asin(pi / r * sin(alpha)) - alpha;
p[0] = r * cos(theta);
p[1] = r * sin(theta);
}
return p;
}
forward.invert = function(x, y) {
var r = sqrt(x * x + y * y);
if (r > halfPi) {
var theta = atan2(y, x),
theta0 = k * round((theta - halfPi) / k) + halfPi,
s = theta > theta0 ? -1 : 1,
A = r * cos(theta0 - theta),
cotAlpha = 1 / tan(s * acos((A - pi) / sqrt(pi * (pi - 2 * A) + r * r)));
theta = theta0 + 2 * atan((cotAlpha + s * sqrt(cotAlpha * cotAlpha - 3)) / 3);
x = r * cos(theta), y = r * sin(theta);
}
return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y);
};
return forward;
}
var berghaus = function() {
var lobes = 5,
m = d3Geo.geoProjectionMutator(berghausRaw),
p = m(lobes),
projectionStream = p.stream,
epsilon$$1 = 1e-2,
cr = -cos(epsilon$$1 * radians),
sr = sin(epsilon$$1 * radians);
p.lobes = function(_) {
return arguments.length ? m(lobes = +_) : lobes;
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = projectionStream(stream),
sphereStream = (p.rotate([0, 0]), projectionStream(stream));
p.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart(), sphereStream.lineStart();
for (var i = 0, delta = 360 / lobes, delta0 = 2 * pi / lobes, phi = 90 - 180 / lobes, phi0 = halfPi; i < lobes; ++i, phi -= delta, phi0 -= delta0) {
sphereStream.point(atan2(sr * cos(phi0), cr) * degrees, asin(sr * sin(phi0)) * degrees);
if (phi < -90) {
sphereStream.point(-90, -180 - phi - epsilon$$1);
sphereStream.point(-90, -180 - phi + epsilon$$1);
} else {
sphereStream.point(90, phi + epsilon$$1);
sphereStream.point(90, phi - epsilon$$1);
}
}
sphereStream.lineEnd(), sphereStream.polygonEnd();
};
return rotateStream;
};
return p
.scale(87.8076)
.center([0, 17.1875])
.clipAngle(180 - 1e-3);
};
function hammerRaw(A, B) {
if (arguments.length < 2) B = A;
if (B === 1) return d3Geo.geoAzimuthalEqualAreaRaw;
if (B === Infinity) return hammerQuarticAuthalicRaw;
function forward(lambda, phi) {
var coordinates = d3Geo.geoAzimuthalEqualAreaRaw(lambda / B, phi);
coordinates[0] *= A;
return coordinates;
}
forward.invert = function(x, y) {
var coordinates = d3Geo.geoAzimuthalEqualAreaRaw.invert(x / A, y);
coordinates[0] *= B;
return coordinates;
};
return forward;
}
function hammerQuarticAuthalicRaw(lambda, phi) {
return [
lambda * cos(phi) / cos(phi /= 2),
2 * sin(phi)
];
}
hammerQuarticAuthalicRaw.invert = function(x, y) {
var phi = 2 * asin(y / 2);
return [
x * cos(phi / 2) / cos(phi),
phi
];
};
var hammer = function() {
var B = 2,
m = d3Geo.geoProjectionMutator(hammerRaw),
p = m(B);
p.coefficient = function(_) {
if (!arguments.length) return B;
return m(B = +_);
};
return p
.scale(169.529);
};
function bertin1953Raw() {
var hammer$$1 = hammerRaw(1.68, 2),
fu = 1.4, k = 12;
return function(lambda, phi) {
if (lambda + phi < -fu) {
var u = (lambda - phi + 1.6) * (lambda + phi + fu) / 8;
lambda += u;
phi -= 0.8 * u * sin(phi + pi / 2);
}
var r = hammer$$1(lambda, phi);
var d = (1 - cos(lambda * phi)) / k;
if (r[1] < 0) {
r[0] *= 1 + d;
}
if (r[1] > 0) {
r[1] *= 1 + d / 1.5 * r[0] * r[0];
}
return r;
};
}
var bertin = function() {
var p = d3Geo.geoProjection(bertin1953Raw());
p.rotate([-16.5, -42]);
delete p.rotate;
return p
.scale(176.57)
.center([7.93, 0.09]);
};
function mollweideBromleyTheta(cp, phi) {
var cpsinPhi = cp * sin(phi), i = 30, delta;
do phi -= delta = (phi + sin(phi) - cpsinPhi) / (1 + cos(phi));
while (abs(delta) > epsilon && --i > 0);
return phi / 2;
}
function mollweideBromleyRaw(cx, cy, cp) {
function forward(lambda, phi) {
return [cx * lambda * cos(phi = mollweideBromleyTheta(cp, phi)), cy * sin(phi)];
}
forward.invert = function(x, y) {
return y = asin(y / cy), [x / (cx * cos(y)), asin((2 * y + sin(2 * y)) / cp)];
};
return forward;
}
var mollweideRaw = mollweideBromleyRaw(sqrt2 / halfPi, sqrt2, pi);
var mollweide = function() {
return d3Geo.geoProjection(mollweideRaw)
.scale(169.529);
};
var k = 2.00276;
var w = 1.11072;
function boggsRaw(lambda, phi) {
var theta = mollweideBromleyTheta(pi, phi);
return [k * lambda / (1 / cos(phi) + w / cos(theta)), (phi + sqrt2 * sin(theta)) / k];
}
boggsRaw.invert = function(x, y) {
var ky = k * y, theta = y < 0 ? -quarterPi : quarterPi, i = 25, delta, phi;
do {
phi = ky - sqrt2 * sin(theta);
theta -= delta = (sin(2 * theta) + 2 * theta - pi * sin(phi)) / (2 * cos(2 * theta) + 2 + pi * cos(phi) * sqrt2 * cos(theta));
} while (abs(delta) > epsilon && --i > 0);
phi = ky - sqrt2 * sin(theta);
return [x * (1 / cos(phi) + w / cos(theta)) / k, phi];
};
var boggs = function() {
return d3Geo.geoProjection(boggsRaw)
.scale(160.857);
};
var parallel1 = function(projectAt) {
var phi0 = 0,
m = d3Geo.geoProjectionMutator(projectAt),
p = m(phi0);
p.parallel = function(_) {
return arguments.length ? m(phi0 = _ * radians) : phi0 * degrees;
};
return p;
};
function sinusoidalRaw(lambda, phi) {
return [lambda * cos(phi), phi];
}
sinusoidalRaw.invert = function(x, y) {
return [x / cos(y), y];
};
var sinusoidal = function() {
return d3Geo.geoProjection(sinusoidalRaw)
.scale(152.63);
};
function bonneRaw(phi0) {
if (!phi0) return sinusoidalRaw;
var cotPhi0 = 1 / tan(phi0);
function forward(lambda, phi) {
var rho = cotPhi0 + phi0 - phi,
e = rho ? lambda * cos(phi) / rho : rho;
return [rho * sin(e), cotPhi0 - rho * cos(e)];
}
forward.invert = function(x, y) {
var rho = sqrt(x * x + (y = cotPhi0 - y) * y),
phi = cotPhi0 + phi0 - rho;
return [rho / cos(phi) * atan2(x, y), phi];
};
return forward;
}
var bonne = function() {
return parallel1(bonneRaw)
.scale(123.082)
.center([0, 26.1441])
.parallel(45);
};
function bottomleyRaw(sinPsi) {
function forward(lambda, phi) {
var rho = halfPi - phi,
eta = rho ? lambda * sinPsi * sin(rho) / rho : rho;
return [rho * sin(eta) / sinPsi, halfPi - rho * cos(eta)];
}
forward.invert = function(x, y) {
var x1 = x * sinPsi,
y1 = halfPi - y,
rho = sqrt(x1 * x1 + y1 * y1),
eta = atan2(x1, y1);
return [(rho ? rho / sin(rho) : 1) * eta / sinPsi, halfPi - rho];
};
return forward;
}
var bottomley = function() {
var sinPsi = 0.5,
m = d3Geo.geoProjectionMutator(bottomleyRaw),
p = m(sinPsi);
p.fraction = function(_) {
return arguments.length ? m(sinPsi = +_) : sinPsi;
};
return p
.scale(158.837);
};
var bromleyRaw = mollweideBromleyRaw(1, 4 / pi, pi);
var bromley = function() {
return d3Geo.geoProjection(bromleyRaw)
.scale(152.63);
};
// Azimuthal distance.
function distance(dPhi, c1, s1, c2, s2, dLambda) {
var cosdLambda = cos(dLambda), r;
if (abs(dPhi) > 1 || abs(dLambda) > 1) {
r = acos(s1 * s2 + c1 * c2 * cosdLambda);
} else {
var sindPhi = sin(dPhi / 2), sindLambda = sin(dLambda / 2);
r = 2 * asin(sqrt(sindPhi * sindPhi + c1 * c2 * sindLambda * sindLambda));
}
return abs(r) > epsilon ? [r, atan2(c2 * sin(dLambda), c1 * s2 - s1 * c2 * cosdLambda)] : [0, 0];
}
// Angle opposite a, and contained between sides of lengths b and c.
function angle(b, c, a) {
return acos((b * b + c * c - a * a) / (2 * b * c));
}
// Normalize longitude.
function longitude(lambda) {
return lambda - 2 * pi * floor((lambda + pi) / (2 * pi));
}
function chamberlinRaw(p0, p1, p2) {
var points = [
[p0[0], p0[1], sin(p0[1]), cos(p0[1])],
[p1[0], p1[1], sin(p1[1]), cos(p1[1])],
[p2[0], p2[1], sin(p2[1]), cos(p2[1])]
];
for (var a = points[2], b, i = 0; i < 3; ++i, a = b) {
b = points[i];
a.v = distance(b[1] - a[1], a[3], a[2], b[3], b[2], b[0] - a[0]);
a.point = [0, 0];
}
var beta0 = angle(points[0].v[0], points[2].v[0], points[1].v[0]),
beta1 = angle(points[0].v[0], points[1].v[0], points[2].v[0]),
beta2 = pi - beta0;
points[2].point[1] = 0;
points[0].point[0] = -(points[1].point[0] = points[0].v[0] / 2);
var mean = [
points[2].point[0] = points[0].point[0] + points[2].v[0] * cos(beta0),
2 * (points[0].point[1] = points[1].point[1] = points[2].v[0] * sin(beta0))
];
function forward(lambda, phi) {
var sinPhi = sin(phi),
cosPhi = cos(phi),
v = new Array(3), i;
// Compute distance and azimuth from control points.
for (i = 0; i < 3; ++i) {
var p = points[i];
v[i] = distance(phi - p[1], p[3], p[2], cosPhi, sinPhi, lambda - p[0]);
if (!v[i][0]) return p.point;
v[i][1] = longitude(v[i][1] - p.v[1]);
}
// Arithmetic mean of interception points.
var point = mean.slice();
for (i = 0; i < 3; ++i) {
var j = i == 2 ? 0 : i + 1;
var a = angle(points[i].v[0], v[i][0], v[j][0]);
if (v[i][1] < 0) a = -a;
if (!i) {
point[0] += v[i][0] * cos(a);
point[1] -= v[i][0] * sin(a);
} else if (i == 1) {
a = beta1 - a;
point[0] -= v[i][0] * cos(a);
point[1] -= v[i][0] * sin(a);
} else {
a = beta2 - a;
point[0] += v[i][0] * cos(a);
point[1] += v[i][0] * sin(a);
}
}
point[0] /= 3, point[1] /= 3;
return point;
}
return forward;
}
function pointRadians(p) {
return p[0] *= radians, p[1] *= radians, p;
}
function chamberlinAfrica() {
return chamberlin([0, 22], [45, 22], [22.5, -22])
.scale(380)
.center([22.5, 2]);
}
function chamberlin(p0, p1, p2) { // TODO order matters!
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: [p0, p1, p2]}),
R = [-c[0], -c[1]],
r = d3Geo.geoRotation(R),
p = d3Geo.geoProjection(chamberlinRaw(pointRadians(r(p0)), pointRadians(r(p1)), pointRadians(r(p2)))).rotate(R),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p
.clipAngle(90);
}
function collignonRaw(lambda, phi) {
var alpha = sqrt(1 - sin(phi));
return [(2 / sqrtPi) * lambda * alpha, sqrtPi * (1 - alpha)];
}
collignonRaw.invert = function(x, y) {
var lambda = (lambda = y / sqrtPi - 1) * lambda;
return [lambda > 0 ? x * sqrt(pi / lambda) / 2 : 0, asin(1 - lambda)];
};
var collignon = function() {
return d3Geo.geoProjection(collignonRaw)
.scale(95.6464)
.center([0, 30]);
};
function lagrangeRaw(n) {
function forward(lambda, phi) {
if (abs(abs(phi) - halfPi) < epsilon) return [0, phi < 0 ? -2 : 2];
var sinPhi = sin(phi),
v = pow((1 + sinPhi) / (1 - sinPhi), n / 2),
c = 0.5 * (v + 1 / v) + cos(lambda *= n);
return [
2 * sin(lambda) / c,
(v - 1 / v) / c
];
}
forward.invert = function(x, y) {
var y0 = abs(y);
if (abs(y0 - 2) < epsilon) return x ? null : [0, sign(y) * halfPi];
if (y0 > 2) return null;
x /= 2, y /= 2;
var x2 = x * x,
y2 = y * y,
t = 2 * y / (1 + x2 + y2); // tanh(nPhi)
t = pow((1 + t) / (1 - t), 1 / n);
return [
atan2(2 * x, 1 - x2 - y2) / n,
asin((t - 1) / (t + 1))
];
};
return forward;
}
var lagrange = function() {
var n = 0.5,
m = d3Geo.geoProjectionMutator(lagrangeRaw),
p = m(n);
p.spacing = function(_) {
return arguments.length ? m(n = +_) : n;
};
return p
.scale(124.75);
};
function complexAtan(x, y) {
var x2 = x * x,
y_1 = y + 1,
t = 1 - x2 - y * y;
return [
0.5 * ((x >= 0 ? halfPi : -halfPi) - atan2(t, 2 * x)),
-0.25 * log(t * t + 4 * x2) +0.5 * log(y_1 * y_1 + x2)
];
}
function complexDivide(a, b) {
if (b[1])
a = complexMul(a, [b[0], -b[1]]), b = complexNorm2(b);
else
b = b[0];
return [
a[0] / b,
a[1] / b
];
}
function complexMul(a, b) {
return [
a[0] * b[0] - a[1] * b[1],
a[1] * b[0] + a[0] * b[1]
];
}
function complexAdd(a, b) {
return [
a[0] + b[0],
a[1] + b[1]
];
}
function complexSub(a, b) {
return [
a[0] - b[0],
a[1] - b[1]
];
}
function complexNorm2(a) {
return a[0] * a[0] + a[1] * a[1];
}
function complexNorm(a) {
return sqrt(complexNorm2(a));
}
function complexLogHypot(a, b) {
var _a = abs(a),
_b = abs(b);
if (a === 0) return log(_b);
if (b === 0) return log(_a);
if (_a < 3000 && _b < 3000) return log(a * a + b * b) * 0.5;
return log(a / cos(atan2(b, a)));
}
// adapted from https://github.com/infusion/Complex.js
function complexPow(a, n) {
var b = a[1], arg, loh;
a = a[0];
if (a === 0 && b === 0) return [0,0];
if (typeof n === 'number') n = [n,0];
if (!n[1]) {
if (b === 0 && a >= 0) {
return [pow(a, n[0]), 0];
} else if (a === 0) {
switch ((n[1] % 4 + 4) % 4) {
case 0:
return [pow(b, n[0]), 0];
case 1:
return [0, pow(b, n[0])];
case 2:
return [-pow(b, n[0]), 0];
case 3:
return [0, -pow(b, n[0])];
}
}
}
arg = atan2(b, a);
loh = complexLogHypot(a, b);
a = exp(n[0] * loh - n[1] * arg);
b = n[1] * loh + n[0] * arg;
return [a * cos(b), a * sin(b)];
}
// w1 = gamma(1/n) * gamma(1 - 2/n) / n / gamma(1 - 1/n)
// https://bl.ocks.org/Fil/852557838117687bbd985e4b38ff77d4
var w$1 = [-1/2, sqrt(3)/2];
var w1 = [1.7666387502854533, 0];
var m = 0.3 * 0.3;
// Approximate \int _0 ^sm(z) dt / (1 - t^3)^(2/3)
// sm maps a triangle to a disc, sm^-1 does the opposite
function sm_1(z) {
var k = [0, 0];
// rotate to have s ~= 1
var rot = complexPow(w$1, d3Array.scan([0, 1, 2].map(function(i) {
return -complexMul(z, complexPow(w$1, [i, 0]))[0];
})));
var y = complexMul(rot, z);
y = [1 - y[0], - y[1]];
// McIlroy formula 5 p6 and table for F3 page 16
var F0 = [
1.44224957030741,
0.240374928384568,
0.0686785509670194,
0.0178055502507087,
0.00228276285265497,
-1.48379585422573e-3,
-1.64287728109203e-3,
-1.02583417082273e-3,
-4.83607537673571e-4,
-1.67030822094781e-4,
-2.45024395166263e-5,
2.14092375450951e-5,
2.55897270486771e-5,
1.73086854400834e-5,
8.72756299984649e-6,
3.18304486798473e-6,
4.79323894565283e-7
-4.58968389565456e-7,
-5.62970586787826e-7,
-3.92135372833465e-7
];
var F = [0, 0];
for (var i = F0.length; i--;) F = complexAdd([F0[i],0], complexMul(F, y));
k = complexMul(
complexAdd(w1,
complexMul([-F[0], -F[1]], complexPow(y, (1-2/3)))
),
complexMul(rot, rot)
);
// when we are close to [0,0] we switch to another approximation:
// https://www.wolframalpha.com/input/?i=(-2%2F3+choose+k)++*+(-1)%5Ek++%2F+(k%2B1)+with+k%3D0,1,2,3,4
// the difference is _very_ tiny but necessary
// if we want projection(0,0) === [0,0]
var n = complexNorm2(z);
if (n < m) {
var H0 = [
1, 1/3, 5/27, 10/81, 22/243 //…
];
var z3 = complexPow(z, [3,0]);
var h = [0,0];
for (i = H0.length; i--;) h = complexAdd([H0[i],0], complexMul(h, z3));
h = complexMul(h, z);
k = complexAdd(complexMul(k, [n / m, 0]), complexMul(h, [1 - n / m, 0]));
}
return k;
}
var lagrange1_2 = lagrangeRaw(0.5);
function coxRaw(lambda, phi) {
var s = lagrange1_2(lambda, phi);
var t = sm_1([s[1] / 2, s[0] / 2]);
return [t[1], t[0]]
}
// the Sphere should go *exactly* to the vertices of the triangles
// because they are singular points
function sphere() {
var c = 2 * asin(1 / sqrt(5)) * degrees;
return {
type: "Polygon",
coordinates: [
[ [ 0,90 ], [ -180, -c + epsilon ], [ 0, -90 ], [ 180, -c + epsilon ], [ 0,90 ] ]
]
};
}
var cox = function() {
var p = d3Geo.geoProjection(coxRaw);
var stream_ = p.stream;
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() { d3Geo.geoStream(sphere(), sphereStream); };
return rotateStream;
};
return p
.scale(188.682)
.center([0, 0])
.translate([ 480, 500 * 2 /3 ]);
};
function craigRaw(phi0) {
var tanPhi0 = tan(phi0);
function forward(lambda, phi) {
return [lambda, (lambda ? lambda / sin(lambda) : 1) * (sin(phi) * cos(lambda) - tanPhi0 * cos(phi))];
}
forward.invert = tanPhi0 ? function(x, y) {
if (x) y *= sin(x) / x;
var cosLambda = cos(x);
return [x, 2 * atan2(sqrt(cosLambda * cosLambda + tanPhi0 * tanPhi0 - y * y) - cosLambda, tanPhi0 - y)];
} : function(x, y) {
return [x, asin(x ? y * tan(x) / x : y)];
};
return forward;
}
var craig = function() {
return parallel1(craigRaw)
.scale(249.828)
.clipAngle(90);
};
var sqrt3 = sqrt(3);
function crasterRaw(lambda, phi) {
return [sqrt3 * lambda * (2 * cos(2 * phi / 3) - 1) / sqrtPi, sqrt3 * sqrtPi * sin(phi / 3)];
}
crasterRaw.invert = function(x, y) {
var phi = 3 * asin(y / (sqrt3 * sqrtPi));
return [sqrtPi * x / (sqrt3 * (2 * cos(2 * phi / 3) - 1)), phi];
};
var craster = function() {
return d3Geo.geoProjection(crasterRaw)
.scale(156.19);
};
function cylindricalEqualAreaRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, sin(phi) / cosPhi0];
}
forward.invert = function(x, y) {
return [x / cosPhi0, asin(y * cosPhi0)];
};
return forward;
}
var cylindricalEqualArea = function() {
return parallel1(cylindricalEqualAreaRaw)
.parallel(38.58) // acos(sqrt(width / height / pi)) * radians
.scale(195.044); // width / (sqrt(width / height / pi) * 2 * pi)
};
function cylindricalStereographicRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, (1 + cosPhi0) * tan(phi / 2)];
}
forward.invert = function(x, y) {
return [x / cosPhi0, atan(y / (1 + cosPhi0)) * 2];
};
return forward;
}
var cylindricalStereographic = function() {
return parallel1(cylindricalStereographicRaw)
.scale(124.75);
};
function eckert1Raw(lambda, phi) {
var alpha = sqrt(8 / (3 * pi));
return [
alpha * lambda * (1 - abs(phi) / pi),
alpha * phi
];
}
eckert1Raw.invert = function(x, y) {
var alpha = sqrt(8 / (3 * pi)),
phi = y / alpha;
return [
x / (alpha * (1 - abs(phi) / pi)),
phi
];
};
var eckert1 = function() {
return d3Geo.geoProjection(eckert1Raw)
.scale(165.664);
};
function eckert2Raw(lambda, phi) {
var alpha = sqrt(4 - 3 * sin(abs(phi)));
return [
2 / sqrt(6 * pi) * lambda * alpha,
sign(phi) * sqrt(2 * pi / 3) * (2 - alpha)
];
}
eckert2Raw.invert = function(x, y) {
var alpha = 2 - abs(y) / sqrt(2 * pi / 3);
return [
x * sqrt(6 * pi) / (2 * alpha),
sign(y) * asin((4 - alpha * alpha) / 3)
];
};
var eckert2 = function() {
return d3Geo.geoProjection(eckert2Raw)
.scale(165.664);
};
function eckert3Raw(lambda, phi) {
var k = sqrt(pi * (4 + pi));
return [
2 / k * lambda * (1 + sqrt(1 - 4 * phi * phi / (pi * pi))),
4 / k * phi
];
}
eckert3Raw.invert = function(x, y) {
var k = sqrt(pi * (4 + pi)) / 2;
return [
x * k / (1 + sqrt(1 - y * y * (4 + pi) / (4 * pi))),
y * k / 2
];
};
var eckert3 = function() {
return d3Geo.geoProjection(eckert3Raw)
.scale(180.739);
};
function eckert4Raw(lambda, phi) {
var k = (2 + halfPi) * sin(phi);
phi /= 2;
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; i++) {
var cosPhi = cos(phi);
phi -= delta = (phi + sin(phi) * (cosPhi + 2) - k) / (2 * cosPhi * (1 + cosPhi));
}
return [
2 / sqrt(pi * (4 + pi)) * lambda * (1 + cos(phi)),
2 * sqrt(pi / (4 + pi)) * sin(phi)
];
}
eckert4Raw.invert = function(x, y) {
var A = y * sqrt((4 + pi) / pi) / 2,
k = asin(A),
c = cos(k);
return [
x / (2 / sqrt(pi * (4 + pi)) * (1 + c)),
asin((k + A * (c + 2)) / (2 + halfPi))
];
};
var eckert4 = function() {
return d3Geo.geoProjection(eckert4Raw)
.scale(180.739);
};
function eckert5Raw(lambda, phi) {
return [
lambda * (1 + cos(phi)) / sqrt(2 + pi),
2 * phi / sqrt(2 + pi)
];
}
eckert5Raw.invert = function(x, y) {
var k = sqrt(2 + pi),
phi = y * k / 2;
return [
k * x / (1 + cos(phi)),
phi
];
};
var eckert5 = function() {
return d3Geo.geoProjection(eckert5Raw)
.scale(173.044);
};
function eckert6Raw(lambda, phi) {
var k = (1 + halfPi) * sin(phi);
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; i++) {
phi -= delta = (phi + sin(phi) - k) / (1 + cos(phi));
}
k = sqrt(2 + pi);
return [
lambda * (1 + cos(phi)) / k,
2 * phi / k
];
}
eckert6Raw.invert = function(x, y) {
var j = 1 + halfPi,
k = sqrt(j / 2);
return [
x * 2 * k / (1 + cos(y *= k)),
asin((y + sin(y)) / j)
];
};
var eckert6 = function() {
return d3Geo.geoProjection(eckert6Raw)
.scale(173.044);
};
var eisenlohrK = 3 + 2 * sqrt2;
function eisenlohrRaw(lambda, phi) {
var s0 = sin(lambda /= 2),
c0 = cos(lambda),
k = sqrt(cos(phi)),
c1 = cos(phi /= 2),
t = sin(phi) / (c1 + sqrt2 * c0 * k),
c = sqrt(2 / (1 + t * t)),
v = sqrt((sqrt2 * c1 + (c0 + s0) * k) / (sqrt2 * c1 + (c0 - s0) * k));
return [
eisenlohrK * (c * (v - 1 / v) - 2 * log(v)),
eisenlohrK * (c * t * (v + 1 / v) - 2 * atan(t))
];
}
eisenlohrRaw.invert = function(x, y) {
if (!(p = augustRaw.invert(x / 1.2, y * 1.065))) return null;
var lambda = p[0], phi = p[1], i = 20, p;
x /= eisenlohrK, y /= eisenlohrK;
do {
var _0 = lambda / 2,
_1 = phi / 2,
s0 = sin(_0),
c0 = cos(_0),
s1 = sin(_1),
c1 = cos(_1),
cos1 = cos(phi),
k = sqrt(cos1),
t = s1 / (c1 + sqrt2 * c0 * k),
t2 = t * t,
c = sqrt(2 / (1 + t2)),
v0 = (sqrt2 * c1 + (c0 + s0) * k),
v1 = (sqrt2 * c1 + (c0 - s0) * k),
v2 = v0 / v1,
v = sqrt(v2),
vm1v = v - 1 / v,
vp1v = v + 1 / v,
fx = c * vm1v - 2 * log(v) - x,
fy = c * t * vp1v - 2 * atan(t) - y,
deltatDeltaLambda = s1 && sqrt1_2 * k * s0 * t2 / s1,
deltatDeltaPhi = (sqrt2 * c0 * c1 + k) / (2 * (c1 + sqrt2 * c0 * k) * (c1 + sqrt2 * c0 * k) * k),
deltacDeltat = -0.5 * t * c * c * c,
deltacDeltaLambda = deltacDeltat * deltatDeltaLambda,
deltacDeltaPhi = deltacDeltat * deltatDeltaPhi,
A = (A = 2 * c1 + sqrt2 * k * (c0 - s0)) * A * v,
deltavDeltaLambda = (sqrt2 * c0 * c1 * k + cos1) / A,
deltavDeltaPhi = -(sqrt2 * s0 * s1) / (k * A),
deltaxDeltaLambda = vm1v * deltacDeltaLambda - 2 * deltavDeltaLambda / v + c * (deltavDeltaLambda + deltavDeltaLambda / v2),
deltaxDeltaPhi = vm1v * deltacDeltaPhi - 2 * deltavDeltaPhi / v + c * (deltavDeltaPhi + deltavDeltaPhi / v2),
deltayDeltaLambda = t * vp1v * deltacDeltaLambda - 2 * deltatDeltaLambda / (1 + t2) + c * vp1v * deltatDeltaLambda + c * t * (deltavDeltaLambda - deltavDeltaLambda / v2),
deltayDeltaPhi = t * vp1v * deltacDeltaPhi - 2 * deltatDeltaPhi / (1 + t2) + c * vp1v * deltatDeltaPhi + c * t * (deltavDeltaPhi - deltavDeltaPhi / v2),
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda;
if (!denominator) break;
var deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator,
deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
lambda -= deltaLambda;
phi = max(-halfPi, min(halfPi, phi - deltaPhi));
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0);
return abs(abs(phi) - halfPi) < epsilon ? [0, phi] : i && [lambda, phi];
};
var eisenlohr = function() {
return d3Geo.geoProjection(eisenlohrRaw)
.scale(62.5271);
};
var faheyK = cos(35 * radians);
function faheyRaw(lambda, phi) {
var t = tan(phi / 2);
return [lambda * faheyK * sqrt(1 - t * t), (1 + faheyK) * t];
}
faheyRaw.invert = function(x, y) {
var t = y / (1 + faheyK);
return [x && x / (faheyK * sqrt(1 - t * t)), 2 * atan(t)];
};
var fahey = function() {
return d3Geo.geoProjection(faheyRaw)
.scale(137.152);
};
function foucautRaw(lambda, phi) {
var k = phi / 2, cosk = cos(k);
return [ 2 * lambda / sqrtPi * cos(phi) * cosk * cosk, sqrtPi * tan(k)];
}
foucautRaw.invert = function(x, y) {
var k = atan(y / sqrtPi), cosk = cos(k), phi = 2 * k;
return [x * sqrtPi / 2 / (cos(phi) * cosk * cosk), phi];
};
var foucaut = function() {
return d3Geo.geoProjection(foucautRaw)
.scale(135.264);
};
function gilbertForward(point) {
return [point[0] / 2, asin(tan(point[1] / 2 * radians)) * degrees];
}
function gilbertInvert(point) {
return [point[0] * 2, 2 * atan(sin(point[1] * radians)) * degrees];
}
var gilbert = function(projectionType) {
if (projectionType == null) projectionType = d3Geo.geoOrthographic;
var projection = projectionType(),
equirectangular = d3Geo.geoEquirectangular().scale(degrees).precision(0).clipAngle(null).translate([0, 0]); // antimeridian cutting
function gilbert(point) {
return projection(gilbertForward(point));
}
if (projection.invert) gilbert.invert = function(point) {
return gilbertInvert(projection.invert(point));
};
gilbert.stream = function(stream) {
var s1 = projection.stream(stream), s0 = equirectangular.stream({
point: function(lambda, phi) { s1.point(lambda / 2, asin(tan(-phi / 2 * radians)) * degrees); },
lineStart: function() { s1.lineStart(); },
lineEnd: function() { s1.lineEnd(); },
polygonStart: function() { s1.polygonStart(); },
polygonEnd: function() { s1.polygonEnd(); }
});
s0.sphere = s1.sphere;
return s0;
};
function property(name) {
gilbert[name] = function(_) {
return arguments.length ? (projection[name](_), gilbert) : projection[name]();
};
}
gilbert.rotate = function(_) {
return arguments.length ? (equirectangular.rotate(_), gilbert) : equirectangular.rotate();
};
gilbert.center = function(_) {
return arguments.length ? (projection.center(gilbertForward(_)), gilbert) : gilbertInvert(projection.center());
};
property("clipAngle");
property("clipExtent");
property("scale");
property("translate");
property("precision");
return gilbert
.scale(249.5);
};
function gingeryRaw(rho, n) {
var k = 2 * pi / n,
rho2 = rho * rho;
function forward(lambda, phi) {
var p = d3Geo.geoAzimuthalEquidistantRaw(lambda, phi),
x = p[0],
y = p[1],
r2 = x * x + y * y;
if (r2 > rho2) {
var r = sqrt(r2),
theta = atan2(y, x),
theta0 = k * round(theta / k),
alpha = theta - theta0,
rhoCosAlpha = rho * cos(alpha),
k_ = (rho * sin(alpha) - alpha * sin(rhoCosAlpha)) / (halfPi - rhoCosAlpha),
s_ = gingeryLength(alpha, k_),
e = (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi);
x = r;
var i = 50, delta;
do {
x -= delta = (rho + gingeryIntegrate(s_, rhoCosAlpha, x) * e - r) / (s_(x) * e);
} while (abs(delta) > epsilon && --i > 0);
y = alpha * sin(x);
if (x < halfPi) y -= k_ * (x - halfPi);
var s = sin(theta0),
c = cos(theta0);
p[0] = x * c - y * s;
p[1] = x * s + y * c;
}
return p;
}
forward.invert = function(x, y) {
var r2 = x * x + y * y;
if (r2 > rho2) {
var r = sqrt(r2),
theta = atan2(y, x),
theta0 = k * round(theta / k),
dTheta = theta - theta0;
x = r * cos(dTheta);
y = r * sin(dTheta);
var x_halfPi = x - halfPi,
sinx = sin(x),
alpha = y / sinx,
delta = x < halfPi ? Infinity : 0,
i = 10;
while (true) {
var rhosinAlpha = rho * sin(alpha),
rhoCosAlpha = rho * cos(alpha),
sinRhoCosAlpha = sin(rhoCosAlpha),
halfPi_RhoCosAlpha = halfPi - rhoCosAlpha,
k_ = (rhosinAlpha - alpha * sinRhoCosAlpha) / halfPi_RhoCosAlpha,
s_ = gingeryLength(alpha, k_);
if (abs(delta) < epsilon2 || !--i) break;
alpha -= delta = (alpha * sinx - k_ * x_halfPi - y) / (
sinx - x_halfPi * 2 * (
halfPi_RhoCosAlpha * (rhoCosAlpha + alpha * rhosinAlpha * cos(rhoCosAlpha) - sinRhoCosAlpha) -
rhosinAlpha * (rhosinAlpha - alpha * sinRhoCosAlpha)
) / (halfPi_RhoCosAlpha * halfPi_RhoCosAlpha));
}
r = rho + gingeryIntegrate(s_, rhoCosAlpha, x) * (pi - rho) / gingeryIntegrate(s_, rhoCosAlpha, pi);
theta = theta0 + alpha;
x = r * cos(theta);
y = r * sin(theta);
}
return d3Geo.geoAzimuthalEquidistantRaw.invert(x, y);
};
return forward;
}
function gingeryLength(alpha, k) {
return function(x) {
var y_ = alpha * cos(x);
if (x < halfPi) y_ -= k;
return sqrt(1 + y_ * y_);
};
}
// Numerical integration: trapezoidal rule.
function gingeryIntegrate(f, a, b) {
var n = 50,
h = (b - a) / n,
s = f(a) + f(b);
for (var i = 1, x = a; i < n; ++i) s += 2 * f(x += h);
return s * 0.5 * h;
}
var gingery = function() {
var n = 6,
rho = 30 * radians,
cRho = cos(rho),
sRho = sin(rho),
m = d3Geo.geoProjectionMutator(gingeryRaw),
p = m(rho, n),
stream_ = p.stream,
epsilon$$1 = 1e-2,
cr = -cos(epsilon$$1 * radians),
sr = sin(epsilon$$1 * radians);
p.radius = function(_) {
if (!arguments.length) return rho * degrees;
cRho = cos(rho = _ * radians);
sRho = sin(rho);
return m(rho, n);
};
p.lobes = function(_) {
if (!arguments.length) return n;
return m(rho, n = +_);
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() {
sphereStream.polygonStart(), sphereStream.lineStart();
for (var i = 0, delta = 2 * pi / n, phi = 0; i < n; ++i, phi -= delta) {
sphereStream.point(atan2(sr * cos(phi), cr) * degrees, asin(sr * sin(phi)) * degrees);
sphereStream.point(atan2(sRho * cos(phi - delta / 2), cRho) * degrees, asin(sRho * sin(phi - delta / 2)) * degrees);
}
sphereStream.lineEnd(), sphereStream.polygonEnd();
};
return rotateStream;
};
return p
.rotate([90, -40])
.scale(91.7095)
.clipAngle(180 - 1e-3);
};
var ginzburgPolyconicRaw = function(a, b, c, d, e, f, g, h) {
if (arguments.length < 8) h = 0;
function forward(lambda, phi) {
if (!phi) return [a * lambda / pi, 0];
var phi2 = phi * phi,
xB = a + phi2 * (b + phi2 * (c + phi2 * d)),
yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)),
m = (xB * xB + yB * yB) / (2 * yB),
alpha = lambda * asin(xB / m) / pi;
return [m * sin(alpha), phi * (1 + phi2 * h) + m * (1 - cos(alpha))];
}
forward.invert = function(x, y) {
var lambda = pi * x / a,
phi = y,
deltaLambda, deltaPhi, i = 50;
do {
var phi2 = phi * phi,
xB = a + phi2 * (b + phi2 * (c + phi2 * d)),
yB = phi * (e - 1 + phi2 * (f - h + phi2 * g)),
p = xB * xB + yB * yB,
q = 2 * yB,
m = p / q,
m2 = m * m,
dAlphadLambda = asin(xB / m) / pi,
alpha = lambda * dAlphadLambda,
xB2 = xB * xB,
dxBdPhi = (2 * b + phi2 * (4 * c + phi2 * 6 * d)) * phi,
dyBdPhi = e + phi2 * (3 * f + phi2 * 5 * g),
dpdPhi = 2 * (xB * dxBdPhi + yB * (dyBdPhi - 1)),
dqdPhi = 2 * (dyBdPhi - 1),
dmdPhi = (dpdPhi * q - p * dqdPhi) / (q * q),
cosAlpha = cos(alpha),
sinAlpha = sin(alpha),
mcosAlpha = m * cosAlpha,
msinAlpha = m * sinAlpha,
dAlphadPhi = ((lambda / pi) * (1 / sqrt(1 - xB2 / m2)) * (dxBdPhi * m - xB * dmdPhi)) / m2,
fx = msinAlpha - x,
fy = phi * (1 + phi2 * h) + m - mcosAlpha - y,
deltaxDeltaPhi = dmdPhi * sinAlpha + mcosAlpha * dAlphadPhi,
deltaxDeltaLambda = mcosAlpha * dAlphadLambda,
deltayDeltaPhi = 1 + dmdPhi - (dmdPhi * cosAlpha - msinAlpha * dAlphadPhi),
deltayDeltaLambda = msinAlpha * dAlphadLambda,
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda;
if (!denominator) break;
lambda -= deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator;
phi -= deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0);
return [lambda, phi];
};
return forward;
};
var ginzburg4Raw = ginzburgPolyconicRaw(2.8284, -1.6988, 0.75432, -0.18071, 1.76003, -0.38914, 0.042555);
var ginzburg4 = function() {
return d3Geo.geoProjection(ginzburg4Raw)
.scale(149.995);
};
var ginzburg5Raw = ginzburgPolyconicRaw(2.583819, -0.835827, 0.170354, -0.038094, 1.543313, -0.411435,0.082742);
var ginzburg5 = function() {
return d3Geo.geoProjection(ginzburg5Raw)
.scale(153.93);
};
var ginzburg6Raw = ginzburgPolyconicRaw(5 / 6 * pi, -0.62636, -0.0344, 0, 1.3493, -0.05524, 0, 0.045);
var ginzburg6 = function() {
return d3Geo.geoProjection(ginzburg6Raw)
.scale(130.945);
};
function ginzburg8Raw(lambda, phi) {
var lambda2 = lambda * lambda,
phi2 = phi * phi;
return [
lambda * (1 - 0.162388 * phi2) * (0.87 - 0.000952426 * lambda2 * lambda2),
phi * (1 + phi2 / 12)
];
}
ginzburg8Raw.invert = function(x, y) {
var lambda = x,
phi = y,
i = 50, delta;
do {
var phi2 = phi * phi;
phi -= delta = (phi * (1 + phi2 / 12) - y) / (1 + phi2 / 4);
} while (abs(delta) > epsilon && --i > 0);
i = 50;
x /= 1 -0.162388 * phi2;
do {
var lambda4 = (lambda4 = lambda * lambda) * lambda4;
lambda -= delta = (lambda * (0.87 - 0.000952426 * lambda4) - x) / (0.87 - 0.00476213 * lambda4);
} while (abs(delta) > epsilon && --i > 0);
return [lambda, phi];
};
var ginzburg8 = function() {
return d3Geo.geoProjection(ginzburg8Raw)
.scale(131.747);
};
var ginzburg9Raw = ginzburgPolyconicRaw(2.6516, -0.76534, 0.19123, -0.047094, 1.36289, -0.13965,0.031762);
var ginzburg9 = function() {
return d3Geo.geoProjection(ginzburg9Raw)
.scale(131.087);
};
var squareRaw = function(project) {
var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0];
function projectSquare(lambda, phi) {
var s = lambda > 0 ? -0.5 : 0.5,
point = project(lambda + s * pi, phi);
point[0] -= s * dx;
return point;
}
if (project.invert) projectSquare.invert = function(x, y) {
var s = x > 0 ? -0.5 : 0.5,
location = project.invert(x + s * dx, y),
lambda = location[0] - s * pi;
if (lambda < -pi) lambda += 2 * pi;
else if (lambda > pi) lambda -= 2 * pi;
location[0] = lambda;
return location;
};
return projectSquare;
};
function gringortenRaw(lambda, phi) {
var sLambda = sign(lambda),
sPhi = sign(phi),
cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(sPhi * phi);
lambda = abs(atan2(y, z));
phi = asin(x);
if (abs(lambda - halfPi) > epsilon) lambda %= halfPi;
var point = gringortenHexadecant(lambda > pi / 4 ? halfPi - lambda : lambda, phi);
if (lambda > pi / 4) z = point[0], point[0] = -point[1], point[1] = -z;
return (point[0] *= sLambda, point[1] *= -sPhi, point);
}
gringortenRaw.invert = function(x, y) {
if (abs(x) > 1) x = sign(x) * 2 - x;
if (abs(y) > 1) y = sign(y) * 2 - y;
var sx = sign(x),
sy = sign(y),
x0 = -sx * x,
y0 = -sy * y,
t = y0 / x0 < 1,
p = gringortenHexadecantInvert(t ? y0 : x0, t ? x0 : y0),
lambda = p[0],
phi = p[1],
cosPhi = cos(phi);
if (t) lambda = -halfPi - lambda;
return [sx * (atan2(sin(lambda) * cosPhi, -sin(phi)) + pi), sy * asin(cos(lambda) * cosPhi)];
};
function gringortenHexadecant(lambda, phi) {
if (phi === halfPi) return [0, 0];
var sinPhi = sin(phi),
r = sinPhi * sinPhi,
r2 = r * r,
j = 1 + r2,
k = 1 + 3 * r2,
q = 1 - r2,
z = asin(1 / sqrt(j)),
v = q + r * j * z,
p2 = (1 - sinPhi) / v,
p = sqrt(p2),
a2 = p2 * j,
a = sqrt(a2),
h = p * q,
x,
i;
if (lambda === 0) return [0, -(h + r * a)];
var cosPhi = cos(phi),
secPhi = 1 / cosPhi,
drdPhi = 2 * sinPhi * cosPhi,
dvdPhi = (-3 * r + z * k) * drdPhi,
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
dpdPhi = (0.5 * dp2dPhi) / p,
dhdPhi = q * dpdPhi - 2 * r * p * drdPhi,
dra2dPhi = r * j * dp2dPhi + p2 * k * drdPhi,
mu = -secPhi * drdPhi,
nu = -secPhi * dra2dPhi,
zeta = -2 * secPhi * dhdPhi,
lambda1 = 4 * lambda / pi,
delta;
// Slower but accurate bisection method.
if (lambda > 0.222 * pi || phi < pi / 4 && lambda > 0.175 * pi) {
x = (h + r * sqrt(a2 * (1 + r2) - h * h)) / (1 + r2);
if (lambda > pi / 4) return [x, x];
var x1 = x, x0 = 0.5 * x;
x = 0.5 * (x0 + x1), i = 50;
do {
var g = sqrt(a2 - x * x),
f = (x * (zeta + mu * g) + nu * asin(x / a)) - lambda1;
if (!f) break;
if (f < 0) x0 = x;
else x1 = x;
x = 0.5 * (x0 + x1);
} while (abs(x1 - x0) > epsilon && --i > 0);
}
// Newton-Raphson.
else {
x = epsilon, i = 25;
do {
var x2 = x * x,
g2 = sqrt(a2 - x2),
zetaMug = zeta + mu * g2,
f2 = x * zetaMug + nu * asin(x / a) - lambda1,
df = zetaMug + (nu - mu * x2) / g2;
x -= delta = g2 ? f2 / df : 0;
} while (abs(delta) > epsilon && --i > 0);
}
return [x, -h - r * sqrt(a2 - x * x)];
}
function gringortenHexadecantInvert(x, y) {
var x0 = 0,
x1 = 1,
r = 0.5,
i = 50;
while (true) {
var r2 = r * r,
sinPhi = sqrt(r),
z = asin(1 / sqrt(1 + r2)),
v = (1 - r2) + r * (1 + r2) * z,
p2 = (1 - sinPhi) / v,
p = sqrt(p2),
a2 = p2 * (1 + r2),
h = p * (1 - r2),
g2 = a2 - x * x,
g = sqrt(g2),
y0 = y + h + r * g;
if (abs(x1 - x0) < epsilon2 || --i === 0 || y0 === 0) break;
if (y0 > 0) x0 = r;
else x1 = r;
r = 0.5 * (x0 + x1);
}
if (!i) return null;
var phi = asin(sinPhi),
cosPhi = cos(phi),
secPhi = 1 / cosPhi,
drdPhi = 2 * sinPhi * cosPhi,
dvdPhi = (-3 * r + z * (1 + 3 * r2)) * drdPhi,
dp2dPhi = (-v * cosPhi - (1 - sinPhi) * dvdPhi) / (v * v),
dpdPhi = 0.5 * dp2dPhi / p,
dhdPhi = (1 - r2) * dpdPhi - 2 * r * p * drdPhi,
zeta = -2 * secPhi * dhdPhi,
mu = -secPhi * drdPhi,
nu = -secPhi * (r * (1 + r2) * dp2dPhi + p2 * (1 + 3 * r2) * drdPhi);
return [pi / 4 * (x * (zeta + mu * g) + nu * asin(x / sqrt(a2))), phi];
}
var gringorten = function() {
return d3Geo.geoProjection(squareRaw(gringortenRaw))
.scale(239.75);
};
// Returns [sn, cn, dn](u + iv|m).
function ellipticJi(u, v, m) {
var a, b, c;
if (!u) {
b = ellipticJ(v, 1 - m);
return [
[0, b[0] / b[1]],
[1 / b[1], 0],
[b[2] / b[1], 0]
];
}
a = ellipticJ(u, m);
if (!v) return [[a[0], 0], [a[1], 0], [a[2], 0]];
b = ellipticJ(v, 1 - m);
c = b[1] * b[1] + m * a[0] * a[0] * b[0] * b[0];
return [
[a[0] * b[2] / c, a[1] * a[2] * b[0] * b[1] / c],
[a[1] * b[1] / c, -a[0] * a[2] * b[0] * b[2] / c],
[a[2] * b[1] * b[2] / c, -m * a[0] * a[1] * b[0] / c]
];
}
// Returns [sn, cn, dn, ph](u|m).
function ellipticJ(u, m) {
var ai, b, phi, t, twon;
if (m < epsilon) {
t = sin(u);
b = cos(u);
ai = m * (u - t * b) / 4;
return [
t - ai * b,
b + ai * t,
1 - m * t * t / 2,
u - ai
];
}
if (m >= 1 - epsilon) {
ai = (1 - m) / 4;
b = cosh(u);
t = tanh(u);
phi = 1 / b;
twon = b * sinh(u);
return [
t + ai * (twon - u) / (b * b),
phi - ai * t * phi * (twon - u),
phi + ai * t * phi * (twon + u),
2 * atan(exp(u)) - halfPi + ai * (twon - u) / b
];
}
var a = [1, 0, 0, 0, 0, 0, 0, 0, 0],
c = [sqrt(m), 0, 0, 0, 0, 0, 0, 0, 0],
i = 0;
b = sqrt(1 - m);
twon = 1;
while (abs(c[i] / a[i]) > epsilon && i < 8) {
ai = a[i++];
c[i] = (ai - b) / 2;
a[i] = (ai + b) / 2;
b = sqrt(ai * b);
twon *= 2;
}
phi = twon * a[i] * u;
do {
t = c[i] * sin(b = phi) / a[i];
phi = (asin(t) + phi) / 2;
} while (--i);
return [sin(phi), t = cos(phi), t / cos(phi - b), phi];
}
// Calculate F(phi+iPsi|m).
// See Abramowitz and Stegun, 17.4.11.
function ellipticFi(phi, psi, m) {
var r = abs(phi),
i = abs(psi),
sinhPsi = sinh(i);
if (r) {
var cscPhi = 1 / sin(r),
cotPhi2 = 1 / (tan(r) * tan(r)),
b = -(cotPhi2 + m * (sinhPsi * sinhPsi * cscPhi * cscPhi) - 1 + m),
c = (m - 1) * cotPhi2,
cotLambda2 = (-b + sqrt(b * b - 4 * c)) / 2;
return [
ellipticF(atan(1 / sqrt(cotLambda2)), m) * sign(phi),
ellipticF(atan(sqrt((cotLambda2 / cotPhi2 - 1) / m)), 1 - m) * sign(psi)
];
}
return [
0,
ellipticF(atan(sinhPsi), 1 - m) * sign(psi)
];
}
// Calculate F(phi|m) where m = k² = sin²α.
// See Abramowitz and Stegun, 17.6.7.
function ellipticF(phi, m) {
if (!m) return phi;
if (m === 1) return log(tan(phi / 2 + quarterPi));
var a = 1,
b = sqrt(1 - m),
c = sqrt(m);
for (var i = 0; abs(c) > epsilon; i++) {
if (phi % pi) {
var dPhi = atan(b * tan(phi) / a);
if (dPhi < 0) dPhi += pi;
phi += dPhi + ~~(phi / pi) * pi;
} else phi += phi;
c = (a + b) / 2;
b = sqrt(a * b);
c = ((a = c) - b) / 2;
}
return phi / (pow(2, i) * a);
}
function guyouRaw(lambda, phi) {
var k_ = (sqrt2 - 1) / (sqrt2 + 1),
k = sqrt(1 - k_ * k_),
K = ellipticF(halfPi, k * k),
f = -1,
psi = log(tan(pi / 4 + abs(phi) / 2)),
r = exp(f * psi) / sqrt(k_),
at = complexAtan(r * cos(f * lambda), r * sin(f * lambda)),
t = ellipticFi(at[0], at[1], k * k);
return [-t[1], (phi >= 0 ? 1 : -1) * (0.5 * K - t[0])];
}
guyouRaw.invert = function(x, y) {
var k_ = (sqrt2 - 1) / (sqrt2 + 1),
k = sqrt(1 - k_ * k_),
K = ellipticF(halfPi, k * k),
f = -1,
j = ellipticJi(0.5 * K - y, -x, k * k),
tn = complexDivide(j[0], j[1]),
lambda = atan2(tn[1], tn[0]) / f;
return [
lambda,
2 * atan(exp(0.5 / f * log(k_ * tn[0] * tn[0] + k_ * tn[1] * tn[1]))) - halfPi
];
};
var guyou = function() {
return d3Geo.geoProjection(squareRaw(guyouRaw))
.scale(151.496);
};
function hammerRetroazimuthalRaw(phi0) {
var sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0),
rotate = hammerRetroazimuthalRotation(phi0);
rotate.invert = hammerRetroazimuthalRotation(-phi0);
function forward(lambda, phi) {
var p = rotate(lambda, phi);
lambda = p[0], phi = p[1];
var sinPhi = sin(phi),
cosPhi = cos(phi),
cosLambda = cos(lambda),
z = acos(sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosLambda),
sinz = sin(z),
K = abs(sinz) > epsilon ? z / sinz : 1;
return [
K * cosPhi0 * sin(lambda),
(abs(lambda) > halfPi ? K : -K) // rotate for back hemisphere
* (sinPhi0 * cosPhi - cosPhi0 * sinPhi * cosLambda)
];
}
forward.invert = function(x, y) {
var rho = sqrt(x * x + y * y),
sinz = -sin(rho),
cosz = cos(rho),
a = rho * cosz,
b = -y * sinz,
c = rho * sinPhi0,
d = sqrt(a * a + b * b - c * c),
phi = atan2(a * c + b * d, b * c - a * d),
lambda = (rho > halfPi ? -1 : 1) * atan2(x * sinz, rho * cos(phi) * cosz + y * sin(phi) * sinz);
return rotate.invert(lambda, phi);
};
return forward;
}
// Latitudinal rotation by phi0.
// Temporary hack until D3 supports arbitrary small-circle clipping origins.
function hammerRetroazimuthalRotation(phi0) {
var sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
return function(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi);
return [
atan2(y, x * cosPhi0 - z * sinPhi0),
asin(z * cosPhi0 + x * sinPhi0)
];
};
}
var hammerRetroazimuthal = function() {
var phi0 = 0,
m = d3Geo.geoProjectionMutator(hammerRetroazimuthalRaw),
p = m(phi0),
rotate_ = p.rotate,
stream_ = p.stream,
circle = d3Geo.geoCircle();
p.parallel = function(_) {
if (!arguments.length) return phi0 * degrees;
var r = p.rotate();
return m(phi0 = _ * radians).rotate(r);
};
// Temporary hack; see hammerRetroazimuthalRotation.
p.rotate = function(_) {
if (!arguments.length) return (_ = rotate_.call(p), _[1] += phi0 * degrees, _);
rotate_.call(p, [_[0], _[1] - phi0 * degrees]);
circle.center([-_[0], -_[1]]);
return p;
};
p.stream = function(stream) {
stream = stream_(stream);
stream.sphere = function() {
stream.polygonStart();
var epsilon$$1 = 1e-2,
ring = circle.radius(90 - epsilon$$1)().coordinates[0],
n = ring.length - 1,
i = -1,
p;
stream.lineStart();
while (++i < n) stream.point((p = ring[i])[0], p[1]);
stream.lineEnd();
ring = circle.radius(90 + epsilon$$1)().coordinates[0];
n = ring.length - 1;
stream.lineStart();
while (--i >= 0) stream.point((p = ring[i])[0], p[1]);
stream.lineEnd();
stream.polygonEnd();
};
return stream;
};
return p
.scale(79.4187)
.parallel(45)
.clipAngle(180 - 1e-3);
};
var healpixParallel = 41 + 48 / 36 + 37 / 3600;
var healpixLambert = cylindricalEqualAreaRaw(0);
function healpixRaw(H) {
var phi0 = healpixParallel * radians,
dx = collignonRaw(pi, phi0)[0] - collignonRaw(-pi, phi0)[0],
y0 = healpixLambert(0, phi0)[1],
y1 = collignonRaw(0, phi0)[1],
dy1 = sqrtPi - y1,
k = tau / H,
w = 4 / tau,
h = y0 + (dy1 * dy1 * 4) / tau;
function forward(lambda, phi) {
var point,
phi2 = abs(phi);
if (phi2 > phi0) {
var i = min(H - 1, max(0, floor((lambda + pi) / k)));
lambda += pi * (H - 1) / H - i * k;
point = collignonRaw(lambda, phi2);
point[0] = point[0] * tau / dx - tau * (H - 1) / (2 * H) + i * tau / H;
point[1] = y0 + (point[1] - y1) * 4 * dy1 / tau;
if (phi < 0) point[1] = -point[1];
} else {
point = healpixLambert(lambda, phi);
}
point[0] *= w, point[1] /= h;
return point;
}
forward.invert = function(x, y) {
x /= w, y *= h;
var y2 = abs(y);
if (y2 > y0) {
var i = min(H - 1, max(0, floor((x + pi) / k)));
x = (x + pi * (H - 1) / H - i * k) * dx / tau;
var point = collignonRaw.invert(x, 0.25 * (y2 - y0) * tau / dy1 + y1);
point[0] -= pi * (H - 1) / H - i * k;
if (y < 0) point[1] = -point[1];
return point;
}
return healpixLambert.invert(x, y);
};
return forward;
}
function sphere$1(step) {
return {
type: "Polygon",
coordinates: [
d3Array.range(-180, 180 + step / 2, step).map(function(x, i) { return [x, i & 1 ? 90 - 1e-6 : healpixParallel]; })
.concat(d3Array.range(180, -180 - step / 2, -step).map(function(x, i) { return [x, i & 1 ? -90 + 1e-6 : -healpixParallel]; }))
]
};
}
var healpix = function() {
var H = 4,
m = d3Geo.geoProjectionMutator(healpixRaw),
p = m(H),
stream_ = p.stream;
p.lobes = function(_) {
return arguments.length ? m(H = +_) : H;
};
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() { d3Geo.geoStream(sphere$1(180 / H), sphereStream); };
return rotateStream;
};
return p
.scale(239.75);
};
function hillRaw(K) {
var L = 1 + K,
sinBt = sin(1 / L),
Bt = asin(sinBt),
A = 2 * sqrt(pi / (B = pi + 4 * Bt * L)),
B,
rho0 = 0.5 * A * (L + sqrt(K * (2 + K))),
K2 = K * K,
L2 = L * L;
function forward(lambda, phi) {
var t = 1 - sin(phi),
rho,
omega;
if (t && t < 2) {
var theta = halfPi - phi, i = 25, delta;
do {
var sinTheta = sin(theta),
cosTheta = cos(theta),
Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta),
C = 1 + L2 - 2 * L * cosTheta;
theta -= delta = (theta - K2 * Bt - L * sinTheta + C * Bt_Bt1 -0.5 * t * B) / (2 * L * sinTheta * Bt_Bt1);
} while (abs(delta) > epsilon2 && --i > 0);
rho = A * sqrt(C);
omega = lambda * Bt_Bt1 / pi;
} else {
rho = A * (K + t);
omega = lambda * Bt / pi;
}
return [
rho * sin(omega),
rho0 - rho * cos(omega)
];
}
forward.invert = function(x, y) {
var rho2 = x * x + (y -= rho0) * y,
cosTheta = (1 + L2 - rho2 / (A * A)) / (2 * L),
theta = acos(cosTheta),
sinTheta = sin(theta),
Bt_Bt1 = Bt + atan2(sinTheta, L - cosTheta);
return [
asin(x / sqrt(rho2)) * pi / Bt_Bt1,
asin(1 - 2 * (theta - K2 * Bt - L * sinTheta + (1 + L2 - 2 * L * cosTheta) * Bt_Bt1) / B)
];
};
return forward;
}
var hill = function() {
var K = 1,
m = d3Geo.geoProjectionMutator(hillRaw),
p = m(K);
p.ratio = function(_) {
return arguments.length ? m(K = +_) : K;
};
return p
.scale(167.774)
.center([0, 18.67]);
};
var sinuMollweidePhi = 0.7109889596207567;
var sinuMollweideY = 0.0528035274542;
function sinuMollweideRaw(lambda, phi) {
return phi > -sinuMollweidePhi
? (lambda = mollweideRaw(lambda, phi), lambda[1] += sinuMollweideY, lambda)
: sinusoidalRaw(lambda, phi);
}
sinuMollweideRaw.invert = function(x, y) {
return y > -sinuMollweidePhi
? mollweideRaw.invert(x, y - sinuMollweideY)
: sinusoidalRaw.invert(x, y);
};
var sinuMollweide = function() {
return d3Geo.geoProjection(sinuMollweideRaw)
.rotate([-20, -55])
.scale(164.263)
.center([0, -5.4036]);
};
function homolosineRaw(lambda, phi) {
return abs(phi) > sinuMollweidePhi
? (lambda = mollweideRaw(lambda, phi), lambda[1] -= phi > 0 ? sinuMollweideY : -sinuMollweideY, lambda)
: sinusoidalRaw(lambda, phi);
}
homolosineRaw.invert = function(x, y) {
return abs(y) > sinuMollweidePhi
? mollweideRaw.invert(x, y + (y > 0 ? sinuMollweideY : -sinuMollweideY))
: sinusoidalRaw.invert(x, y);
};
var homolosine = function() {
return d3Geo.geoProjection(homolosineRaw)
.scale(152.63);
};
function pointEqual(a, b) {
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
}
function interpolateLine(coordinates, m) {
var i = -1,
n = coordinates.length,
p0 = coordinates[0],
p1,
dx,
dy,
resampled = [];
while (++i < n) {
p1 = coordinates[i];
dx = (p1[0] - p0[0]) / m;
dy = (p1[1] - p0[1]) / m;
for (var j = 0; j < m; ++j) resampled.push([p0[0] + j * dx, p0[1] + j * dy]);
p0 = p1;
}
resampled.push(p1);
return resampled;
}
function interpolateSphere(lobes) {
var coordinates = [],
lobe,
lambda0, phi0, phi1,
lambda2, phi2,
i, n = lobes[0].length;
// Northern Hemisphere
for (i = 0; i < n; ++i) {
lobe = lobes[0][i];
lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1];
lambda2 = lobe[2][0], phi2 = lobe[2][1];
coordinates.push(interpolateLine([
[lambda0 + epsilon, phi0 + epsilon],
[lambda0 + epsilon, phi1 - epsilon],
[lambda2 - epsilon, phi1 - epsilon],
[lambda2 - epsilon, phi2 + epsilon]
], 30));
}
// Southern Hemisphere
for (i = lobes[1].length - 1; i >= 0; --i) {
lobe = lobes[1][i];
lambda0 = lobe[0][0], phi0 = lobe[0][1], phi1 = lobe[1][1];
lambda2 = lobe[2][0], phi2 = lobe[2][1];
coordinates.push(interpolateLine([
[lambda2 - epsilon, phi2 - epsilon],
[lambda2 - epsilon, phi1 + epsilon],
[lambda0 + epsilon, phi1 + epsilon],
[lambda0 + epsilon, phi0 - epsilon]
], 30));
}
return {
type: "Polygon",
coordinates: [d3Array.merge(coordinates)]
};
}
var interrupt = function(project, lobes) {
var sphere, bounds;
function forward(lambda, phi) {
var sign$$1 = phi < 0 ? -1 : +1, lobe = lobes[+(phi < 0)];
for (var i = 0, n = lobe.length - 1; i < n && lambda > lobe[i][2][0]; ++i);
var p = project(lambda - lobe[i][1][0], phi);
p[0] += project(lobe[i][1][0], sign$$1 * phi > sign$$1 * lobe[i][0][1] ? lobe[i][0][1] : phi)[0];
return p;
}
// Assumes mutually exclusive bounding boxes for lobes.
if (project.invert) forward.invert = function(x, y) {
var bound = bounds[+(y < 0)], lobe = lobes[+(y < 0)];
for (var i = 0, n = bound.length; i < n; ++i) {
var b = bound[i];
if (b[0][0] <= x && x < b[1][0] && b[0][1] <= y && y < b[1][1]) {
var p = project.invert(x - project(lobe[i][1][0], 0)[0], y);
p[0] += lobe[i][1][0];
return pointEqual(forward(p[0], p[1]), [x, y]) ? p : null;
}
}
};
var p = d3Geo.geoProjection(forward),
stream_ = p.stream;
p.stream = function(stream) {
var rotate = p.rotate(),
rotateStream = stream_(stream),
sphereStream = (p.rotate([0, 0]), stream_(stream));
p.rotate(rotate);
rotateStream.sphere = function() { d3Geo.geoStream(sphere, sphereStream); };
return rotateStream;
};
p.lobes = function(_) {
if (!arguments.length) return lobes.map(function(lobe) {
return lobe.map(function(l) {
return [
[l[0][0] * degrees, l[0][1] * degrees],
[l[1][0] * degrees, l[1][1] * degrees],
[l[2][0] * degrees, l[2][1] * degrees]
];
});
});
sphere = interpolateSphere(_);
lobes = _.map(function(lobe) {
return lobe.map(function(l) {
return [
[l[0][0] * radians, l[0][1] * radians],
[l[1][0] * radians, l[1][1] * radians],
[l[2][0] * radians, l[2][1] * radians]
];
});
});
bounds = lobes.map(function(lobe) {
return lobe.map(function(l) {
var x0 = project(l[0][0], l[0][1])[0],
x1 = project(l[2][0], l[2][1])[0],
y0 = project(l[1][0], l[0][1])[1],
y1 = project(l[1][0], l[1][1])[1],
t;
if (y0 > y1) t = y0, y0 = y1, y1 = t;
return [[x0, y0], [x1, y1]];
});
});
return p;
};
if (lobes != null) p.lobes(lobes);
return p;
};
var lobes = [[ // northern hemisphere
[[-180, 0], [-100, 90], [ -40, 0]],
[[ -40, 0], [ 30, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-160, -90], [-100, 0]],
[[-100, 0], [ -60, -90], [ -20, 0]],
[[ -20, 0], [ 20, -90], [ 80, 0]],
[[ 80, 0], [ 140, -90], [ 180, 0]]
]];
var boggs$1 = function() {
return interrupt(boggsRaw, lobes)
.scale(160.857);
};
var lobes$1 = [[ // northern hemisphere
[[-180, 0], [-100, 90], [ -40, 0]],
[[ -40, 0], [ 30, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-160, -90], [-100, 0]],
[[-100, 0], [ -60, -90], [ -20, 0]],
[[ -20, 0], [ 20, -90], [ 80, 0]],
[[ 80, 0], [ 140, -90], [ 180, 0]]
]];
var homolosine$1 = function() {
return interrupt(homolosineRaw, lobes$1)
.scale(152.63);
};
var lobes$2 = [[ // northern hemisphere
[[-180, 0], [-100, 90], [ -40, 0]],
[[ -40, 0], [ 30, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-160, -90], [-100, 0]],
[[-100, 0], [ -60, -90], [ -20, 0]],
[[ -20, 0], [ 20, -90], [ 80, 0]],
[[ 80, 0], [ 140, -90], [ 180, 0]]
]];
var mollweide$1 = function() {
return interrupt(mollweideRaw, lobes$2)
.scale(169.529);
};
var lobes$3 = [[ // northern hemisphere
[[-180, 0], [ -90, 90], [ 0, 0]],
[[ 0, 0], [ 90, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [ -90, -90], [ 0, 0]],
[[ 0, 0], [ 90, -90], [ 180, 0]]
]];
var mollweideHemispheres = function() {
return interrupt(mollweideRaw, lobes$3)
.scale(169.529)
.rotate([20, 0]);
};
var lobes$4 = [[ // northern hemisphere
[[-180, 35], [ -30, 90], [ 0, 35]],
[[ 0, 35], [ 30, 90], [ 180, 35]]
], [ // southern hemisphere
[[-180, -10], [-102, -90], [ -65, -10]],
[[ -65, -10], [ 5, -90], [ 77, -10]],
[[ 77, -10], [ 103, -90], [ 180, -10]]
]];
var sinuMollweide$1 = function() {
return interrupt(sinuMollweideRaw, lobes$4)
.rotate([-20, -55])
.scale(164.263)
.center([0, -5.4036]);
};
var lobes$5 = [[ // northern hemisphere
[[-180, 0], [-110, 90], [ -40, 0]],
[[ -40, 0], [ 0, 90], [ 40, 0]],
[[ 40, 0], [ 110, 90], [ 180, 0]]
], [ // southern hemisphere
[[-180, 0], [-110, -90], [ -40, 0]],
[[ -40, 0], [ 0, -90], [ 40, 0]],
[[ 40, 0], [ 110, -90], [ 180, 0]]
]];
var sinusoidal$1 = function() {
return interrupt(sinusoidalRaw, lobes$5)
.scale(152.63)
.rotate([-20, 0]);
};
function kavrayskiy7Raw(lambda, phi) {
return [3 / tau * lambda * sqrt(pi * pi / 3 - phi * phi), phi];
}
kavrayskiy7Raw.invert = function(x, y) {
return [tau / 3 * x / sqrt(pi * pi / 3 - y * y), y];
};
var kavrayskiy7 = function() {
return d3Geo.geoProjection(kavrayskiy7Raw)
.scale(158.837);
};
var pi_sqrt2 = pi / sqrt2;
function larriveeRaw(lambda, phi) {
return [
lambda * (1 + sqrt(cos(phi))) / 2,
phi / (cos(phi / 2) * cos(lambda / 6))
];
}
larriveeRaw.invert = function(x, y) {
var x0 = abs(x),
y0 = abs(y),
lambda = epsilon,
phi = halfPi;
if (y0 < pi_sqrt2) phi *= y0 / pi_sqrt2;
else lambda += 6 * acos(pi_sqrt2 / y0);
for (var i = 0; i < 25; i++) {
var sinPhi = sin(phi),
sqrtcosPhi = sqrt(cos(phi)),
sinPhi_2 = sin(phi / 2),
cosPhi_2 = cos(phi / 2),
sinLambda_6 = sin(lambda / 6),
cosLambda_6 = cos(lambda / 6),
f0 = 0.5 * lambda * (1 + sqrtcosPhi) - x0,
f1 = phi / (cosPhi_2 * cosLambda_6) - y0,
df0dPhi = sqrtcosPhi ? -0.25 * lambda * sinPhi / sqrtcosPhi : 0,
df0dLambda = 0.5 * (1 + sqrtcosPhi),
df1dPhi = (1 +0.5 * phi * sinPhi_2 / cosPhi_2) / (cosPhi_2 * cosLambda_6),
df1dLambda = (phi / cosPhi_2) * (sinLambda_6 / 6) / (cosLambda_6 * cosLambda_6),
denom = df0dPhi * df1dLambda - df1dPhi * df0dLambda,
dPhi = (f0 * df1dLambda - f1 * df0dLambda) / denom,
dLambda = (f1 * df0dPhi - f0 * df1dPhi) / denom;
phi -= dPhi;
lambda -= dLambda;
if (abs(dPhi) < epsilon && abs(dLambda) < epsilon) break;
}
return [x < 0 ? -lambda : lambda, y < 0 ? -phi : phi];
};
var larrivee = function() {
return d3Geo.geoProjection(larriveeRaw)
.scale(97.2672);
};
function laskowskiRaw(lambda, phi) {
var lambda2 = lambda * lambda, phi2 = phi * phi;
return [
lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)),
phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032))
];
}
laskowskiRaw.invert = function(x, y) {
var lambda = sign(x) * pi,
phi = y / 2,
i = 50;
do {
var lambda2 = lambda * lambda,
phi2 = phi * phi,
lambdaPhi = lambda * phi,
fx = lambda * (0.975534 + phi2 * (-0.119161 + lambda2 * -0.0143059 + phi2 * -0.0547009)) - x,
fy = phi * (1.00384 + lambda2 * (0.0802894 + phi2 * -0.02855 + lambda2 * 0.000199025) + phi2 * (0.0998909 + phi2 * -0.0491032)) - y,
deltaxDeltaLambda = 0.975534 - phi2 * (0.119161 + 3 * lambda2 * 0.0143059 + phi2 * 0.0547009),
deltaxDeltaPhi = -lambdaPhi * (2 * 0.119161 + 4 * 0.0547009 * phi2 + 2 * 0.0143059 * lambda2),
deltayDeltaLambda = lambdaPhi * (2 * 0.0802894 + 4 * 0.000199025 * lambda2 + 2 * -0.02855 * phi2),
deltayDeltaPhi = 1.00384 + lambda2 * (0.0802894 + 0.000199025 * lambda2) + phi2 * (3 * (0.0998909 - 0.02855 * lambda2) - 5 * 0.0491032 * phi2),
denominator = deltaxDeltaPhi * deltayDeltaLambda - deltayDeltaPhi * deltaxDeltaLambda,
deltaLambda = (fy * deltaxDeltaPhi - fx * deltayDeltaPhi) / denominator,
deltaPhi = (fx * deltayDeltaLambda - fy * deltaxDeltaLambda) / denominator;
lambda -= deltaLambda, phi -= deltaPhi;
} while ((abs(deltaLambda) > epsilon || abs(deltaPhi) > epsilon) && --i > 0);
return i && [lambda, phi];
};
var laskowski = function() {
return d3Geo.geoProjection(laskowskiRaw)
.scale(139.98);
};
function littrowRaw(lambda, phi) {
return [
sin(lambda) / cos(phi),
tan(phi) * cos(lambda)
];
}
littrowRaw.invert = function(x, y) {
var x2 = x * x,
y2 = y * y,
y2_1 = y2 + 1,
cosPhi = x
? sqrt1_2 * sqrt((y2_1 - sqrt(x2 * x2 + 2 * x2 * (y2 - 1) + y2_1 * y2_1)) / x2 + 1)
: 1 / sqrt(y2_1);
return [
asin(x * cosPhi),
sign(y) * acos(cosPhi)
];
};
var littrow = function() {
return d3Geo.geoProjection(littrowRaw)
.scale(144.049)
.clipAngle(90 - 1e-3);
};
function loximuthalRaw(phi0) {
var cosPhi0 = cos(phi0),
tanPhi0 = tan(quarterPi + phi0 / 2);
function forward(lambda, phi) {
var y = phi - phi0,
x = abs(y) < epsilon ? lambda * cosPhi0
: abs(x = quarterPi + phi / 2) < epsilon || abs(abs(x) - halfPi) < epsilon
? 0 : lambda * y / log(tan(x) / tanPhi0);
return [x, y];
}
forward.invert = function(x, y) {
var lambda,
phi = y + phi0;
return [
abs(y) < epsilon ? x / cosPhi0
: (abs(lambda = quarterPi + phi / 2) < epsilon || abs(abs(lambda) - halfPi) < epsilon) ? 0
: x * log(tan(lambda) / tanPhi0) / y,
phi
];
};
return forward;
}
var loximuthal = function() {
return parallel1(loximuthalRaw)
.parallel(40)
.scale(158.837);
};
function millerRaw(lambda, phi) {
return [lambda, 1.25 * log(tan(quarterPi + 0.4 * phi))];
}
millerRaw.invert = function(x, y) {
return [x, 2.5 * atan(exp(0.8 * y)) - 0.625 * pi];
};
var miller = function() {
return d3Geo.geoProjection(millerRaw)
.scale(108.318);
};
function modifiedStereographicRaw(C) {
var m = C.length - 1;
function forward(lambda, phi) {
var cosPhi = cos(phi),
k = 2 / (1 + cosPhi * cos(lambda)),
zr = k * cosPhi * sin(lambda),
zi = k * sin(phi),
i = m,
w = C[i],
ar = w[0],
ai = w[1],
t;
while (--i >= 0) {
w = C[i];
ar = w[0] + zr * (t = ar) - zi * ai;
ai = w[1] + zr * ai + zi * t;
}
ar = zr * (t = ar) - zi * ai;
ai = zr * ai + zi * t;
return [ar, ai];
}
forward.invert = function(x, y) {
var i = 20,
zr = x,
zi = y;
do {
var j = m,
w = C[j],
ar = w[0],
ai = w[1],
br = 0,
bi = 0,
t;
while (--j >= 0) {
w = C[j];
br = ar + zr * (t = br) - zi * bi;
bi = ai + zr * bi + zi * t;
ar = w[0] + zr * (t = ar) - zi * ai;
ai = w[1] + zr * ai + zi * t;
}
br = ar + zr * (t = br) - zi * bi;
bi = ai + zr * bi + zi * t;
ar = zr * (t = ar) - zi * ai - x;
ai = zr * ai + zi * t - y;
var denominator = br * br + bi * bi, deltar, deltai;
zr -= deltar = (ar * br + ai * bi) / denominator;
zi -= deltai = (ai * br - ar * bi) / denominator;
} while (abs(deltar) + abs(deltai) > epsilon * epsilon && --i > 0);
if (i) {
var rho = sqrt(zr * zr + zi * zi),
c = 2 * atan(rho * 0.5),
sinc = sin(c);
return [atan2(zr * sinc, rho * cos(c)), rho ? asin(zi * sinc / rho) : 0];
}
};
return forward;
}
var alaska = [[0.9972523, 0], [0.0052513, -0.0041175], [0.0074606, 0.0048125], [-0.0153783, -0.1968253], [0.0636871, -0.1408027], [0.3660976, -0.2937382]];
var gs48 = [[0.98879, 0], [0, 0], [-0.050909, 0], [0, 0], [0.075528, 0]];
var gs50 = [[0.9842990, 0], [0.0211642, 0.0037608], [-0.1036018, -0.0575102], [-0.0329095, -0.0320119], [0.0499471, 0.1223335], [0.0260460, 0.0899805], [0.0007388, -0.1435792], [0.0075848, -0.1334108], [-0.0216473, 0.0776645], [-0.0225161, 0.0853673]];
var miller$1 = [[0.9245, 0], [0, 0], [0.01943, 0]];
var lee = [[0.721316, 0], [0, 0], [-0.00881625, -0.00617325]];
function modifiedStereographicAlaska() {
return modifiedStereographic(alaska, [152, -64])
.scale(1500)
.center([-160.908, 62.4864])
.clipAngle(25);
}
function modifiedStereographicGs48() {
return modifiedStereographic(gs48, [95, -38])
.scale(1000)
.clipAngle(55)
.center([-96.5563, 38.8675]);
}
function modifiedStereographicGs50() {
return modifiedStereographic(gs50, [120, -45])
.scale(359.513)
.clipAngle(55)
.center([-117.474, 53.0628]);
}
function modifiedStereographicMiller() {
return modifiedStereographic(miller$1, [-20, -18])
.scale(209.091)
.center([20, 16.7214])
.clipAngle(82);
}
function modifiedStereographicLee() {
return modifiedStereographic(lee, [165, 10])
.scale(250)
.clipAngle(130)
.center([-165, -10]);
}
function modifiedStereographic(coefficients, rotate) {
var p = d3Geo.geoProjection(modifiedStereographicRaw(coefficients)).rotate(rotate).clipAngle(90),
r = d3Geo.geoRotation(rotate),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p;
}
var sqrt6 = sqrt(6);
var sqrt7 = sqrt(7);
function mtFlatPolarParabolicRaw(lambda, phi) {
var theta = asin(7 * sin(phi) / (3 * sqrt6));
return [
sqrt6 * lambda * (2 * cos(2 * theta / 3) - 1) / sqrt7,
9 * sin(theta / 3) / sqrt7
];
}
mtFlatPolarParabolicRaw.invert = function(x, y) {
var theta = 3 * asin(y * sqrt7 / 9);
return [
x * sqrt7 / (sqrt6 * (2 * cos(2 * theta / 3) - 1)),
asin(sin(theta) * 3 * sqrt6 / 7)
];
};
var mtFlatPolarParabolic = function() {
return d3Geo.geoProjection(mtFlatPolarParabolicRaw)
.scale(164.859);
};
function mtFlatPolarQuarticRaw(lambda, phi) {
var k = (1 + sqrt1_2) * sin(phi),
theta = phi;
for (var i = 0, delta; i < 25; i++) {
theta -= delta = (sin(theta / 2) + sin(theta) - k) / (0.5 * cos(theta / 2) + cos(theta));
if (abs(delta) < epsilon) break;
}
return [
lambda * (1 + 2 * cos(theta) / cos(theta / 2)) / (3 * sqrt2),
2 * sqrt(3) * sin(theta / 2) / sqrt(2 + sqrt2)
];
}
mtFlatPolarQuarticRaw.invert = function(x, y) {
var sinTheta_2 = y * sqrt(2 + sqrt2) / (2 * sqrt(3)),
theta = 2 * asin(sinTheta_2);
return [
3 * sqrt2 * x / (1 + 2 * cos(theta) / cos(theta / 2)),
asin((sinTheta_2 + sin(theta)) / (1 + sqrt1_2))
];
};
var mtFlatPolarQuartic = function() {
return d3Geo.geoProjection(mtFlatPolarQuarticRaw)
.scale(188.209);
};
function mtFlatPolarSinusoidalRaw(lambda, phi) {
var A = sqrt(6 / (4 + pi)),
k = (1 + pi / 4) * sin(phi),
theta = phi / 2;
for (var i = 0, delta; i < 25; i++) {
theta -= delta = (theta / 2 + sin(theta) - k) / (0.5 + cos(theta));
if (abs(delta) < epsilon) break;
}
return [
A * (0.5 + cos(theta)) * lambda / 1.5,
A * theta
];
}
mtFlatPolarSinusoidalRaw.invert = function(x, y) {
var A = sqrt(6 / (4 + pi)),
theta = y / A;
if (abs(abs(theta) - halfPi) < epsilon) theta = theta < 0 ? -halfPi : halfPi;
return [
1.5 * x / (A * (0.5 + cos(theta))),
asin((theta / 2 + sin(theta)) / (1 + pi / 4))
];
};
var mtFlatPolarSinusoidal = function() {
return d3Geo.geoProjection(mtFlatPolarSinusoidalRaw)
.scale(166.518);
};
function naturalEarthRaw(lambda, phi) {
var phi2 = phi * phi, phi4 = phi2 * phi2;
return [
lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),
phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))
];
}
naturalEarthRaw.invert = function(x, y) {
var phi = y, i = 25, delta;
do {
var phi2 = phi * phi, phi4 = phi2 * phi2;
phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /
(1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));
} while (abs(delta) > epsilon && --i > 0);
return [
x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),
phi
];
};
var naturalEarth = function() {
return d3Geo.geoProjection(naturalEarthRaw)
.scale(175.295);
};
function naturalEarth2Raw(lambda, phi) {
var phi2 = phi * phi, phi4 = phi2 * phi2, phi6 = phi2 * phi4;
return [
lambda * (0.84719 - 0.13063 * phi2 + phi6 * phi6 * (-0.04515 + 0.05494 * phi2 - 0.02326 * phi4 + 0.00331 * phi6)),
phi * (1.01183 + phi4 * phi4 * (-0.02625 + 0.01926 * phi2 - 0.00396 * phi4))
];
}
naturalEarth2Raw.invert = function(x, y) {
var phi = y, i = 25, delta, phi2, phi4, phi6;
do {
phi2 = phi * phi; phi4 = phi2 * phi2;
phi -= delta = ((phi * (1.01183 + phi4 * phi4 * (-0.02625 + 0.01926 * phi2 - 0.00396 * phi4))) - y) /
(1.01183 + phi4 * phi4 * ((9 * -0.02625) + (11 * 0.01926) * phi2 + (13 * -0.00396) * phi4));
} while (abs(delta) > epsilon2 && --i > 0);
phi2 = phi * phi; phi4 = phi2 * phi2; phi6 = phi2 * phi4;
return [
x / (0.84719 - 0.13063 * phi2 + phi6 * phi6 * (-0.04515 + 0.05494 * phi2 - 0.02326 * phi4 + 0.00331 * phi6)),
phi
];
};
var naturalEarth2 = function() {
return d3Geo.geoProjection(naturalEarth2Raw)
.scale(175.295);
};
function nellHammerRaw(lambda, phi) {
return [
lambda * (1 + cos(phi)) / 2,
2 * (phi - tan(phi / 2))
];
}
nellHammerRaw.invert = function(x, y) {
var p = y / 2;
for (var i = 0, delta = Infinity; i < 10 && abs(delta) > epsilon; ++i) {
var c = cos(y / 2);
y -= delta = (y - tan(y / 2) - p) / (1 - 0.5 / (c * c));
}
return [
2 * x / (1 + cos(y)),
y
];
};
var nellHammer = function() {
return d3Geo.geoProjection(nellHammerRaw)
.scale(152.63);
};
// Based on Java implementation by Bojan Savric.
// https://github.com/OSUCartography/JMapProjLib/blob/master/src/com/jhlabs/map/proj/PattersonProjection.java
var pattersonK1 = 1.0148;
var pattersonK2 = 0.23185;
var pattersonK3 = -0.14499;
var pattersonK4 = 0.02406;
var pattersonC1 = pattersonK1;
var pattersonC2 = 5 * pattersonK2;
var pattersonC3 = 7 * pattersonK3;
var pattersonC4 = 9 * pattersonK4;
var pattersonYmax = 1.790857183;
function pattersonRaw(lambda, phi) {
var phi2 = phi * phi;
return [
lambda,
phi * (pattersonK1 + phi2 * phi2 * (pattersonK2 + phi2 * (pattersonK3 + pattersonK4 * phi2)))
];
}
pattersonRaw.invert = function(x, y) {
if (y > pattersonYmax) y = pattersonYmax;
else if (y < -pattersonYmax) y = -pattersonYmax;
var yc = y, delta;
do { // Newton-Raphson
var y2 = yc * yc;
yc -= delta = ((yc * (pattersonK1 + y2 * y2 * (pattersonK2 + y2 * (pattersonK3 + pattersonK4 * y2)))) - y) / (pattersonC1 + y2 * y2 * (pattersonC2 + y2 * (pattersonC3 + pattersonC4 * y2)));
} while (abs(delta) > epsilon);
return [x, yc];
};
var patterson = function() {
return d3Geo.geoProjection(pattersonRaw)
.scale(139.319);
};
function polyconicRaw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var tanPhi = tan(phi),
k = lambda * sin(phi);
return [
sin(k) / tanPhi,
phi + (1 - cos(k)) / tanPhi
];
}
polyconicRaw.invert = function(x, y) {
if (abs(y) < epsilon) return [x, 0];
var k = x * x + y * y,
phi = y * 0.5,
i = 10, delta;
do {
var tanPhi = tan(phi),
secPhi = 1 / cos(phi),
j = k - 2 * y * phi + phi * phi;
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
} while (abs(delta) > epsilon && --i > 0);
tanPhi = tan(phi);
return [
(abs(y) < abs(phi + 1 / tanPhi) ? asin(x * tanPhi) : sign(x) * (acos(abs(x * tanPhi)) + halfPi)) / sin(phi),
phi
];
};
var polyconic = function() {
return d3Geo.geoProjection(polyconicRaw)
.scale(103.74);
};
// Note: 6-element arrays are used to denote the 3x3 affine transform matrix:
// [a, b, c,
// d, e, f,
// 0, 0, 1] - this redundant row is left out.
// Transform matrix for [a0, a1] -> [b0, b1].
var matrix = function(a, b) {
var u = subtract(a[1], a[0]),
v = subtract(b[1], b[0]),
phi = angle$1(u, v),
s = length(u) / length(v);
return multiply([
1, 0, a[0][0],
0, 1, a[0][1]
], multiply([
s, 0, 0,
0, s, 0
], multiply([
cos(phi), sin(phi), 0,
-sin(phi), cos(phi), 0
], [
1, 0, -b[0][0],
0, 1, -b[0][1]
])));
};
// Inverts a transform matrix.
function inverse(m) {
var k = 1 / (m[0] * m[4] - m[1] * m[3]);
return [
k * m[4], -k * m[1], k * (m[1] * m[5] - m[2] * m[4]),
-k * m[3], k * m[0], k * (m[2] * m[3] - m[0] * m[5])
];
}
// Multiplies two 3x2 matrices.
function multiply(a, b) {
return [
a[0] * b[0] + a[1] * b[3],
a[0] * b[1] + a[1] * b[4],
a[0] * b[2] + a[1] * b[5] + a[2],
a[3] * b[0] + a[4] * b[3],
a[3] * b[1] + a[4] * b[4],
a[3] * b[2] + a[4] * b[5] + a[5]
];
}
// Subtracts 2D vectors.
function subtract(a, b) {
return [a[0] - b[0], a[1] - b[1]];
}
// Magnitude of a 2D vector.
function length(v) {
return sqrt(v[0] * v[0] + v[1] * v[1]);
}
// Angle between two 2D vectors.
function angle$1(a, b) {
return atan2(a[0] * b[1] - a[1] * b[0], a[0] * b[0] + a[1] * b[1]);
}
// Creates a polyhedral projection.
// * root: a spanning tree of polygon faces. Nodes are automatically
// augmented with a transform matrix.
// * face: a function that returns the appropriate node for a given {lambda, phi}
// point (radians).
// * r: rotation angle for final polyhedral net. Defaults to -pi / 6 (for
// butterflies).
var polyhedral = function(root, face, r) {
r = r == null ? -pi / 6 : r; // TODO automate
recurse(root, {transform: [
cos(r), sin(r), 0,
-sin(r), cos(r), 0
]});
function recurse(node, parent) {
node.edges = faceEdges(node.face);
// Find shared edge.
if (parent.face) {
var shared = node.shared = sharedEdge(node.face, parent.face),
m = matrix(shared.map(parent.project), shared.map(node.project));
node.transform = parent.transform ? multiply(parent.transform, m) : m;
// Replace shared edge in parent edges array.
var edges = parent.edges;
for (var i = 0, n = edges.length; i < n; ++i) {
if (pointEqual$1(shared[0], edges[i][1]) && pointEqual$1(shared[1], edges[i][0])) edges[i] = node;
if (pointEqual$1(shared[0], edges[i][0]) && pointEqual$1(shared[1], edges[i][1])) edges[i] = node;
}
edges = node.edges;
for (i = 0, n = edges.length; i < n; ++i) {
if (pointEqual$1(shared[0], edges[i][0]) && pointEqual$1(shared[1], edges[i][1])) edges[i] = parent;
if (pointEqual$1(shared[0], edges[i][1]) && pointEqual$1(shared[1], edges[i][0])) edges[i] = parent;
}
} else {
node.transform = parent.transform;
}
if (node.children) {
node.children.forEach(function(child) {
recurse(child, node);
});
}
return node;
}
function forward(lambda, phi) {
var node = face(lambda, phi),
point = node.project([lambda * degrees, phi * degrees]),
t;
if (t = node.transform) {
return [
t[0] * point[0] + t[1] * point[1] + t[2],
-(t[3] * point[0] + t[4] * point[1] + t[5])
];
}
point[1] = -point[1];
return point;
}
// Naive inverse! A faster solution would use bounding boxes, or even a
// polygonal quadtree.
if (hasInverse(root)) forward.invert = function(x, y) {
var coordinates = faceInvert(root, [x, -y]);
return coordinates && (coordinates[0] *= radians, coordinates[1] *= radians, coordinates);
};
function faceInvert(node, coordinates) {
var invert = node.project.invert,
t = node.transform,
point = coordinates;
if (t) {
t = inverse(t);
point = [
t[0] * point[0] + t[1] * point[1] + t[2],
(t[3] * point[0] + t[4] * point[1] + t[5])
];
}
if (invert && node === faceDegrees(p = invert(point))) return p;
var p,
children = node.children;
for (var i = 0, n = children && children.length; i < n; ++i) {
if (p = faceInvert(children[i], coordinates)) return p;
}
}
function faceDegrees(coordinates) {
return face(coordinates[0] * radians, coordinates[1] * radians);
}
var proj = d3Geo.geoProjection(forward),
stream_ = proj.stream;
// run around the mesh of faces and stream all vertices in order to create the clip polygon
var polygon = [];
outline(1e-3, {point: function(lambda, phi) { polygon.push([lambda, phi]); }}, root);
polygon.push(polygon[0]);
if (proj.clipPolygon) proj.clipPolygon({ type: "Polygon", coordinates: [ polygon ] });
proj.stream = function(stream) {
var rotate = proj.rotate(),
clipPolygon = proj.clipPolygon ? proj.clipPolygon() : null,
rotateStream = stream_(stream),
sphereStream = ((clipPolygon ? proj.clipPolygon(null) : proj).rotate([0, 0]), stream_(stream));
proj.rotate(rotate);
if (clipPolygon) proj.clipPolygon({ type: "Polygon", coordinates: [ polygon ] });
rotateStream.sphere = function() {
sphereStream.polygonStart();
sphereStream.lineStart();
outline(1e-5, sphereStream, root);
sphereStream.lineEnd();
sphereStream.polygonEnd();
};
return rotateStream;
};
return proj;
};
function outline(eps, stream, node, parent) {
var point,
edges = node.edges,
n = edges.length,
edge,
multiPoint = {type: "MultiPoint", coordinates: node.face},
notPoles = node.face.filter(function(d) { return abs(d[1]) !== 90; }),
b = d3Geo.geoBounds({type: "MultiPoint", coordinates: notPoles}),
inside = false,
j = -1,
dx = b[1][0] - b[0][0];
// TODO
var c = dx === 180 || dx === 360
? [(b[0][0] + b[1][0]) / 2, (b[0][1] + b[1][1]) / 2]
: d3Geo.geoCentroid(multiPoint);
// First find the shared edge…
if (parent) while (++j < n) {
if (edges[j] === parent) break;
}
++j;
for (var i = 0; i < n; ++i) {
edge = edges[(i + j) % n];
if (Array.isArray(edge)) {
if (!inside) {
stream.point((point = d3Geo.geoInterpolate(edge[0], c)(eps))[0], point[1]);
inside = true;
}
stream.point((point = d3Geo.geoInterpolate(edge[1], c)(eps))[0], point[1]);
} else {
inside = false;
if (edge !== parent) outline(eps, stream, edge, node);
}
}
}
// Tests equality of two spherical points.
function pointEqual$1(a, b) {
return a && b && a[0] === b[0] && a[1] === b[1];
}
// Finds a shared edge given two clockwise polygons.
function sharedEdge(a, b) {
var x, y, n = a.length, found = null;
for (var i = 0; i < n; ++i) {
x = a[i];
for (var j = b.length; --j >= 0;) {
y = b[j];
if (x[0] === y[0] && x[1] === y[1]) {
if (found) return [found, x];
found = x;
}
}
}
}
// Converts an array of n face vertices to an array of n + 1 edges.
function faceEdges(face) {
var n = face.length,
edges = [];
for (var a = face[n - 1], i = 0; i < n; ++i) edges.push([a, a = face[i]]);
return edges;
}
function hasInverse(node) {
return node.project.invert || node.children && node.children.some(hasInverse);
}
// TODO generate on-the-fly to avoid external modification.
var octahedron = [
[0, 90],
[-90, 0], [0, 0], [90, 0], [180, 0],
[0, -90]
];
var octahedron$1 = [
[0, 2, 1],
[0, 3, 2],
[5, 1, 2],
[5, 2, 3],
[0, 1, 4],
[0, 4, 3],
[5, 4, 1],
[5, 3, 4]
].map(function(face) {
return face.map(function(i) {
return octahedron[i];
});
});
var butterfly = function(faceProjection) {
faceProjection = faceProjection || function(face) {
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
};
var faces = octahedron$1.map(function(face) {
return {face: face, project: faceProjection(face)};
});
[-1, 0, 0, 1, 0, 1, 4, 5].forEach(function(d, i) {
var node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
return polyhedral(faces[0], function(lambda, phi) {
return faces[lambda < -pi / 2 ? phi < 0 ? 6 : 4
: lambda < 0 ? phi < 0 ? 2 : 0
: lambda < pi / 2 ? phi < 0 ? 3 : 1
: phi < 0 ? 7 : 5];
})
.scale(101.858)
.center([0, 45]);
};
var kx = 2 / sqrt(3);
function collignonK(a, b) {
var p = collignonRaw(a, b);
return [p[0] * kx, p[1]];
}
collignonK.invert = function(x,y) {
return collignonRaw.invert(x / kx, y);
};
var collignon$1 = function(faceProjection) {
faceProjection = faceProjection || function(face) {
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
return d3Geo.geoProjection(collignonK).translate([0, 0]).scale(1).rotate(c[1] > 0 ? [-c[0], 0] : [180 - c[0], 180]);
};
var faces = octahedron$1.map(function(face) {
return {face: face, project: faceProjection(face)};
});
[-1, 0, 0, 1, 0, 1, 4, 5].forEach(function(d, i) {
var node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
return polyhedral(faces[0], function(lambda, phi) {
return faces[lambda < -pi / 2 ? phi < 0 ? 6 : 4
: lambda < 0 ? phi < 0 ? 2 : 0
: lambda < pi / 2 ? phi < 0 ? 3 : 1
: phi < 0 ? 7 : 5];
})
.scale(121.906)
.center([0, 48.5904]);
};
function leeRaw (lambda, phi) {
// return d3.geoGnomonicRaw(...arguments);
var w = [-1/2, sqrt(3)/2],
k = [0, 0],
h = [0, 0],
i,
z = complexMul(d3Geo.geoStereographicRaw(lambda, phi), [sqrt(2), 0]);
// rotate to have s ~= 1
var sector = d3Array.scan([0,1,2].map(
function(i) {
return -complexMul(z, complexPow(w,[i,0]))[0];
}));
var rot = complexPow(w, [sector, 0]);
var n = complexNorm(z);
if (n > 0.3) {
// if |z| > 0.5, use the approx based on y = (1-z)
// McIlroy formula 6 p6 and table for G page 16
var y = complexSub([1, 0], complexMul(rot, z));
// w1 = gamma(1/3) * gamma(1/2) / 3 / gamma(5/6);
// https://bl.ocks.org/Fil/1aeff1cfda7188e9fbf037d8e466c95c
var w1 = 1.4021821053254548;
var G0 = [
1.15470053837925,
0.192450089729875,
0.0481125224324687,
0.010309826235529,
3.34114739114366e-4,
-1.50351632601465e-3,
-1.23044177962310e-3,
-6.75190201960282e-4,
-2.84084537293856e-4,
-8.21205120500051e-5,
-1.59257630018706e-6,
1.91691805888369e-5,
1.73095888028726e-5,
1.03865580818367e-5,
4.70614523937179e-6,
1.4413500104181e-6,
1.92757960170179e-8,
-3.82869799649063e-7,
-3.57526015225576e-7,
-2.2175964844211e-7
];
var G = [0, 0];
for (i = G0.length; i--;) {
G = complexAdd([G0[i], 0], complexMul(G, y));
}
k = complexSub([w1, 0], complexMul(complexPow(y, 1/2), G));
k = complexMul(k, rot); k = complexMul(k, rot);
}
if (n < 0.5) {
// if |z| < 0.3
// https://www.wolframalpha.com/input/?i=series+of+((1-z%5E3))+%5E+(-1%2F2)+at+z%3D0 (and ask for "more terms")
// 1 + z^3/2 + (3 z^6)/8 + (5 z^9)/16 + (35 z^12)/128 + (63 z^15)/256 + (231 z^18)/1024 + O(z^21)
// https://www.wolframalpha.com/input/?i=integral+of+1+%2B+z%5E3%2F2+%2B+(3+z%5E6)%2F8+%2B+(5+z%5E9)%2F16+%2B+(35+z%5E12)%2F128+%2B+(63+z%5E15)%2F256+%2B+(231+z%5E18)%2F1024
// (231 z^19)/19456 + (63 z^16)/4096 + (35 z^13)/1664 + z^10/32 + (3 z^7)/56 + z^4/8 + z + constant
var H0 = [
1, 1/8, 3/56, 1/32, 35/1664, 63/4096, 231/19456
];
var z3 = complexPow(z, [3,0]);
for (i = H0.length; i--;) {
h = complexAdd([H0[i], 0], complexMul(h, z3));
}
h = complexMul(h, z);
}
if (n < 0.3) return h;
if (n > 0.5) return k;
// in between 0.3 and 0.5, interpolate
var t = (n - 0.3) / (0.5 - 0.3);
return complexAdd(
complexMul(k, [t, 0]),
complexMul(h, [1 - t, 0])
);
}
var asin1_3 = asin(1 / 3);
var centers = [
[0, 90],
[-180, -asin1_3 * degrees],
[-60, -asin1_3 * degrees],
[60, -asin1_3 * degrees]
];
var tetrahedron = [[1, 2, 3], [0, 2, 1], [0, 3, 2], [0, 1, 3]].map(function(
face
) {
return face.map(function(i) {
return centers[i];
});
});
// geoPolyhedralLee
var lee$1 = function() {
var orientation = (arguments.length ? arguments[0] : 30) * radians;
var faceProjection = function(face) {
var c = d3Geo.geoCentroid({ type: "MultiPoint", coordinates: face }),
rotate = [-c[0], -c[1], 30];
if (abs(c[1]) == 90) {
rotate = [0, -c[1], -30];
}
return d3Geo.geoProjection(leeRaw).scale(1).translate([0, 0]).rotate(rotate);
};
var faces = tetrahedron.map(function(face) {
return { face: face, project: faceProjection(face) };
});
[-1, 0, 0, 0].forEach(function(d, i) {
var node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
return polyhedral(
faces[0],
function(lambda, phi) {
lambda *= degrees;
phi *= degrees;
for (var i = 0; i < faces.length; i++) {
if (
d3Geo.geoContains(
{
type: "Polygon",
coordinates: [[tetrahedron[i][0], tetrahedron[i][1], tetrahedron[i][2], tetrahedron[i][0]]]
},
[lambda, phi]
)
) {
return faces[i];
}
}
},
orientation
)
.precision(0.05)
.rotate([-30, 0])
//.rotate([30, 180]) // for North Pole aspect, needs clipPolygon
.scale(118.899)
.center([0,-35.315]);
};
var waterman = function(faceProjection) {
faceProjection = faceProjection || function(face) {
var c = face.length === 6 ? d3Geo.geoCentroid({type: "MultiPoint", coordinates: face}) : face[0];
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
};
var w5 = octahedron$1.map(function(face) {
var xyz = face.map(cartesian),
n = xyz.length,
a = xyz[n - 1],
b,
hexagon = [];
for (var i = 0; i < n; ++i) {
b = xyz[i];
hexagon.push(spherical([
a[0] * 0.9486832980505138 + b[0] * 0.31622776601683794,
a[1] * 0.9486832980505138 + b[1] * 0.31622776601683794,
a[2] * 0.9486832980505138 + b[2] * 0.31622776601683794
]), spherical([
b[0] * 0.9486832980505138 + a[0] * 0.31622776601683794,
b[1] * 0.9486832980505138 + a[1] * 0.31622776601683794,
b[2] * 0.9486832980505138 + a[2] * 0.31622776601683794
]));
a = b;
}
return hexagon;
});
var cornerNormals = [];
var parents = [-1, 0, 0, 1, 0, 1, 4, 5];
w5.forEach(function(hexagon, j) {
var face = octahedron$1[j],
n = face.length,
normals = cornerNormals[j] = [];
for (var i = 0; i < n; ++i) {
w5.push([
face[i],
hexagon[(i * 2 + 2) % (2 * n)],
hexagon[(i * 2 + 1) % (2 * n)]
]);
parents.push(j);
normals.push(cross(
cartesian(hexagon[(i * 2 + 2) % (2 * n)]),
cartesian(hexagon[(i * 2 + 1) % (2 * n)])
));
}
});
var faces = w5.map(function(face) {
return {
project: faceProjection(face),
face: face
};
});
parents.forEach(function(d, i) {
var parent = faces[d];
parent && (parent.children || (parent.children = [])).push(faces[i]);
});
function face(lambda, phi) {
var cosphi = cos(phi),
p = [cosphi * cos(lambda), cosphi * sin(lambda), sin(phi)];
var hexagon = lambda < -pi / 2 ? phi < 0 ? 6 : 4
: lambda < 0 ? phi < 0 ? 2 : 0
: lambda < pi / 2 ? phi < 0 ? 3 : 1
: phi < 0 ? 7 : 5;
var n = cornerNormals[hexagon];
return faces[dot(n[0], p) < 0 ? 8 + 3 * hexagon
: dot(n[1], p) < 0 ? 8 + 3 * hexagon + 1
: dot(n[2], p) < 0 ? 8 + 3 * hexagon + 2
: hexagon];
}
return polyhedral(faces[0], face)
.scale(110.625)
.center([0,45]);
};
function dot(a, b) {
for (var i = 0, n = a.length, s = 0; i < n; ++i) s += a[i] * b[i];
return s;
}
function cross(a, b) {
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
];
}
// Converts 3D Cartesian to spherical coordinates (degrees).
function spherical(cartesian) {
return [
atan2(cartesian[1], cartesian[0]) * degrees,
asin(max(-1, min(1, cartesian[2]))) * degrees
];
}
// Converts spherical coordinates (degrees) to 3D Cartesian.
function cartesian(coordinates) {
var lambda = coordinates[0] * radians,
phi = coordinates[1] * radians,
cosphi = cos(phi);
return [
cosphi * cos(lambda),
cosphi * sin(lambda),
sin(phi)
];
}
var noop = function() {};
var clockwise = function(ring) {
if ((n = ring.length) < 4) return false;
var i = 0,
n,
area = ring[n - 1][1] * ring[0][0] - ring[n - 1][0] * ring[0][1];
while (++i < n) area += ring[i - 1][1] * ring[i][0] - ring[i - 1][0] * ring[i][1];
return area <= 0;
};
var contains = function(ring, point) {
var x = point[0],
y = point[1],
contains = false;
for (var i = 0, n = ring.length, j = n - 1; i < n; j = i++) {
var pi = ring[i], xi = pi[0], yi = pi[1],
pj = ring[j], xj = pj[0], yj = pj[1];
if (((yi > y) ^ (yj > y)) && (x < (xj - xi) * (y - yi) / (yj - yi) + xi)) contains = !contains;
}
return contains;
};
var index = function(object, projection) {
var stream = projection.stream, project;
if (!stream) throw new Error("invalid projection");
switch (object && object.type) {
case "Feature": project = projectFeature; break;
case "FeatureCollection": project = projectFeatureCollection; break;
default: project = projectGeometry; break;
}
return project(object, stream);
};
function projectFeatureCollection(o, stream) {
return {
type: "FeatureCollection",
features: o.features.map(function(f) {
return projectFeature(f, stream);
})
};
}
function projectFeature(o, stream) {
return {
type: "Feature",
id: o.id,
properties: o.properties,
geometry: projectGeometry(o.geometry, stream)
};
}
function projectGeometryCollection(o, stream) {
return {
type: "GeometryCollection",
geometries: o.geometries.map(function(o) {
return projectGeometry(o, stream);
})
};
}
function projectGeometry(o, stream) {
if (!o) return null;
if (o.type === "GeometryCollection") return projectGeometryCollection(o, stream);
var sink;
switch (o.type) {
case "Point": sink = sinkPoint; break;
case "MultiPoint": sink = sinkPoint; break;
case "LineString": sink = sinkLine; break;
case "MultiLineString": sink = sinkLine; break;
case "Polygon": sink = sinkPolygon; break;
case "MultiPolygon": sink = sinkPolygon; break;
case "Sphere": sink = sinkPolygon; break;
default: return null;
}
d3Geo.geoStream(o, stream(sink));
return sink.result();
}
var points = [];
var lines = [];
var sinkPoint = {
point: function(x, y) {
points.push([x, y]);
},
result: function() {
var result = !points.length ? null
: points.length < 2 ? {type: "Point", coordinates: points[0]}
: {type: "MultiPoint", coordinates: points};
points = [];
return result;
}
};
var sinkLine = {
lineStart: noop,
point: function(x, y) {
points.push([x, y]);
},
lineEnd: function() {
if (points.length) lines.push(points), points = [];
},
result: function() {
var result = !lines.length ? null
: lines.length < 2 ? {type: "LineString", coordinates: lines[0]}
: {type: "MultiLineString", coordinates: lines};
lines = [];
return result;
}
};
var sinkPolygon = {
polygonStart: noop,
lineStart: noop,
point: function(x, y) {
points.push([x, y]);
},
lineEnd: function() {
var n = points.length;
if (n) {
do points.push(points[0].slice()); while (++n < 4);
lines.push(points), points = [];
}
},
polygonEnd: noop,
result: function() {
if (!lines.length) return null;
var polygons = [],
holes = [];
// https://github.com/d3/d3/issues/1558
lines.forEach(function(ring) {
if (clockwise(ring)) polygons.push([ring]);
else holes.push(ring);
});
holes.forEach(function(hole) {
var point = hole[0];
polygons.some(function(polygon) {
if (contains(polygon[0], point)) {
polygon.push(hole);
return true;
}
}) || polygons.push([hole]);
});
lines = [];
return !polygons.length ? null
: polygons.length > 1 ? {type: "MultiPolygon", coordinates: polygons}
: {type: "Polygon", coordinates: polygons[0]};
}
};
var quincuncial = function(project) {
var dx = project(halfPi, 0)[0] - project(-halfPi, 0)[0];
function projectQuincuncial(lambda, phi) {
var t = abs(lambda) < halfPi,
p = project(t ? lambda : lambda > 0 ? lambda - pi : lambda + pi, phi),
x = (p[0] - p[1]) * sqrt1_2,
y = (p[0] + p[1]) * sqrt1_2;
if (t) return [x, y];
var d = dx * sqrt1_2,
s = x > 0 ^ y > 0 ? -1 : 1;
return [s * x - sign(y) * d, s * y - sign(x) * d];
}
if (project.invert) projectQuincuncial.invert = function(x0, y0) {
var x = (x0 + y0) * sqrt1_2,
y = (y0 - x0) * sqrt1_2,
t = abs(x) < 0.5 * dx && abs(y) < 0.5 * dx;
if (!t) {
var d = dx * sqrt1_2,
s = x > 0 ^ y > 0 ? -1 : 1,
x1 = -s * x0 + (y > 0 ? 1 : -1) * d,
y1 = -s * y0 + (x > 0 ? 1 : -1) * d;
x = (-x1 - y1) * sqrt1_2;
y = (x1 - y1) * sqrt1_2;
}
var p = project.invert(x, y);
if (!t) p[0] += x > 0 ? pi : -pi;
return p;
};
return d3Geo.geoProjection(projectQuincuncial)
.rotate([-90, -90, 45])
.clipAngle(180 - 1e-3);
};
var gringorten$1 = function() {
return quincuncial(gringortenRaw)
.scale(176.423);
};
var peirce = function() {
return quincuncial(guyouRaw)
.scale(111.48);
};
var quantize = function(input, digits) {
if (!(0 <= (digits = +digits) && digits <= 20)) throw new Error("invalid digits");
function quantizePoint(input) {
var n = input.length, i = 2, output = new Array(n);
output[0] = +input[0].toFixed(digits);
output[1] = +input[1].toFixed(digits);
while (i < n) output[i] = input[i], ++i;
return output;
}
function quantizePoints(input) {
return input.map(quantizePoint);
}
function quantizePolygon(input) {
return input.map(quantizePoints);
}
function quantizeGeometry(input) {
if (input == null) return input;
var output;
switch (input.type) {
case "GeometryCollection": output = {type: "GeometryCollection", geometries: input.geometries.map(quantizeGeometry)}; break;
case "Point": output = {type: "Point", coordinates: quantizePoint(input.coordinates)}; break;
case "MultiPoint": case "LineString": output = {type: input.type, coordinates: quantizePoints(input.coordinates)}; break;
case "MultiLineString": case "Polygon": output = {type: input.type, coordinates: quantizePolygon(input.coordinates)}; break;
case "MultiPolygon": output = {type: "MultiPolygon", coordinates: input.coordinates.map(quantizePolygon)}; break;
default: return input;
}
if (input.bbox != null) output.bbox = input.bbox;
return output;
}
function quantizeFeature(input) {
var output = {type: "Feature", properties: input.properties, geometry: quantizeGeometry(input.geometry)};
if (input.id != null) output.id = input.id;
if (input.bbox != null) output.bbox = input.bbox;
return output;
}
if (input != null) switch (input.type) {
case "Feature": return quantizeFeature(input);
case "FeatureCollection": {
var output = {type: "FeatureCollection", features: input.features.map(quantizeFeature)};
if (input.bbox != null) output.bbox = input.bbox;
return output;
}
default: return quantizeGeometry(input);
}
return input;
};
function rectangularPolyconicRaw(phi0) {
var sinPhi0 = sin(phi0);
function forward(lambda, phi) {
var A = sinPhi0 ? tan(lambda * sinPhi0 / 2) / sinPhi0 : lambda / 2;
if (!phi) return [2 * A, -phi0];
var E = 2 * atan(A * sin(phi)),
cotPhi = 1 / tan(phi);
return [
sin(E) * cotPhi,
phi + (1 - cos(E)) * cotPhi - phi0
];
}
// TODO return null for points outside outline.
forward.invert = function(x, y) {
if (abs(y += phi0) < epsilon) return [sinPhi0 ? 2 * atan(sinPhi0 * x / 2) / sinPhi0 : x, 0];
var k = x * x + y * y,
phi = 0,
i = 10, delta;
do {
var tanPhi = tan(phi),
secPhi = 1 / cos(phi),
j = k - 2 * y * phi + phi * phi;
phi -= delta = (tanPhi * j + 2 * (phi - y)) / (2 + j * secPhi * secPhi + 2 * (phi - y) * tanPhi);
} while (abs(delta) > epsilon && --i > 0);
var E = x * (tanPhi = tan(phi)),
A = tan(abs(y) < abs(phi + 1 / tanPhi) ? asin(E) * 0.5 : acos(E) * 0.5 + pi / 4) / sin(phi);
return [
sinPhi0 ? 2 * atan(sinPhi0 * A) / sinPhi0 : 2 * A,
phi
];
};
return forward;
}
var rectangularPolyconic = function() {
return parallel1(rectangularPolyconicRaw)
.scale(131.215);
};
var K = [
[0.9986, -0.062],
[1.0000, 0.0000],
[0.9986, 0.0620],
[0.9954, 0.1240],
[0.9900, 0.1860],
[0.9822, 0.2480],
[0.9730, 0.3100],
[0.9600, 0.3720],
[0.9427, 0.4340],
[0.9216, 0.4958],
[0.8962, 0.5571],
[0.8679, 0.6176],
[0.8350, 0.6769],
[0.7986, 0.7346],
[0.7597, 0.7903],
[0.7186, 0.8435],
[0.6732, 0.8936],
[0.6213, 0.9394],
[0.5722, 0.9761],
[0.5322, 1.0000]
];
K.forEach(function(d) {
d[1] *= 1.0144;
});
function robinsonRaw(lambda, phi) {
var i = min(18, abs(phi) * 36 / pi),
i0 = floor(i),
di = i - i0,
ax = (k = K[i0])[0],
ay = k[1],
bx = (k = K[++i0])[0],
by = k[1],
cx = (k = K[min(19, ++i0)])[0],
cy = k[1],
k;
return [
lambda * (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2),
(phi > 0 ? halfPi : -halfPi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2)
];
}
robinsonRaw.invert = function(x, y) {
var yy = y / halfPi,
phi = yy * 90,
i = min(18, abs(phi / 5)),
i0 = max(0, floor(i));
do {
var ay = K[i0][1],
by = K[i0 + 1][1],
cy = K[min(19, i0 + 2)][1],
u = cy - ay,
v = cy - 2 * by + ay,
t = 2 * (abs(yy) - by) / u,
c = v / u,
di = t * (1 - c * t * (1 - 2 * c * t));
if (di >= 0 || i0 === 1) {
phi = (y >= 0 ? 5 : -5) * (di + i);
var j = 50, delta;
do {
i = min(18, abs(phi) / 5);
i0 = floor(i);
di = i - i0;
ay = K[i0][1];
by = K[i0 + 1][1];
cy = K[min(19, i0 + 2)][1];
phi -= (delta = (y >= 0 ? halfPi : -halfPi) * (by + di * (cy - ay) / 2 + di * di * (cy - 2 * by + ay) / 2) - y) * degrees;
} while (abs(delta) > epsilon2 && --j > 0);
break;
}
} while (--i0 >= 0);
var ax = K[i0][0],
bx = K[i0 + 1][0],
cx = K[min(19, i0 + 2)][0];
return [
x / (bx + di * (cx - ax) / 2 + di * di * (cx - 2 * bx + ax) / 2),
phi * radians
];
};
var robinson = function() {
return d3Geo.geoProjection(robinsonRaw)
.scale(152.63);
};
function satelliteVerticalRaw(P) {
function forward(lambda, phi) {
var cosPhi = cos(phi),
k = (P - 1) / (P - cosPhi * cos(lambda));
return [
k * cosPhi * sin(lambda),
k * sin(phi)
];
}
forward.invert = function(x, y) {
var rho2 = x * x + y * y,
rho = sqrt(rho2),
sinc = (P - sqrt(1 - rho2 * (P + 1) / (P - 1))) / ((P - 1) / rho + rho / (P - 1));
return [
atan2(x * sinc, rho * sqrt(1 - sinc * sinc)),
rho ? asin(y * sinc / rho) : 0
];
};
return forward;
}
function satelliteRaw(P, omega) {
var vertical = satelliteVerticalRaw(P);
if (!omega) return vertical;
var cosOmega = cos(omega),
sinOmega = sin(omega);
function forward(lambda, phi) {
var coordinates = vertical(lambda, phi),
y = coordinates[1],
A = y * sinOmega / (P - 1) + cosOmega;
return [
coordinates[0] * cosOmega / A,
y / A
];
}
forward.invert = function(x, y) {
var k = (P - 1) / (P - 1 - y * sinOmega);
return vertical.invert(k * x, k * y * cosOmega);
};
return forward;
}
var satellite = function() {
var distance = 2,
omega = 0,
m = d3Geo.geoProjectionMutator(satelliteRaw),
p = m(distance, omega);
// As a multiple of radius.
p.distance = function(_) {
if (!arguments.length) return distance;
return m(distance = +_, omega);
};
p.tilt = function(_) {
if (!arguments.length) return omega * degrees;
return m(distance, omega = _ * radians);
};
return p
.scale(432.147)
.clipAngle(acos(1 / distance) * degrees - 1e-6);
};
var epsilon$1 = 1e-4;
var epsilonInverse = 1e4;
var x0 = -180;
var x0e = x0 + epsilon$1;
var x1 = 180;
var x1e = x1 - epsilon$1;
var y0 = -90;
var y0e = y0 + epsilon$1;
var y1 = 90;
var y1e = y1 - epsilon$1;
function nonempty(coordinates) {
return coordinates.length > 0;
}
function quantize$1(x) {
return Math.floor(x * epsilonInverse) / epsilonInverse;
}
function normalizePoint(y) {
return y === y0 || y === y1 ? [0, y] : [x0, quantize$1(y)]; // pole or antimeridian?
}
function clampPoint(p) {
var x = p[0], y = p[1], clamped = false;
if (x <= x0e) x = x0, clamped = true;
else if (x >= x1e) x = x1, clamped = true;
if (y <= y0e) y = y0, clamped = true;
else if (y >= y1e) y = y1, clamped = true;
return clamped ? [x, y] : p;
}
function clampPoints(points) {
return points.map(clampPoint);
}
// For each ring, detect where it crosses the antimeridian or pole.
function extractFragments(rings, polygon, fragments) {
for (var j = 0, m = rings.length; j < m; ++j) {
var ring = rings[j].slice();
// By default, assume that this ring doesn’t need any stitching.
fragments.push({index: -1, polygon: polygon, ring: ring});
for (var i = 0, n = ring.length; i < n; ++i) {
var point = ring[i],
x = point[0],
y = point[1];
// If this is an antimeridian or polar point…
if (x <= x0e || x >= x1e || y <= y0e || y >= y1e) {
ring[i] = clampPoint(point);
// Advance through any antimeridian or polar points…
for (var k = i + 1; k < n; ++k) {
var pointk = ring[k],
xk = pointk[0],
yk = pointk[1];
if (xk > x0e && xk < x1e && yk > y0e && yk < y1e) break;
}
// If this was just a single antimeridian or polar point,
// we don’t need to cut this ring into a fragment;
// we can just leave it as-is.
if (k === i + 1) continue;
// Otherwise, if this is not the first point in the ring,
// cut the current fragment so that it ends at the current point.
// The current point is also normalized for later joining.
if (i) {
var fragmentBefore = {index: -1, polygon: polygon, ring: ring.slice(0, i + 1)};
fragmentBefore.ring[fragmentBefore.ring.length - 1] = normalizePoint(y);
fragments[fragments.length - 1] = fragmentBefore;
}
// If the ring started with an antimeridian fragment,
// we can ignore that fragment entirely.
else fragments.pop();
// If the remainder of the ring is an antimeridian fragment,
// move on to the next ring.
if (k >= n) break;
// Otherwise, add the remaining ring fragment and continue.
fragments.push({index: -1, polygon: polygon, ring: ring = ring.slice(k - 1)});
ring[0] = normalizePoint(ring[0][1]);
i = -1;
n = ring.length;
}
}
}
}
// Now stitch the fragments back together into rings.
function stitchFragments(fragments) {
var i, n = fragments.length;
// To connect the fragments start-to-end, create a simple index by end.
var fragmentByStart = {},
fragmentByEnd = {},
fragment,
start,
startFragment,
end,
endFragment;
// For each fragment…
for (i = 0; i < n; ++i) {
fragment = fragments[i];
start = fragment.ring[0];
end = fragment.ring[fragment.ring.length - 1];
// If this fragment is closed, add it as a standalone ring.
if (start[0] === end[0] && start[1] === end[1]) {
fragment.polygon.push(fragment.ring);
fragments[i] = null;
continue;
}
fragment.index = i;
fragmentByStart[start] = fragmentByEnd[end] = fragment;
}
// For each open fragment…
for (i = 0; i < n; ++i) {
fragment = fragments[i];
if (fragment) {
start = fragment.ring[0];
end = fragment.ring[fragment.ring.length - 1];
startFragment = fragmentByEnd[start];
endFragment = fragmentByStart[end];
delete fragmentByStart[start];
delete fragmentByEnd[end];
// If this fragment is closed, add it as a standalone ring.
if (start[0] === end[0] && start[1] === end[1]) {
fragment.polygon.push(fragment.ring);
continue;
}
if (startFragment) {
delete fragmentByEnd[start];
delete fragmentByStart[startFragment.ring[0]];
startFragment.ring.pop(); // drop the shared coordinate
fragments[startFragment.index] = null;
fragment = {index: -1, polygon: startFragment.polygon, ring: startFragment.ring.concat(fragment.ring)};
if (startFragment === endFragment) {
// Connect both ends to this single fragment to create a ring.
fragment.polygon.push(fragment.ring);
} else {
fragment.index = n++;
fragments.push(fragmentByStart[fragment.ring[0]] = fragmentByEnd[fragment.ring[fragment.ring.length - 1]] = fragment);
}
} else if (endFragment) {
delete fragmentByStart[end];
delete fragmentByEnd[endFragment.ring[endFragment.ring.length - 1]];
fragment.ring.pop(); // drop the shared coordinate
fragment = {index: n++, polygon: endFragment.polygon, ring: fragment.ring.concat(endFragment.ring)};
fragments[endFragment.index] = null;
fragments.push(fragmentByStart[fragment.ring[0]] = fragmentByEnd[fragment.ring[fragment.ring.length - 1]] = fragment);
} else {
fragment.ring.push(fragment.ring[0]); // close ring
fragment.polygon.push(fragment.ring);
}
}
}
}
function stitchFeature(input) {
var output = {type: "Feature", geometry: stitchGeometry(input.geometry)};
if (input.id != null) output.id = input.id;
if (input.bbox != null) output.bbox = input.bbox;
if (input.properties != null) output.properties = input.properties;
return output;
}
function stitchGeometry(input) {
if (input == null) return input;
var output, fragments, i, n;
switch (input.type) {
case "GeometryCollection": output = {type: "GeometryCollection", geometries: input.geometries.map(stitchGeometry)}; break;
case "Point": output = {type: "Point", coordinates: clampPoint(input.coordinates)}; break;
case "MultiPoint": case "LineString": output = {type: input.type, coordinates: clampPoints(input.coordinates)}; break;
case "MultiLineString": output = {type: "MultiLineString", coordinates: input.coordinates.map(clampPoints)}; break;
case "Polygon": {
var polygon = [];
extractFragments(input.coordinates, polygon, fragments = []);
stitchFragments(fragments);
output = {type: "Polygon", coordinates: polygon};
break;
}
case "MultiPolygon": {
fragments = [], i = -1, n = input.coordinates.length;
var polygons = new Array(n);
while (++i < n) extractFragments(input.coordinates[i], polygons[i] = [], fragments);
stitchFragments(fragments);
output = {type: "MultiPolygon", coordinates: polygons.filter(nonempty)};
break;
}
default: return input;
}
if (input.bbox != null) output.bbox = input.bbox;
return output;
}
var stitch = function(input) {
if (input == null) return input;
switch (input.type) {
case "Feature": return stitchFeature(input);
case "FeatureCollection": {
var output = {type: "FeatureCollection", features: input.features.map(stitchFeature)};
if (input.bbox != null) output.bbox = input.bbox;
return output;
}
default: return stitchGeometry(input);
}
};
function timesRaw(lambda, phi) {
var t = tan(phi / 2),
s = sin(quarterPi * t);
return [
lambda * (0.74482 - 0.34588 * s * s),
1.70711 * t
];
}
timesRaw.invert = function(x, y) {
var t = y / 1.70711,
s = sin(quarterPi * t);
return [
x / (0.74482 - 0.34588 * s * s),
2 * atan(t)
];
};
var times = function() {
return d3Geo.geoProjection(timesRaw)
.scale(146.153);
};
// Compute the origin as the midpoint of the two reference points.
// Rotate one of the reference points by the origin.
// Apply the spherical law of sines to compute gamma rotation.
var twoPoint = function(raw, p0, p1) {
var i = d3Geo.geoInterpolate(p0, p1),
o = i(0.5),
a = d3Geo.geoRotation([-o[0], -o[1]])(p0),
b = i.distance / 2,
y = -asin(sin(a[1] * radians) / sin(b)),
R = [-o[0], -o[1], -(a[0] > 0 ? pi - y : y) * degrees],
p = d3Geo.geoProjection(raw(b)).rotate(R),
r = d3Geo.geoRotation(R),
center = p.center;
delete p.rotate;
p.center = function(_) {
return arguments.length ? center(r(_)) : r.invert(center());
};
return p
.clipAngle(90);
};
function twoPointAzimuthalRaw(d) {
var cosd = cos(d);
function forward(lambda, phi) {
var coordinates = d3Geo.geoGnomonicRaw(lambda, phi);
coordinates[0] *= cosd;
return coordinates;
}
forward.invert = function(x, y) {
return d3Geo.geoGnomonicRaw.invert(x / cosd, y);
};
return forward;
}
function twoPointAzimuthalUsa() {
return twoPointAzimuthal([-158, 21.5], [-77, 39])
.clipAngle(60)
.scale(400);
}
function twoPointAzimuthal(p0, p1) {
return twoPoint(twoPointAzimuthalRaw, p0, p1);
}
// TODO clip to ellipse
function twoPointEquidistantRaw(z0) {
if (!(z0 *= 2)) return d3Geo.geoAzimuthalEquidistantRaw;
var lambdaa = -z0 / 2,
lambdab = -lambdaa,
z02 = z0 * z0,
tanLambda0 = tan(lambdab),
S = 0.5 / sin(lambdab);
function forward(lambda, phi) {
var za = acos(cos(phi) * cos(lambda - lambdaa)),
zb = acos(cos(phi) * cos(lambda - lambdab)),
ys = phi < 0 ? -1 : 1;
za *= za, zb *= zb;
return [
(za - zb) / (2 * z0),
ys * sqrt(4 * z02 * zb - (z02 - za + zb) * (z02 - za + zb)) / (2 * z0)
];
}
forward.invert = function(x, y) {
var y2 = y * y,
cosza = cos(sqrt(y2 + (t = x + lambdaa) * t)),
coszb = cos(sqrt(y2 + (t = x + lambdab) * t)),
t,
d;
return [
atan2(d = cosza - coszb, t = (cosza + coszb) * tanLambda0),
(y < 0 ? -1 : 1) * acos(sqrt(t * t + d * d) * S)
];
};
return forward;
}
function twoPointEquidistantUsa() {
return twoPointEquidistant([-158, 21.5], [-77, 39])
.clipAngle(130)
.scale(122.571);
}
function twoPointEquidistant(p0, p1) {
return twoPoint(twoPointEquidistantRaw, p0, p1);
}
function vanDerGrintenRaw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var sinTheta = abs(phi / halfPi),
theta = asin(sinTheta);
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, sign(phi) * pi * tan(theta / 2)];
var cosTheta = cos(theta),
A = abs(pi / lambda - lambda / pi) / 2,
A2 = A * A,
G = cosTheta / (sinTheta + cosTheta - 1),
P = G * (2 / sinTheta - 1),
P2 = P * P,
P2_A2 = P2 + A2,
G_P2 = G - P2,
Q = A2 + G;
return [
sign(lambda) * pi * (A * G_P2 + sqrt(A2 * G_P2 * G_P2 - P2_A2 * (G * G - P2))) / P2_A2,
sign(phi) * pi * (P * Q - A * sqrt((A2 + 1) * P2_A2 - Q * Q)) / P2_A2
];
}
vanDerGrintenRaw.invert = function(x, y) {
if (abs(y) < epsilon) return [x, 0];
if (abs(x) < epsilon) return [0, halfPi * sin(2 * atan(y / pi))];
var x2 = (x /= pi) * x,
y2 = (y /= pi) * y,
x2_y2 = x2 + y2,
z = x2_y2 * x2_y2,
c1 = -abs(y) * (1 + x2_y2),
c2 = c1 - 2 * y2 + x2,
c3 = -2 * c1 + 1 + 2 * y2 + z,
d = y2 / c3 + (2 * c2 * c2 * c2 / (c3 * c3 * c3) - 9 * c1 * c2 / (c3 * c3)) / 27,
a1 = (c1 - c2 * c2 / (3 * c3)) / c3,
m1 = 2 * sqrt(-a1 / 3),
theta1 = acos(3 * d / (a1 * m1)) / 3;
return [
pi * (x2_y2 - 1 + sqrt(1 + 2 * (x2 - y2) + z)) / (2 * x),
sign(y) * pi * (-m1 * cos(theta1 + pi / 3) - c2 / (3 * c3))
];
};
var vanDerGrinten = function() {
return d3Geo.geoProjection(vanDerGrintenRaw)
.scale(79.4183);
};
function vanDerGrinten2Raw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var sinTheta = abs(phi / halfPi),
theta = asin(sinTheta);
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, sign(phi) * pi * tan(theta / 2)];
var cosTheta = cos(theta),
A = abs(pi / lambda - lambda / pi) / 2,
A2 = A * A,
x1 = cosTheta * (sqrt(1 + A2) - A * cosTheta) / (1 + A2 * sinTheta * sinTheta);
return [
sign(lambda) * pi * x1,
sign(phi) * pi * sqrt(1 - x1 * (2 * A + x1))
];
}
vanDerGrinten2Raw.invert = function(x, y) {
if (!x) return [0, halfPi * sin(2 * atan(y / pi))];
var x1 = abs(x / pi),
A = (1 - x1 * x1 - (y /= pi) * y) / (2 * x1),
A2 = A * A,
B = sqrt(A2 + 1);
return [
sign(x) * pi * (B - A),
sign(y) * halfPi * sin(2 * atan2(sqrt((1 - 2 * A * x1) * (A + B) - x1), sqrt(B + A + x1)))
];
};
var vanDerGrinten2 = function() {
return d3Geo.geoProjection(vanDerGrinten2Raw)
.scale(79.4183);
};
function vanDerGrinten3Raw(lambda, phi) {
if (abs(phi) < epsilon) return [lambda, 0];
var sinTheta = phi / halfPi,
theta = asin(sinTheta);
if (abs(lambda) < epsilon || abs(abs(phi) - halfPi) < epsilon) return [0, pi * tan(theta / 2)];
var A = (pi / lambda - lambda / pi) / 2,
y1 = sinTheta / (1 + cos(theta));
return [
pi * (sign(lambda) * sqrt(A * A + 1 - y1 * y1) - A),
pi * y1
];
}
vanDerGrinten3Raw.invert = function(x, y) {
if (!y) return [x, 0];
var y1 = y / pi,
A = (pi * pi * (1 - y1 * y1) - x * x) / (2 * pi * x);
return [
x ? pi * (sign(x) * sqrt(A * A + 1) - A) : 0,
halfPi * sin(2 * atan(y1))
];
};
var vanDerGrinten3 = function() {
return d3Geo.geoProjection(vanDerGrinten3Raw)
.scale(79.4183);
};
function vanDerGrinten4Raw(lambda, phi) {
if (!phi) return [lambda, 0];
var phi0 = abs(phi);
if (!lambda || phi0 === halfPi) return [0, phi];
var B = phi0 / halfPi,
B2 = B * B,
C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)),
C2 = C * C,
BC = B * C,
B_C2 = B2 + C2 + 2 * BC,
B_3C = B + 3 * C,
lambda0 = lambda / halfPi,
lambda1 = lambda0 + 1 / lambda0,
D = sign(abs(lambda) - halfPi) * sqrt(lambda1 * lambda1 - 4),
D2 = D * D,
F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + 12 * BC * C2 + 4 * C2 * C2),
x1 = (D * (B_C2 + C2 - 1) + 2 * sqrt(F)) / (4 * B_C2 + D2);
return [
sign(lambda) * halfPi * x1,
sign(phi) * halfPi * sqrt(1 + D * abs(x1) - x1 * x1)
];
}
vanDerGrinten4Raw.invert = function(x, y) {
var delta;
if (!x || !y) return [x, y];
y /= pi;
var x1 = sign(x) * x / halfPi,
D = (x1 * x1 - 1 + 4 * y * y) / abs(x1),
D2 = D * D,
B = 2 * y,
i = 50;
do {
var B2 = B * B,
C = (8 * B - B2 * (B2 + 2) - 5) / (2 * B2 * (B - 1)),
C_ = (3 * B - B2 * B - 10) / (2 * B2 * B),
C2 = C * C,
BC = B * C,
B_C = B + C,
B_C2 = B_C * B_C,
B_3C = B + 3 * C,
F = B_C2 * (B2 + C2 * D2 - 1) + (1 - B2) * (B2 * (B_3C * B_3C + 4 * C2) + C2 * (12 * BC + 4 * C2)),
F_ = -2 * B_C * (4 * BC * C2 + (1 - 4 * B2 + 3 * B2 * B2) * (1 + C_) + C2 * (-6 + 14 * B2 - D2 + (-8 + 8 * B2 - 2 * D2) * C_) + BC * (-8 + 12 * B2 + (-10 + 10 * B2 - D2) * C_)),
sqrtF = sqrt(F),
f = D * (B_C2 + C2 - 1) + 2 * sqrtF - x1 * (4 * B_C2 + D2),
f_ = D * (2 * C * C_ + 2 * B_C * (1 + C_)) + F_ / sqrtF - 8 * B_C * (D * (-1 + C2 + B_C2) + 2 * sqrtF) * (1 + C_) / (D2 + 4 * B_C2);
B -= delta = f / f_;
} while (delta > epsilon && --i > 0);
return [
sign(x) * (sqrt(D * D + 4) + D) * pi / 4,
halfPi * B
];
};
var vanDerGrinten4 = function() {
return d3Geo.geoProjection(vanDerGrinten4Raw)
.scale(127.16);
};
var A = 4 * pi + 3 * sqrt(3);
var B = 2 * sqrt(2 * pi * sqrt(3) / A);
var wagner4Raw = mollweideBromleyRaw(B * sqrt(3) / pi, B, A / 6);
var wagner4 = function() {
return d3Geo.geoProjection(wagner4Raw)
.scale(176.84);
};
function wagner6Raw(lambda, phi) {
return [lambda * sqrt(1 - 3 * phi * phi / (pi * pi)), phi];
}
wagner6Raw.invert = function(x, y) {
return [x / sqrt(1 - 3 * y * y / (pi * pi)), y];
};
var wagner6 = function() {
return d3Geo.geoProjection(wagner6Raw)
.scale(152.63);
};
function wagner7Raw(lambda, phi) {
var s = 0.90631 * sin(phi),
c0 = sqrt(1 - s * s),
c1 = sqrt(2 / (1 + c0 * cos(lambda /= 3)));
return [
2.66723 * c0 * c1 * sin(lambda),
1.24104 * s * c1
];
}
wagner7Raw.invert = function(x, y) {
var t1 = x / 2.66723,
t2 = y / 1.24104,
p = sqrt(t1 * t1 + t2 * t2),
c = 2 * asin(p / 2);
return [
3 * atan2(x * tan(c), 2.66723 * p),
p && asin(y * sin(c) / (1.24104 * 0.90631 * p))
];
};
var wagner7 = function() {
return d3Geo.geoProjection(wagner7Raw)
.scale(172.632);
};
function wiechelRaw(lambda, phi) {
var cosPhi = cos(phi),
sinPhi = cos(lambda) * cosPhi,
sin1_Phi = 1 - sinPhi,
cosLambda = cos(lambda = atan2(sin(lambda) * cosPhi, -sin(phi))),
sinLambda = sin(lambda);
cosPhi = sqrt(1 - sinPhi * sinPhi);
return [
sinLambda * cosPhi - cosLambda * sin1_Phi,
-cosLambda * cosPhi - sinLambda * sin1_Phi
];
}
wiechelRaw.invert = function(x, y) {
var w = (x * x + y * y) / -2,
k = sqrt(-w * (2 + w)),
b = y * w + x * k,
a = x * w - y * k,
D = sqrt(a * a + b * b);
return [
atan2(k * b, D * (1 + w)),
D ? -asin(k * a / D) : 0
];
};
var wiechel = function() {
return d3Geo.geoProjection(wiechelRaw)
.rotate([0, -90, 45])
.scale(124.75)
.clipAngle(180 - 1e-3);
};
function winkel3Raw(lambda, phi) {
var coordinates = aitoffRaw(lambda, phi);
return [
(coordinates[0] + lambda / halfPi) / 2,
(coordinates[1] + phi) / 2
];
}
winkel3Raw.invert = function(x, y) {
var lambda = x, phi = y, i = 25;
do {
var cosphi = cos(phi),
sinphi = sin(phi),
sin_2phi = sin(2 * phi),
sin2phi = sinphi * sinphi,
cos2phi = cosphi * cosphi,
sinlambda = sin(lambda),
coslambda_2 = cos(lambda / 2),
sinlambda_2 = sin(lambda / 2),
sin2lambda_2 = sinlambda_2 * sinlambda_2,
C = 1 - cos2phi * coslambda_2 * coslambda_2,
E = C ? acos(cosphi * coslambda_2) * sqrt(F = 1 / C) : F = 0,
F,
fx = 0.5 * (2 * E * cosphi * sinlambda_2 + lambda / halfPi) - x,
fy = 0.5 * (E * sinphi + phi) - y,
dxdlambda = 0.5 * F * (cos2phi * sin2lambda_2 + E * cosphi * coslambda_2 * sin2phi) + 0.5 / halfPi,
dxdphi = F * (sinlambda * sin_2phi / 4 - E * sinphi * sinlambda_2),
dydlambda = 0.125 * F * (sin_2phi * sinlambda_2 - E * sinphi * cos2phi * sinlambda),
dydphi = 0.5 * F * (sin2phi * coslambda_2 + E * sin2lambda_2 * cosphi) + 0.5,
denominator = dxdphi * dydlambda - dydphi * dxdlambda,
dlambda = (fy * dxdphi - fx * dydphi) / denominator,
dphi = (fx * dydlambda - fy * dxdlambda) / denominator;
lambda -= dlambda, phi -= dphi;
} while ((abs(dlambda) > epsilon || abs(dphi) > epsilon) && --i > 0);
return [lambda, phi];
};
var winkel3 = function() {
return d3Geo.geoProjection(winkel3Raw)
.scale(158.837);
};
exports.geoAiry = airy;
exports.geoAiryRaw = airyRaw;
exports.geoAitoff = aitoff;
exports.geoAitoffRaw = aitoffRaw;
exports.geoArmadillo = armadillo;
exports.geoArmadilloRaw = armadilloRaw;
exports.geoAugust = august;
exports.geoAugustRaw = augustRaw;
exports.geoBaker = baker;
exports.geoBakerRaw = bakerRaw;
exports.geoBerghaus = berghaus;
exports.geoBerghausRaw = berghausRaw;
exports.geoBertin1953 = bertin;
exports.geoBertin1953Raw = bertin1953Raw;
exports.geoBoggs = boggs;
exports.geoBoggsRaw = boggsRaw;
exports.geoBonne = bonne;
exports.geoBonneRaw = bonneRaw;
exports.geoBottomley = bottomley;
exports.geoBottomleyRaw = bottomleyRaw;
exports.geoBromley = bromley;
exports.geoBromleyRaw = bromleyRaw;
exports.geoChamberlin = chamberlin;
exports.geoChamberlinRaw = chamberlinRaw;
exports.geoChamberlinAfrica = chamberlinAfrica;
exports.geoCollignon = collignon;
exports.geoCollignonRaw = collignonRaw;
exports.geoCox = cox;
exports.geoCoxRaw = coxRaw;
exports.geoCraig = craig;
exports.geoCraigRaw = craigRaw;
exports.geoCraster = craster;
exports.geoCrasterRaw = crasterRaw;
exports.geoCylindricalEqualArea = cylindricalEqualArea;
exports.geoCylindricalEqualAreaRaw = cylindricalEqualAreaRaw;
exports.geoCylindricalStereographic = cylindricalStereographic;
exports.geoCylindricalStereographicRaw = cylindricalStereographicRaw;
exports.geoEckert1 = eckert1;
exports.geoEckert1Raw = eckert1Raw;
exports.geoEckert2 = eckert2;
exports.geoEckert2Raw = eckert2Raw;
exports.geoEckert3 = eckert3;
exports.geoEckert3Raw = eckert3Raw;
exports.geoEckert4 = eckert4;
exports.geoEckert4Raw = eckert4Raw;
exports.geoEckert5 = eckert5;
exports.geoEckert5Raw = eckert5Raw;
exports.geoEckert6 = eckert6;
exports.geoEckert6Raw = eckert6Raw;
exports.geoEisenlohr = eisenlohr;
exports.geoEisenlohrRaw = eisenlohrRaw;
exports.geoFahey = fahey;
exports.geoFaheyRaw = faheyRaw;
exports.geoFoucaut = foucaut;
exports.geoFoucautRaw = foucautRaw;
exports.geoGilbert = gilbert;
exports.geoGingery = gingery;
exports.geoGingeryRaw = gingeryRaw;
exports.geoGinzburg4 = ginzburg4;
exports.geoGinzburg4Raw = ginzburg4Raw;
exports.geoGinzburg5 = ginzburg5;
exports.geoGinzburg5Raw = ginzburg5Raw;
exports.geoGinzburg6 = ginzburg6;
exports.geoGinzburg6Raw = ginzburg6Raw;
exports.geoGinzburg8 = ginzburg8;
exports.geoGinzburg8Raw = ginzburg8Raw;
exports.geoGinzburg9 = ginzburg9;
exports.geoGinzburg9Raw = ginzburg9Raw;
exports.geoGringorten = gringorten;
exports.geoGringortenRaw = gringortenRaw;
exports.geoGuyou = guyou;
exports.geoGuyouRaw = guyouRaw;
exports.geoHammer = hammer;
exports.geoHammerRaw = hammerRaw;
exports.geoHammerRetroazimuthal = hammerRetroazimuthal;
exports.geoHammerRetroazimuthalRaw = hammerRetroazimuthalRaw;
exports.geoHealpix = healpix;
exports.geoHealpixRaw = healpixRaw;
exports.geoHill = hill;
exports.geoHillRaw = hillRaw;
exports.geoHomolosine = homolosine;
exports.geoHomolosineRaw = homolosineRaw;
exports.geoInterrupt = interrupt;
exports.geoInterruptedBoggs = boggs$1;
exports.geoInterruptedHomolosine = homolosine$1;
exports.geoInterruptedMollweide = mollweide$1;
exports.geoInterruptedMollweideHemispheres = mollweideHemispheres;
exports.geoInterruptedSinuMollweide = sinuMollweide$1;
exports.geoInterruptedSinusoidal = sinusoidal$1;
exports.geoKavrayskiy7 = kavrayskiy7;
exports.geoKavrayskiy7Raw = kavrayskiy7Raw;
exports.geoLagrange = lagrange;
exports.geoLagrangeRaw = lagrangeRaw;
exports.geoLarrivee = larrivee;
exports.geoLarriveeRaw = larriveeRaw;
exports.geoLaskowski = laskowski;
exports.geoLaskowskiRaw = laskowskiRaw;
exports.geoLittrow = littrow;
exports.geoLittrowRaw = littrowRaw;
exports.geoLoximuthal = loximuthal;
exports.geoLoximuthalRaw = loximuthalRaw;
exports.geoMiller = miller;
exports.geoMillerRaw = millerRaw;
exports.geoModifiedStereographic = modifiedStereographic;
exports.geoModifiedStereographicRaw = modifiedStereographicRaw;
exports.geoModifiedStereographicAlaska = modifiedStereographicAlaska;
exports.geoModifiedStereographicGs48 = modifiedStereographicGs48;
exports.geoModifiedStereographicGs50 = modifiedStereographicGs50;
exports.geoModifiedStereographicMiller = modifiedStereographicMiller;
exports.geoModifiedStereographicLee = modifiedStereographicLee;
exports.geoMollweide = mollweide;
exports.geoMollweideRaw = mollweideRaw;
exports.geoMtFlatPolarParabolic = mtFlatPolarParabolic;
exports.geoMtFlatPolarParabolicRaw = mtFlatPolarParabolicRaw;
exports.geoMtFlatPolarQuartic = mtFlatPolarQuartic;
exports.geoMtFlatPolarQuarticRaw = mtFlatPolarQuarticRaw;
exports.geoMtFlatPolarSinusoidal = mtFlatPolarSinusoidal;
exports.geoMtFlatPolarSinusoidalRaw = mtFlatPolarSinusoidalRaw;
exports.geoNaturalEarth = naturalEarth;
exports.geoNaturalEarthRaw = naturalEarthRaw;
exports.geoNaturalEarth2 = naturalEarth2;
exports.geoNaturalEarth2Raw = naturalEarth2Raw;
exports.geoNellHammer = nellHammer;
exports.geoNellHammerRaw = nellHammerRaw;
exports.geoPatterson = patterson;
exports.geoPattersonRaw = pattersonRaw;
exports.geoPolyconic = polyconic;
exports.geoPolyconicRaw = polyconicRaw;
exports.geoPolyhedral = polyhedral;
exports.geoPolyhedralButterfly = butterfly;
exports.geoPolyhedralCollignon = collignon$1;
exports.geoPolyhedralLee = lee$1;
exports.geoLeeRaw = leeRaw;
exports.geoPolyhedralWaterman = waterman;
exports.geoProject = index;
exports.geoGringortenQuincuncial = gringorten$1;
exports.geoPeirceQuincuncial = peirce;
exports.geoPierceQuincuncial = peirce;
exports.geoQuantize = quantize;
exports.geoQuincuncial = quincuncial;
exports.geoRectangularPolyconic = rectangularPolyconic;
exports.geoRectangularPolyconicRaw = rectangularPolyconicRaw;
exports.geoRobinson = robinson;
exports.geoRobinsonRaw = robinsonRaw;
exports.geoSatellite = satellite;
exports.geoSatelliteRaw = satelliteRaw;
exports.geoSinuMollweide = sinuMollweide;
exports.geoSinuMollweideRaw = sinuMollweideRaw;
exports.geoSinusoidal = sinusoidal;
exports.geoSinusoidalRaw = sinusoidalRaw;
exports.geoStitch = stitch;
exports.geoTimes = times;
exports.geoTimesRaw = timesRaw;
exports.geoTwoPointAzimuthal = twoPointAzimuthal;
exports.geoTwoPointAzimuthalRaw = twoPointAzimuthalRaw;
exports.geoTwoPointAzimuthalUsa = twoPointAzimuthalUsa;
exports.geoTwoPointEquidistant = twoPointEquidistant;
exports.geoTwoPointEquidistantRaw = twoPointEquidistantRaw;
exports.geoTwoPointEquidistantUsa = twoPointEquidistantUsa;
exports.geoVanDerGrinten = vanDerGrinten;
exports.geoVanDerGrintenRaw = vanDerGrintenRaw;
exports.geoVanDerGrinten2 = vanDerGrinten2;
exports.geoVanDerGrinten2Raw = vanDerGrinten2Raw;
exports.geoVanDerGrinten3 = vanDerGrinten3;
exports.geoVanDerGrinten3Raw = vanDerGrinten3Raw;
exports.geoVanDerGrinten4 = vanDerGrinten4;
exports.geoVanDerGrinten4Raw = vanDerGrinten4Raw;
exports.geoWagner4 = wagner4;
exports.geoWagner4Raw = wagner4Raw;
exports.geoWagner6 = wagner6;
exports.geoWagner6Raw = wagner6Raw;
exports.geoWagner7 = wagner7;
exports.geoWagner7Raw = wagner7Raw;
exports.geoWiechel = wiechel;
exports.geoWiechelRaw = wiechelRaw;
exports.geoWinkel3 = winkel3;
exports.geoWinkel3Raw = winkel3Raw;
Object.defineProperty(exports, '__esModule', { value: true });
})));
// https://d3js.org/d3-geo/ Version 1.6.4. Copyright 2017 Mike Bostock.
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) :
typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) :
(factory((global.d3 = global.d3 || {}),global.d3));
}(this, function (exports,d3Array) { 'use strict';
// Adds floating point numbers with twice the normal precision.
// Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and
// Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3)
// 305–363 (1997).
// Code adapted from GeographicLib by Charles F. F. Karney,
// http://geographiclib.sourceforge.net/
function adder() {
return new Adder;
}
function Adder() {
this.reset();
}
Adder.prototype = {
constructor: Adder,
reset: function() {
this.s = // rounded value
this.t = 0; // exact error
},
add: function(y) {
add(temp, y, this.t);
add(this, temp.s, this.s);
if (this.s) this.t += temp.t;
else this.s = temp.t;
},
valueOf: function() {
return this.s;
}
};
var temp = new Adder;
function add(adder, a, b) {
var x = adder.s = a + b,
bv = x - a,
av = x - bv;
adder.t = (a - av) + (b - bv);
}
var epsilon = 1e-6;
var epsilon2 = 1e-12;
var pi = Math.PI;
var halfPi = pi / 2;
var quarterPi = pi / 4;
var tau = pi * 2;
var degrees = 180 / pi;
var radians = pi / 180;
var abs = Math.abs;
var atan = Math.atan;
var atan2 = Math.atan2;
var cos = Math.cos;
var ceil = Math.ceil;
var exp = Math.exp;
var log = Math.log;
var pow = Math.pow;
var sin = Math.sin;
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
var sqrt = Math.sqrt;
var tan = Math.tan;
function acos(x) {
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
}
function asin(x) {
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
}
function haversin(x) {
return (x = sin(x / 2)) * x;
}
function noop() {}
function streamGeometry(geometry, stream) {
if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
streamGeometryType[geometry.type](geometry, stream);
}
}
var streamObjectType = {
Feature: function(object, stream) {
streamGeometry(object.geometry, stream);
},
FeatureCollection: function(object, stream) {
var features = object.features, i = -1, n = features.length;
while (++i < n) streamGeometry(features[i].geometry, stream);
}
};
var streamGeometryType = {
Sphere: function(object, stream) {
stream.sphere();
},
Point: function(object, stream) {
object = object.coordinates;
stream.point(object[0], object[1], object[2]);
},
MultiPoint: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
},
LineString: function(object, stream) {
streamLine(object.coordinates, stream, 0);
},
MultiLineString: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamLine(coordinates[i], stream, 0);
},
Polygon: function(object, stream) {
streamPolygon(object.coordinates, stream);
},
MultiPolygon: function(object, stream) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) streamPolygon(coordinates[i], stream);
},
GeometryCollection: function(object, stream) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) streamGeometry(geometries[i], stream);
}
};
function streamLine(coordinates, stream, closed) {
var i = -1, n = coordinates.length - closed, coordinate;
stream.lineStart();
while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
stream.lineEnd();
}
function streamPolygon(coordinates, stream) {
var i = -1, n = coordinates.length;
stream.polygonStart();
while (++i < n) streamLine(coordinates[i], stream, 1);
stream.polygonEnd();
}
function geoStream(object, stream) {
if (object && streamObjectType.hasOwnProperty(object.type)) {
streamObjectType[object.type](object, stream);
} else {
streamGeometry(object, stream);
}
}
var areaRingSum = adder();
var areaSum = adder();
var lambda00;
var phi00;
var lambda0;
var cosPhi0;
var sinPhi0;
var areaStream = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaRingSum.reset();
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
var areaRing = +areaRingSum;
areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);
this.lineStart = this.lineEnd = this.point = noop;
},
sphere: function() {
areaSum.add(tau);
}
};
function areaRingStart() {
areaStream.point = areaPointFirst;
}
function areaRingEnd() {
areaPoint(lambda00, phi00);
}
function areaPointFirst(lambda, phi) {
areaStream.point = areaPoint;
lambda00 = lambda, phi00 = phi;
lambda *= radians, phi *= radians;
lambda0 = lambda, cosPhi0 = cos(phi = phi / 2 + quarterPi), sinPhi0 = sin(phi);
}
function areaPoint(lambda, phi) {
lambda *= radians, phi *= radians;
phi = phi / 2 + quarterPi; // half the angular distance from south pole
// Spherical excess E for a spherical triangle with vertices: south pole,
// previous point, current point. Uses a formula derived from Cagnoli’s
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
var dLambda = lambda - lambda0,
sdLambda = dLambda >= 0 ? 1 : -1,
adLambda = sdLambda * dLambda,
cosPhi = cos(phi),
sinPhi = sin(phi),
k = sinPhi0 * sinPhi,
u = cosPhi0 * cosPhi + k * cos(adLambda),
v = k * sdLambda * sin(adLambda);
areaRingSum.add(atan2(v, u));
// Advance the previous points.
lambda0 = lambda, cosPhi0 = cosPhi, sinPhi0 = sinPhi;
}
function area(object) {
areaSum.reset();
geoStream(object, areaStream);
return areaSum * 2;
}
function spherical(cartesian) {
return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];
}
function cartesian(spherical) {
var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);
return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];
}
function cartesianDot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
function cartesianCross(a, b) {
return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
}
// TODO return a
function cartesianAddInPlace(a, b) {
a[0] += b[0], a[1] += b[1], a[2] += b[2];
}
function cartesianScale(vector, k) {
return [vector[0] * k, vector[1] * k, vector[2] * k];
}
// TODO return d
function cartesianNormalizeInPlace(d) {
var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
d[0] /= l, d[1] /= l, d[2] /= l;
}
function cartesianEqual(a, b) {
var dx = b[0] - a[0],
dy = b[1] - a[1],
dz = b[2] - a[2];
return dx * dx + dy * dy + dz * dz < epsilon2 * epsilon2;
}
var lambda0$1;
var phi0;
var lambda1;
var phi1;
var lambda2;
var lambda00$1;
var phi00$1;
var p0;
var deltaSum = adder();
var ranges;
var range$1;
var boundsStream = {
point: boundsPoint,
lineStart: boundsLineStart,
lineEnd: boundsLineEnd,
polygonStart: function() {
boundsStream.point = boundsRingPoint;
boundsStream.lineStart = boundsRingStart;
boundsStream.lineEnd = boundsRingEnd;
deltaSum.reset();
areaStream.polygonStart();
},
polygonEnd: function() {
areaStream.polygonEnd();
boundsStream.point = boundsPoint;
boundsStream.lineStart = boundsLineStart;
boundsStream.lineEnd = boundsLineEnd;
if (areaRingSum < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
else if (deltaSum > epsilon) phi1 = 90;
else if (deltaSum < -epsilon) phi0 = -90;
range$1[0] = lambda0$1, range$1[1] = lambda1;
}
};
function boundsPoint(lambda, phi) {
ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]);
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
function linePoint(lambda, phi) {
var p = cartesian([lambda * radians, phi * radians]);
if (p0) {
var normal = cartesianCross(p0, p),
equatorial = [normal[1], -normal[0], 0],
inflection = cartesianCross(equatorial, normal);
cartesianNormalizeInPlace(inflection);
inflection = spherical(inflection);
var delta = lambda - lambda2,
sign = delta > 0 ? 1 : -1,
lambdai = inflection[0] * degrees * sign,
phii,
antimeridian = abs(delta) > 180;
if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
phii = inflection[1] * degrees;
if (phii > phi1) phi1 = phii;
} else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
phii = -inflection[1] * degrees;
if (phii < phi0) phi0 = phii;
} else {
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
}
if (antimeridian) {
if (lambda < lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
} else {
if (lambda1 >= lambda0$1) {
if (lambda < lambda0$1) lambda0$1 = lambda;
if (lambda > lambda1) lambda1 = lambda;
} else {
if (lambda > lambda2) {
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
} else {
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
}
}
}
} else {
ranges.push(range$1 = [lambda0$1 = lambda, lambda1 = lambda]);
}
if (phi < phi0) phi0 = phi;
if (phi > phi1) phi1 = phi;
p0 = p, lambda2 = lambda;
}
function boundsLineStart() {
boundsStream.point = linePoint;
}
function boundsLineEnd() {
range$1[0] = lambda0$1, range$1[1] = lambda1;
boundsStream.point = boundsPoint;
p0 = null;
}
function boundsRingPoint(lambda, phi) {
if (p0) {
var delta = lambda - lambda2;
deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
} else {
lambda00$1 = lambda, phi00$1 = phi;
}
areaStream.point(lambda, phi);
linePoint(lambda, phi);
}
function boundsRingStart() {
areaStream.lineStart();
}
function boundsRingEnd() {
boundsRingPoint(lambda00$1, phi00$1);
areaStream.lineEnd();
if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180);
range$1[0] = lambda0$1, range$1[1] = lambda1;
p0 = null;
}
// Finds the left-right distance between two longitudes.
// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
// the distance between ±180° to be 360°.
function angle(lambda0, lambda1) {
return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
}
function rangeCompare(a, b) {
return a[0] - b[0];
}
function rangeContains(range, x) {
return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
}
function bounds(feature) {
var i, n, a, b, merged, deltaMax, delta;
phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity);
ranges = [];
geoStream(feature, boundsStream);
// First, sort ranges by their minimum longitudes.
if (n = ranges.length) {
ranges.sort(rangeCompare);
// Then, merge any ranges that overlap.
for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
b = ranges[i];
if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
} else {
merged.push(a = b);
}
}
// Finally, find the largest gap between the merged ranges.
// The final bounding box will be the inverse of this gap.
for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
b = merged[i];
if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1];
}
}
ranges = range$1 = null;
return lambda0$1 === Infinity || phi0 === Infinity
? [[NaN, NaN], [NaN, NaN]]
: [[lambda0$1, phi0], [lambda1, phi1]];
}
var W0;
var W1;
var X0;
var Y0;
var Z0;
var X1;
var Y1;
var Z1;
var X2;
var Y2;
var Z2;
var lambda00$2;
var phi00$2;
var x0;
var y0;
var z0;
// previous point
var centroidStream = {
sphere: noop,
point: centroidPoint,
lineStart: centroidLineStart,
lineEnd: centroidLineEnd,
polygonStart: function() {
centroidStream.lineStart = centroidRingStart;
centroidStream.lineEnd = centroidRingEnd;
},
polygonEnd: function() {
centroidStream.lineStart = centroidLineStart;
centroidStream.lineEnd = centroidLineEnd;
}
};
// Arithmetic mean of Cartesian vectors.
function centroidPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));
}
function centroidPointCartesian(x, y, z) {
++W0;
X0 += (x - X0) / W0;
Y0 += (y - Y0) / W0;
Z0 += (z - Z0) / W0;
}
function centroidLineStart() {
centroidStream.point = centroidLinePointFirst;
}
function centroidLinePointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi);
x0 = cosPhi * cos(lambda);
y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidStream.point = centroidLinePoint;
centroidPointCartesian(x0, y0, z0);
}
function centroidLinePoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
w = atan2(sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w), x0 * x + y0 * y + z0 * z);
W1 += w;
X1 += w * (x0 + (x0 = x));
Y1 += w * (y0 + (y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0, y0, z0);
}
function centroidLineEnd() {
centroidStream.point = centroidPoint;
}
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
// J. Applied Mechanics 42, 239 (1975).
function centroidRingStart() {
centroidStream.point = centroidRingPointFirst;
}
function centroidRingEnd() {
centroidRingPoint(lambda00$2, phi00$2);
centroidStream.point = centroidPoint;
}
function centroidRingPointFirst(lambda, phi) {
lambda00$2 = lambda, phi00$2 = phi;
lambda *= radians, phi *= radians;
centroidStream.point = centroidRingPoint;
var cosPhi = cos(phi);
x0 = cosPhi * cos(lambda);
y0 = cosPhi * sin(lambda);
z0 = sin(phi);
centroidPointCartesian(x0, y0, z0);
}
function centroidRingPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var cosPhi = cos(phi),
x = cosPhi * cos(lambda),
y = cosPhi * sin(lambda),
z = sin(phi),
cx = y0 * z - z0 * y,
cy = z0 * x - x0 * z,
cz = x0 * y - y0 * x,
m = sqrt(cx * cx + cy * cy + cz * cz),
w = asin(m), // line weight = angle
v = m && -w / m; // area weight multiplier
X2 += v * cx;
Y2 += v * cy;
Z2 += v * cz;
W1 += w;
X1 += w * (x0 + (x0 = x));
Y1 += w * (y0 + (y0 = y));
Z1 += w * (z0 + (z0 = z));
centroidPointCartesian(x0, y0, z0);
}
function centroid(object) {
W0 = W1 =
X0 = Y0 = Z0 =
X1 = Y1 = Z1 =
X2 = Y2 = Z2 = 0;
geoStream(object, centroidStream);
var x = X2,
y = Y2,
z = Z2,
m = x * x + y * y + z * z;
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
if (m < epsilon2) {
x = X1, y = Y1, z = Z1;
// If the feature has zero length, fall back to arithmetic mean of point vectors.
if (W1 < epsilon) x = X0, y = Y0, z = Z0;
m = x * x + y * y + z * z;
// If the feature still has an undefined ccentroid, then return.
if (m < epsilon2) return [NaN, NaN];
}
return [atan2(y, x) * degrees, asin(z / sqrt(m)) * degrees];
}
function constant(x) {
return function() {
return x;
};
}
function compose(a, b) {
function compose(x, y) {
return x = a(x, y), b(x[0], x[1]);
}
if (a.invert && b.invert) compose.invert = function(x, y) {
return x = b.invert(x, y), x && a.invert(x[0], x[1]);
};
return compose;
}
function rotationIdentity(lambda, phi) {
return [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
}
rotationIdentity.invert = rotationIdentity;
function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
: rotationLambda(deltaLambda))
: (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
: rotationIdentity);
}
function forwardRotationLambda(deltaLambda) {
return function(lambda, phi) {
return lambda += deltaLambda, [lambda > pi ? lambda - tau : lambda < -pi ? lambda + tau : lambda, phi];
};
}
function rotationLambda(deltaLambda) {
var rotation = forwardRotationLambda(deltaLambda);
rotation.invert = forwardRotationLambda(-deltaLambda);
return rotation;
}
function rotationPhiGamma(deltaPhi, deltaGamma) {
var cosDeltaPhi = cos(deltaPhi),
sinDeltaPhi = sin(deltaPhi),
cosDeltaGamma = cos(deltaGamma),
sinDeltaGamma = sin(deltaGamma);
function rotation(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaPhi + x * sinDeltaPhi;
return [
atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
asin(k * cosDeltaGamma + y * sinDeltaGamma)
];
}
rotation.invert = function(lambda, phi) {
var cosPhi = cos(phi),
x = cos(lambda) * cosPhi,
y = sin(lambda) * cosPhi,
z = sin(phi),
k = z * cosDeltaGamma - y * sinDeltaGamma;
return [
atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
asin(k * cosDeltaPhi - x * sinDeltaPhi)
];
};
return rotation;
}
function rotation(rotate) {
rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
function forward(coordinates) {
coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
}
forward.invert = function(coordinates) {
coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
};
return forward;
}
// Generates a circle centered at [0°, 0°], with a given radius and precision.
function circleStream(stream, radius, delta, direction, t0, t1) {
if (!delta) return;
var cosRadius = cos(radius),
sinRadius = sin(radius),
step = direction * delta;
if (t0 == null) {
t0 = radius + direction * tau;
t1 = radius - step / 2;
} else {
t0 = circleRadius(cosRadius, t0);
t1 = circleRadius(cosRadius, t1);
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
}
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
stream.point(point[0], point[1]);
}
}
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
function circleRadius(cosRadius, point) {
point = cartesian(point), point[0] -= cosRadius;
cartesianNormalizeInPlace(point);
var radius = acos(-point[1]);
return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
}
function circle() {
var center = constant([0, 0]),
radius = constant(90),
precision = constant(6),
ring,
rotate,
stream = {point: point};
function point(x, y) {
ring.push(x = rotate(x, y));
x[0] *= degrees, x[1] *= degrees;
}
function circle() {
var c = center.apply(this, arguments),
r = radius.apply(this, arguments) * radians,
p = precision.apply(this, arguments) * radians;
ring = [];
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
circleStream(stream, r, p, 1);
c = {type: "Polygon", coordinates: [ring]};
ring = rotate = null;
return c;
}
circle.center = function(_) {
return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
};
circle.radius = function(_) {
return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
};
circle.precision = function(_) {
return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
};
return circle;
}
function clipBuffer() {
var lines = [],
line;
return {
point: function(x, y, i, t) {
var point = [x, y];
// when called by clipPolygon, store index and t
if (arguments.length > 2) { point.index = i; point.t = t; }
line.push(point);
},
lineStart: function() {
lines.push(line = []);
},
lineEnd: noop,
rejoin: function() {
if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
},
result: function() {
var result = lines;
lines = [];
line = null;
return result;
}
};
}
function clipLine(a, b, x0, y0, x1, y1) {
var ax = a[0],
ay = a[1],
bx = b[0],
by = b[1],
t0 = 0,
t1 = 1,
dx = bx - ax,
dy = by - ay,
r;
r = x0 - ax;
if (!dx && r > 0) return;
r /= dx;
if (dx < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dx > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = x1 - ax;
if (!dx && r < 0) return;
r /= dx;
if (dx < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dx > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
r = y0 - ay;
if (!dy && r > 0) return;
r /= dy;
if (dy < 0) {
if (r < t0) return;
if (r < t1) t1 = r;
} else if (dy > 0) {
if (r > t1) return;
if (r > t0) t0 = r;
}
r = y1 - ay;
if (!dy && r < 0) return;
r /= dy;
if (dy < 0) {
if (r > t1) return;
if (r > t0) t0 = r;
} else if (dy > 0) {
if (r < t0) return;
if (r < t1) t1 = r;
}
if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
return true;
}
function pointEqual(a, b) {
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
}
function Intersection(point, points, other, entry) {
this.x = point;
this.z = points;
this.o = other; // another intersection
this.e = entry; // is an entry?
this.v = false; // visited
this.n = this.p = null; // next & previous
}
// A generalized polygon clipping algorithm: given a polygon that has been cut
// into its visible line segments, and rejoins the segments by interpolating
// along the clip edge.
function clipRejoin(segments, compareIntersection, startInside, interpolate, stream) {
var subject = [],
clip = [],
i,
n;
segments.forEach(function(segment) {
if ((n = segment.length - 1) <= 0) return;
var n, p0 = segment[0], p1 = segment[n], x;
// If the first and last points of a segment are coincident, then treat as a
// closed ring. TODO if all rings are closed, then the winding order of the
// exterior ring should be checked.
if (pointEqual(p0, p1)) {
stream.lineStart();
for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
stream.lineEnd();
return;
}
subject.push(x = new Intersection(p0, segment, null, true));
clip.push(x.o = new Intersection(p0, null, x, false));
subject.push(x = new Intersection(p1, segment, null, false));
clip.push(x.o = new Intersection(p1, null, x, true));
});
if (!subject.length) return;
clip.sort(compareIntersection);
link(subject);
link(clip);
for (i = 0, n = clip.length; i < n; ++i) {
clip[i].e = startInside = !startInside;
}
var start = subject[0],
points,
point;
while (1) {
// Find first unvisited intersection.
var current = start,
isSubject = true;
while (current.v) if ((current = current.n) === start) return;
points = current.z;
stream.lineStart();
do {
current.v = current.o.v = true;
if (current.e) {
if (isSubject) {
for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.n.x, 1, stream);
}
current = current.n;
} else {
if (isSubject) {
points = current.p.z;
for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
} else {
interpolate(current.x, current.p.x, -1, stream);
}
current = current.p;
}
current = current.o;
points = current.z;
isSubject = !isSubject;
} while (!current.v);
stream.lineEnd();
}
}
function link(array) {
if (!(n = array.length)) return;
var n,
i = 0,
a = array[0],
b;
while (++i < n) {
a.n = b = array[i];
b.p = a;
a = b;
}
a.n = b = array[0];
b.p = a;
}
var clipMax = 1e9;
var clipMin = -clipMax;
// TODO Use d3-polygon’s polygonContains here for the ring check?
// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
function clipExtent(x0, y0, x1, y1) {
function visible(x, y) {
return x0 <= x && x <= x1 && y0 <= y && y <= y1;
}
function interpolate(from, to, direction, stream) {
var a = 0, a1 = 0;
if (from == null
|| (a = corner(from, direction)) !== (a1 = corner(to, direction))
|| comparePoint(from, to) < 0 ^ direction > 0) {
do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
while ((a = (a + direction + 4) % 4) !== a1);
} else {
stream.point(to[0], to[1]);
}
}
function corner(p, direction) {
return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3
: abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1
: abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0
: direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
}
function compareIntersection(a, b) {
return comparePoint(a.x, b.x);
}
function comparePoint(a, b) {
var ca = corner(a, 1),
cb = corner(b, 1);
return ca !== cb ? ca - cb
: ca === 0 ? b[1] - a[1]
: ca === 1 ? a[0] - b[0]
: ca === 2 ? a[1] - b[1]
: b[0] - a[0];
}
return function(stream) {
var activeStream = stream,
bufferStream = clipBuffer(),
segments,
polygon,
ring,
x__, y__, v__, // first point
x_, y_, v_, // previous point
first,
clean;
var clipStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: polygonStart,
polygonEnd: polygonEnd
};
function point(x, y) {
if (visible(x, y)) activeStream.point(x, y);
}
function polygonInside() {
var winding = 0;
for (var i = 0, n = polygon.length; i < n; ++i) {
for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
}
}
return winding;
}
// Buffer geometry within a polygon and then clip it en masse.
function polygonStart() {
activeStream = bufferStream, segments = [], polygon = [], clean = true;
}
function polygonEnd() {
var startInside = polygonInside(),
cleanInside = clean && startInside,
visible = (segments = d3Array.merge(segments)).length;
if (cleanInside || visible) {
stream.polygonStart();
if (cleanInside) {
stream.lineStart();
interpolate(null, null, 1, stream);
stream.lineEnd();
}
if (visible) {
clipRejoin(segments, compareIntersection, startInside, interpolate, stream);
}
stream.polygonEnd();
}
activeStream = stream, segments = polygon = ring = null;
}
function lineStart() {
clipStream.point = linePoint;
if (polygon) polygon.push(ring = []);
first = true;
v_ = false;
x_ = y_ = NaN;
}
// TODO rather than special-case polygons, simply handle them separately.
// Ideally, coincident intersection points should be jittered to avoid
// clipping issues.
function lineEnd() {
if (segments) {
linePoint(x__, y__);
if (v__ && v_) bufferStream.rejoin();
segments.push(bufferStream.result());
}
clipStream.point = point;
if (v_) activeStream.lineEnd();
}
function linePoint(x, y) {
var v = visible(x, y);
if (polygon) ring.push([x, y]);
if (first) {
x__ = x, y__ = y, v__ = v;
first = false;
if (v) {
activeStream.lineStart();
activeStream.point(x, y);
}
} else {
if (v && v_) activeStream.point(x, y);
else {
var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
if (clipLine(a, b, x0, y0, x1, y1)) {
if (!v_) {
activeStream.lineStart();
activeStream.point(a[0], a[1]);
}
activeStream.point(b[0], b[1]);
if (!v) activeStream.lineEnd();
clean = false;
} else if (v) {
activeStream.lineStart();
activeStream.point(x, y);
clean = false;
}
}
}
x_ = x, y_ = y, v_ = v;
}
return clipStream;
};
}
function extent() {
var x0 = 0,
y0 = 0,
x1 = 960,
y1 = 500,
cache,
cacheStream,
clip;
return clip = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = clipExtent(x0, y0, x1, y1)(cacheStream = stream);
},
extent: function(_) {
return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
}
};
}
var sum = adder();
function polygonContains(polygon, point) {
var lambda = point[0],
phi = point[1],
normal = [sin(lambda), -cos(lambda), 0],
angle = 0,
winding = 0;
sum.reset();
for (var i = 0, n = polygon.length; i < n; ++i) {
if (!(m = (ring = polygon[i]).length)) continue;
var ring,
m,
point0 = ring[m - 1],
lambda0 = point0[0],
phi0 = point0[1] / 2 + quarterPi,
sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
var point1 = ring[j],
lambda1 = point1[0],
phi1 = point1[1] / 2 + quarterPi,
sinPhi1 = sin(phi1),
cosPhi1 = cos(phi1),
delta = lambda1 - lambda0,
sign = delta >= 0 ? 1 : -1,
absDelta = sign * delta,
antimeridian = absDelta > pi,
k = sinPhi0 * sinPhi1;
sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
angle += antimeridian ? delta + sign * tau : delta;
// Are the longitudes either side of the point’s meridian (lambda),
// and are the latitudes smaller than the parallel (phi)?
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
var arc = cartesianCross(cartesian(point0), cartesian(point1));
cartesianNormalizeInPlace(arc);
var intersection = cartesianCross(normal, arc);
cartesianNormalizeInPlace(intersection);
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
winding += antimeridian ^ delta >= 0 ? 1 : -1;
}
}
}
}
// First, determine whether the South pole is inside or outside:
//
// It is inside if:
// * the polygon winds around it in a clockwise direction.
// * the polygon does not (cumulatively) wind around it, but has a negative
// (counter-clockwise) area.
//
// Second, count the (signed) number of times a segment crosses a lambda
// from the point to the South pole. If it is zero, then the point is the
// same side as the South pole.
return (angle < -epsilon || angle < epsilon && sum < -epsilon) ^ (winding & 1);
}
var lengthSum = adder();
var lambda0$2;
var sinPhi0$1;
var cosPhi0$1;
var lengthStream = {
sphere: noop,
point: noop,
lineStart: lengthLineStart,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop
};
function lengthLineStart() {
lengthStream.point = lengthPointFirst;
lengthStream.lineEnd = lengthLineEnd;
}
function lengthLineEnd() {
lengthStream.point = lengthStream.lineEnd = noop;
}
function lengthPointFirst(lambda, phi) {
lambda *= radians, phi *= radians;
lambda0$2 = lambda, sinPhi0$1 = sin(phi), cosPhi0$1 = cos(phi);
lengthStream.point = lengthPoint;
}
function lengthPoint(lambda, phi) {
lambda *= radians, phi *= radians;
var sinPhi = sin(phi),
cosPhi = cos(phi),
delta = abs(lambda - lambda0$2),
cosDelta = cos(delta),
sinDelta = sin(delta),
x = cosPhi * sinDelta,
y = cosPhi0$1 * sinPhi - sinPhi0$1 * cosPhi * cosDelta,
z = sinPhi0$1 * sinPhi + cosPhi0$1 * cosPhi * cosDelta;
lengthSum.add(atan2(sqrt(x * x + y * y), z));
lambda0$2 = lambda, sinPhi0$1 = sinPhi, cosPhi0$1 = cosPhi;
}
function length(object) {
lengthSum.reset();
geoStream(object, lengthStream);
return +lengthSum;
}
var coordinates = [null, null];
var object = {type: "LineString", coordinates: coordinates};
function distance(a, b) {
coordinates[0] = a;
coordinates[1] = b;
return length(object);
}
var containsObjectType = {
Feature: function(object, point) {
return containsGeometry(object.geometry, point);
},
FeatureCollection: function(object, point) {
var features = object.features, i = -1, n = features.length;
while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
return false;
}
};
var containsGeometryType = {
Sphere: function() {
return true;
},
Point: function(object, point) {
return containsPoint(object.coordinates, point);
},
MultiPoint: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPoint(coordinates[i], point)) return true;
return false;
},
LineString: function(object, point) {
return containsLine(object.coordinates, point);
},
MultiLineString: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsLine(coordinates[i], point)) return true;
return false;
},
Polygon: function(object, point) {
return containsPolygon(object.coordinates, point);
},
MultiPolygon: function(object, point) {
var coordinates = object.coordinates, i = -1, n = coordinates.length;
while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
return false;
},
GeometryCollection: function(object, point) {
var geometries = object.geometries, i = -1, n = geometries.length;
while (++i < n) if (containsGeometry(geometries[i], point)) return true;
return false;
}
};
function containsGeometry(geometry, point) {
return geometry && containsGeometryType.hasOwnProperty(geometry.type)
? containsGeometryType[geometry.type](geometry, point)
: false;
}
function containsPoint(coordinates, point) {
return distance(coordinates, point) === 0;
}
function containsLine(coordinates, point) {
var ab = distance(coordinates[0], coordinates[1]),
ao = distance(coordinates[0], point),
ob = distance(point, coordinates[1]);
return ao + ob <= ab + epsilon;
}
function containsPolygon(coordinates, point) {
return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
}
function ringRadians(ring) {
return ring = ring.map(pointRadians), ring.pop(), ring;
}
function pointRadians(point) {
return [point[0] * radians, point[1] * radians];
}
function contains(object, point) {
return (object && containsObjectType.hasOwnProperty(object.type)
? containsObjectType[object.type]
: containsGeometry)(object, point);
}
function graticuleX(y0, y1, dy) {
var y = d3Array.range(y0, y1 - epsilon, dy).concat(y1);
return function(x) { return y.map(function(y) { return [x, y]; }); };
}
function graticuleY(x0, x1, dx) {
var x = d3Array.range(x0, x1 - epsilon, dx).concat(x1);
return function(y) { return x.map(function(x) { return [x, y]; }); };
}
function graticule() {
var x1, x0, X1, X0,
y1, y0, Y1, Y0,
dx = 10, dy = dx, DX = 90, DY = 360,
x, y, X, Y,
precision = 2.5;
function graticule() {
return {type: "MultiLineString", coordinates: lines()};
}
function lines() {
return d3Array.range(ceil(X0 / DX) * DX, X1, DX).map(X)
.concat(d3Array.range(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
.concat(d3Array.range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))
.concat(d3Array.range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));
}
graticule.lines = function() {
return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
};
graticule.outline = function() {
return {
type: "Polygon",
coordinates: [
X(X0).concat(
Y(Y1).slice(1),
X(X1).reverse().slice(1),
Y(Y0).reverse().slice(1))
]
};
};
graticule.extent = function(_) {
if (!arguments.length) return graticule.extentMinor();
return graticule.extentMajor(_).extentMinor(_);
};
graticule.extentMajor = function(_) {
if (!arguments.length) return [[X0, Y0], [X1, Y1]];
X0 = +_[0][0], X1 = +_[1][0];
Y0 = +_[0][1], Y1 = +_[1][1];
if (X0 > X1) _ = X0, X0 = X1, X1 = _;
if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
return graticule.precision(precision);
};
graticule.extentMinor = function(_) {
if (!arguments.length) return [[x0, y0], [x1, y1]];
x0 = +_[0][0], x1 = +_[1][0];
y0 = +_[0][1], y1 = +_[1][1];
if (x0 > x1) _ = x0, x0 = x1, x1 = _;
if (y0 > y1) _ = y0, y0 = y1, y1 = _;
return graticule.precision(precision);
};
graticule.step = function(_) {
if (!arguments.length) return graticule.stepMinor();
return graticule.stepMajor(_).stepMinor(_);
};
graticule.stepMajor = function(_) {
if (!arguments.length) return [DX, DY];
DX = +_[0], DY = +_[1];
return graticule;
};
graticule.stepMinor = function(_) {
if (!arguments.length) return [dx, dy];
dx = +_[0], dy = +_[1];
return graticule;
};
graticule.precision = function(_) {
if (!arguments.length) return precision;
precision = +_;
x = graticuleX(y0, y1, 90);
y = graticuleY(x0, x1, precision);
X = graticuleX(Y0, Y1, 90);
Y = graticuleY(X0, X1, precision);
return graticule;
};
return graticule
.extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])
.extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);
}
function graticule10() {
return graticule()();
}
function interpolate(a, b) {
var x0 = a[0] * radians,
y0 = a[1] * radians,
x1 = b[0] * radians,
y1 = b[1] * radians,
cy0 = cos(y0),
sy0 = sin(y0),
cy1 = cos(y1),
sy1 = sin(y1),
kx0 = cy0 * cos(x0),
ky0 = cy0 * sin(x0),
kx1 = cy1 * cos(x1),
ky1 = cy1 * sin(x1),
d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
k = sin(d);
var interpolate = d ? function(t) {
var B = sin(t *= d) / k,
A = sin(d - t) / k,
x = A * kx0 + B * kx1,
y = A * ky0 + B * ky1,
z = A * sy0 + B * sy1;
return [
atan2(y, x) * degrees,
atan2(z, sqrt(x * x + y * y)) * degrees
];
} : function() {
return [x0 * degrees, y0 * degrees];
};
interpolate.distance = d;
return interpolate;
}
function identity(x) {
return x;
}
var areaSum$1 = adder();
var areaRingSum$1 = adder();
var x00;
var y00;
var x0$1;
var y0$1;
var areaStream$1 = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaStream$1.lineStart = areaRingStart$1;
areaStream$1.lineEnd = areaRingEnd$1;
},
polygonEnd: function() {
areaStream$1.lineStart = areaStream$1.lineEnd = areaStream$1.point = noop;
areaSum$1.add(abs(areaRingSum$1));
areaRingSum$1.reset();
},
result: function() {
var area = areaSum$1 / 2;
areaSum$1.reset();
return area;
}
};
function areaRingStart$1() {
areaStream$1.point = areaPointFirst$1;
}
function areaPointFirst$1(x, y) {
areaStream$1.point = areaPoint$1;
x00 = x0$1 = x, y00 = y0$1 = y;
}
function areaPoint$1(x, y) {
areaRingSum$1.add(y0$1 * x - x0$1 * y);
x0$1 = x, y0$1 = y;
}
function areaRingEnd$1() {
areaPoint$1(x00, y00);
}
var x0$2 = Infinity;
var y0$2 = x0$2;
var x1 = -x0$2;
var y1 = x1;
var boundsStream$1 = {
point: boundsPoint$1,
lineStart: noop,
lineEnd: noop,
polygonStart: noop,
polygonEnd: noop,
result: function() {
var bounds = [[x0$2, y0$2], [x1, y1]];
x1 = y1 = -(y0$2 = x0$2 = Infinity);
return bounds;
}
};
function boundsPoint$1(x, y) {
if (x < x0$2) x0$2 = x;
if (x > x1) x1 = x;
if (y < y0$2) y0$2 = y;
if (y > y1) y1 = y;
}
var X0$1 = 0;
var Y0$1 = 0;
var Z0$1 = 0;
var X1$1 = 0;
var Y1$1 = 0;
var Z1$1 = 0;
var X2$1 = 0;
var Y2$1 = 0;
var Z2$1 = 0;
var x00$1;
var y00$1;
var x0$3;
var y0$3;
var centroidStream$1 = {
point: centroidPoint$1,
lineStart: centroidLineStart$1,
lineEnd: centroidLineEnd$1,
polygonStart: function() {
centroidStream$1.lineStart = centroidRingStart$1;
centroidStream$1.lineEnd = centroidRingEnd$1;
},
polygonEnd: function() {
centroidStream$1.point = centroidPoint$1;
centroidStream$1.lineStart = centroidLineStart$1;
centroidStream$1.lineEnd = centroidLineEnd$1;
},
result: function() {
var centroid = Z2$1 ? [X2$1 / Z2$1, Y2$1 / Z2$1]
: Z1$1 ? [X1$1 / Z1$1, Y1$1 / Z1$1]
: Z0$1 ? [X0$1 / Z0$1, Y0$1 / Z0$1]
: [NaN, NaN];
X0$1 = Y0$1 = Z0$1 =
X1$1 = Y1$1 = Z1$1 =
X2$1 = Y2$1 = Z2$1 = 0;
return centroid;
}
};
function centroidPoint$1(x, y) {
X0$1 += x;
Y0$1 += y;
++Z0$1;
}
function centroidLineStart$1() {
centroidStream$1.point = centroidPointFirstLine;
}
function centroidPointFirstLine(x, y) {
centroidStream$1.point = centroidPointLine;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function centroidPointLine(x, y) {
var dx = x - x0$3, dy = y - y0$3, z = sqrt(dx * dx + dy * dy);
X1$1 += z * (x0$3 + x) / 2;
Y1$1 += z * (y0$3 + y) / 2;
Z1$1 += z;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function centroidLineEnd$1() {
centroidStream$1.point = centroidPoint$1;
}
function centroidRingStart$1() {
centroidStream$1.point = centroidPointFirstRing;
}
function centroidRingEnd$1() {
centroidPointRing(x00$1, y00$1);
}
function centroidPointFirstRing(x, y) {
centroidStream$1.point = centroidPointRing;
centroidPoint$1(x00$1 = x0$3 = x, y00$1 = y0$3 = y);
}
function centroidPointRing(x, y) {
var dx = x - x0$3,
dy = y - y0$3,
z = sqrt(dx * dx + dy * dy);
X1$1 += z * (x0$3 + x) / 2;
Y1$1 += z * (y0$3 + y) / 2;
Z1$1 += z;
z = y0$3 * x - x0$3 * y;
X2$1 += z * (x0$3 + x);
Y2$1 += z * (y0$3 + y);
Z2$1 += z * 3;
centroidPoint$1(x0$3 = x, y0$3 = y);
}
function PathContext(context) {
this._context = context;
}
PathContext.prototype = {
_radius: 4.5,
pointRadius: function(_) {
return this._radius = _, this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._context.closePath();
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._context.moveTo(x, y);
this._point = 1;
break;
}
case 1: {
this._context.lineTo(x, y);
break;
}
default: {
this._context.moveTo(x + this._radius, y);
this._context.arc(x, y, this._radius, 0, tau);
break;
}
}
},
result: noop
};
var lengthSum$1 = adder();
var lengthRing;
var x00$2;
var y00$2;
var x0$4;
var y0$4;
var lengthStream$1 = {
point: noop,
lineStart: function() {
lengthStream$1.point = lengthPointFirst$1;
},
lineEnd: function() {
if (lengthRing) lengthPoint$1(x00$2, y00$2);
lengthStream$1.point = noop;
},
polygonStart: function() {
lengthRing = true;
},
polygonEnd: function() {
lengthRing = null;
},
result: function() {
var length = +lengthSum$1;
lengthSum$1.reset();
return length;
}
};
function lengthPointFirst$1(x, y) {
lengthStream$1.point = lengthPoint$1;
x00$2 = x0$4 = x, y00$2 = y0$4 = y;
}
function lengthPoint$1(x, y) {
x0$4 -= x, y0$4 -= y;
lengthSum$1.add(sqrt(x0$4 * x0$4 + y0$4 * y0$4));
x0$4 = x, y0$4 = y;
}
function PathString() {
this._string = [];
}
PathString.prototype = {
_radius: 4.5,
_circle: circle$1(4.5),
pointRadius: function(_) {
if ((_ = +_) !== this._radius) this._radius = _, this._circle = null;
return this;
},
polygonStart: function() {
this._line = 0;
},
polygonEnd: function() {
this._line = NaN;
},
lineStart: function() {
this._point = 0;
},
lineEnd: function() {
if (this._line === 0) this._string.push("Z");
this._point = NaN;
},
point: function(x, y) {
switch (this._point) {
case 0: {
this._string.push("M", x, ",", y);
this._point = 1;
break;
}
case 1: {
this._string.push("L", x, ",", y);
break;
}
default: {
if (this._circle == null) this._circle = circle$1(this._radius);
this._string.push("M", x, ",", y, this._circle);
break;
}
}
},
result: function() {
if (this._string.length) {
var result = this._string.join("");
this._string = [];
return result;
} else {
return null;
}
}
};
function circle$1(radius) {
return "m0," + radius
+ "a" + radius + "," + radius + " 0 1,1 0," + -2 * radius
+ "a" + radius + "," + radius + " 0 1,1 0," + 2 * radius
+ "z";
}
function index(projection, context) {
var pointRadius = 4.5,
projectionStream,
contextStream;
function path(object) {
if (object) {
if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
geoStream(object, projectionStream(contextStream));
}
return contextStream.result();
}
path.area = function(object) {
geoStream(object, projectionStream(areaStream$1));
return areaStream$1.result();
};
path.measure = function(object) {
geoStream(object, projectionStream(lengthStream$1));
return lengthStream$1.result();
};
path.bounds = function(object) {
geoStream(object, projectionStream(boundsStream$1));
return boundsStream$1.result();
};
path.centroid = function(object) {
geoStream(object, projectionStream(centroidStream$1));
return centroidStream$1.result();
};
path.projection = function(_) {
return arguments.length ? (projectionStream = _ == null ? (projection = null, identity) : (projection = _).stream, path) : projection;
};
path.context = function(_) {
if (!arguments.length) return context;
contextStream = _ == null ? (context = null, new PathString) : new PathContext(context = _);
if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
return path;
};
path.pointRadius = function(_) {
if (!arguments.length) return pointRadius;
pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
return path;
};
return path.projection(projection).context(context);
}
function clip(pointVisible, clipLine, interpolate, start, sort) {
if (typeof sort === "undefined") sort = compareIntersection;
return function(rotate, sink) {
var line = clipLine(sink),
rotatedStart = rotate.invert(start[0], start[1]),
ringBuffer = clipBuffer(),
ringSink = clipLine(ringBuffer),
polygonStarted = false,
polygon,
segments,
ring;
var clip = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() {
clip.point = pointRing;
clip.lineStart = ringStart;
clip.lineEnd = ringEnd;
segments = [];
polygon = [];
},
polygonEnd: function() {
clip.point = point;
clip.lineStart = lineStart;
clip.lineEnd = lineEnd;
segments = d3Array.merge(segments);
var startInside = polygonContains(polygon, rotatedStart);
if (segments.length) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
clipRejoin(segments, sort, startInside, interpolate, sink);
} else if (startInside) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
}
if (polygonStarted) sink.polygonEnd(), polygonStarted = false;
segments = polygon = null;
},
sphere: function() {
sink.polygonStart();
sink.lineStart();
interpolate(null, null, 1, sink);
sink.lineEnd();
sink.polygonEnd();
}
};
function point(lambda, phi) {
var point = rotate(lambda, phi);
if (pointVisible(lambda = point[0], phi = point[1])) sink.point(lambda, phi);
}
function pointLine(lambda, phi) {
var point = rotate(lambda, phi);
line.point(point[0], point[1]);
}
function lineStart() {
clip.point = pointLine;
line.lineStart();
}
function lineEnd() {
clip.point = point;
line.lineEnd();
}
function pointRing(lambda, phi, close) {
ring.push([lambda, phi]);
var point = rotate(lambda, phi);
ringSink.point(point[0], point[1], close);
}
function ringStart() {
ringSink.lineStart();
ring = [];
}
function ringEnd() {
pointRing(ring[0][0], ring[0][1], true);
ringSink.lineEnd();
var clean = ringSink.clean(),
ringSegments = ringBuffer.result(),
i, n = ringSegments.length, m,
segment,
point;
ring.pop();
polygon.push(ring);
ring = null;
if (!n) return;
// No intersections.
if (clean & 1) {
segment = ringSegments[0];
if ((m = segment.length - 1) > 0) {
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
sink.lineStart();
for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);
sink.lineEnd();
}
return;
}
// Rejoin connected segments.
// TODO reuse ringBuffer.rejoin()?
if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));
segments.push(ringSegments.filter(validSegment));
}
return clip;
};
}
function validSegment(segment) {
return segment.length > 1;
}
// Intersections are sorted along the clip edge. For both antimeridian cutting
// and circle clipping, the same comparison is used.
function compareIntersection(a, b) {
return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1])
- ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]);
}
function clipAntimeridian() {
// Takes a line and cuts into visible segments. Return values: 0 - there were
// intersections or the line was empty; 1 - no intersections; 2 - there were
// intersections, and the first and last segments should be rejoined.
function clipLine(stream) {
var lambda0 = NaN,
phi0 = NaN,
sign0 = NaN,
clean; // no intersections
return {
lineStart: function() {
stream.lineStart();
clean = 1;
},
point: function(lambda1, phi1) {
var sign1 = lambda1 > 0 ? pi : -pi,
delta = abs(lambda1 - lambda0);
if (abs(delta - pi) < epsilon) { // line crosses a pole
stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
stream.point(lambda1, phi0);
clean = 0;
} else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian
if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies
if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon;
phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);
stream.point(sign0, phi0);
stream.lineEnd();
stream.lineStart();
stream.point(sign1, phi0);
clean = 0;
}
stream.point(lambda0 = lambda1, phi0 = phi1);
sign0 = sign1;
},
lineEnd: function() {
stream.lineEnd();
lambda0 = phi0 = NaN;
},
clean: function() {
return 2 - clean; // if intersections, rejoin first and last segments
}
};
}
function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {
var cosPhi0,
cosPhi1,
sinLambda0Lambda1 = sin(lambda0 - lambda1);
return abs(sinLambda0Lambda1) > epsilon
? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1)
- sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0))
/ (cosPhi0 * cosPhi1 * sinLambda0Lambda1))
: (phi0 + phi1) / 2;
}
function interpolate(from, to, direction, stream) {
var phi;
if (from == null) {
phi = direction * halfPi;
stream.point(-pi, phi);
stream.point(0, phi);
stream.point(pi, phi);
stream.point(pi, 0);
stream.point(pi, -phi);
stream.point(0, -phi);
stream.point(-pi, -phi);
stream.point(-pi, 0);
stream.point(-pi, phi);
} else if (abs(from[0] - to[0]) > epsilon) {
var lambda = from[0] < to[0] ? pi : -pi;
phi = direction * lambda / 2;
stream.point(-lambda, phi);
stream.point(0, phi);
stream.point(lambda, phi);
} else {
stream.point(to[0], to[1]);
}
}
function visible() {
return true;
}
return clip(visible, clipLine, interpolate, [-pi, -halfPi]);
}
function clipCircle(radius, delta) {
var cr = cos(radius),
smallRadius = cr > 0,
notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case
function interpolate(from, to, direction, stream) {
circleStream(stream, radius, delta, direction, from, to);
}
function visible(lambda, phi) {
return cos(lambda) * cos(phi) > cr;
}
// Takes a line and cuts into visible segments. Return values used for polygon
// clipping: 0 - there were intersections or the line was empty; 1 - no
// intersections 2 - there were intersections, and the first and last segments
// should be rejoined.
function clipLine(stream) {
var point0, // previous point
c0, // code for previous point
v0, // visibility of previous point
v00, // visibility of first point
clean; // no intersections
return {
lineStart: function() {
v00 = v0 = false;
clean = 1;
},
point: function(lambda, phi) {
var point1 = [lambda, phi],
point2,
v = visible(lambda, phi),
c = smallRadius
? v ? 0 : code(lambda, phi)
: v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0;
if (!point0 && (v00 = v0 = v)) stream.lineStart();
// Handle degeneracies.
// TODO ignore if not clipping polygons.
if (v !== v0) {
point2 = intersect(point0, point1);
if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2)) {
point1[0] += epsilon;
point1[1] += epsilon;
v = visible(point1[0], point1[1]);
}
}
if (v !== v0) {
clean = 0;
if (v) {
// outside going in
stream.lineStart();
point2 = intersect(point1, point0);
stream.point(point2[0], point2[1]);
} else {
// inside going out
point2 = intersect(point0, point1);
stream.point(point2[0], point2[1]);
stream.lineEnd();
}
point0 = point2;
} else if (notHemisphere && point0 && smallRadius ^ v) {
var t;
// If the codes for two points are different, or are both zero,
// and there this segment intersects with the small circle.
if (!(c & c0) && (t = intersect(point1, point0, true))) {
clean = 0;
if (smallRadius) {
stream.lineStart();
stream.point(t[0][0], t[0][1]);
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
} else {
stream.point(t[1][0], t[1][1]);
stream.lineEnd();
stream.lineStart();
stream.point(t[0][0], t[0][1]);
}
}
}
if (v && (!point0 || !pointEqual(point0, point1))) {
stream.point(point1[0], point1[1]);
}
point0 = point1, v0 = v, c0 = c;
},
lineEnd: function() {
if (v0) stream.lineEnd();
point0 = null;
},
// Rejoin first and last segments if there were intersections and the first
// and last points were visible.
clean: function() {
return clean | ((v00 && v0) << 1);
}
};
}
// Intersects the great circle between a and b with the clip circle.
function intersect(a, b, two) {
var pa = cartesian(a),
pb = cartesian(b);
// We have two planes, n1.p = d1 and n2.p = d2.
// Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2).
var n1 = [1, 0, 0], // normal
n2 = cartesianCross(pa, pb),
n2n2 = cartesianDot(n2, n2),
n1n2 = n2[0], // cartesianDot(n1, n2),
determinant = n2n2 - n1n2 * n1n2;
// Two polar points.
if (!determinant) return !two && a;
var c1 = cr * n2n2 / determinant,
c2 = -cr * n1n2 / determinant,
n1xn2 = cartesianCross(n1, n2),
A = cartesianScale(n1, c1),
B = cartesianScale(n2, c2);
cartesianAddInPlace(A, B);
// Solve |p(t)|^2 = 1.
var u = n1xn2,
w = cartesianDot(A, u),
uu = cartesianDot(u, u),
t2 = w * w - uu * (cartesianDot(A, A) - 1);
if (t2 < 0) return;
var t = sqrt(t2),
q = cartesianScale(u, (-w - t) / uu);
cartesianAddInPlace(q, A);
q = spherical(q);
if (!two) return q;
// Two intersection points.
var lambda0 = a[0],
lambda1 = b[0],
phi0 = a[1],
phi1 = b[1],
z;
if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;
var delta = lambda1 - lambda0,
polar = abs(delta - pi) < epsilon,
meridian = polar || delta < epsilon;
if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;
// Check that the first point is between a and b.
if (meridian
? polar
? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1)
: phi0 <= q[1] && q[1] <= phi1
: delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) {
var q1 = cartesianScale(u, (-w + t) / uu);
cartesianAddInPlace(q1, A);
return [q, spherical(q1)];
}
}
// Generates a 4-bit vector representing the location of a point relative to
// the small circle's bounding box.
function code(lambda, phi) {
var r = smallRadius ? radius : pi - radius,
code = 0;
if (lambda < -r) code |= 1; // left
else if (lambda > r) code |= 2; // right
if (phi < -r) code |= 4; // below
else if (phi > r) code |= 8; // above
return code;
}
return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]);
}
/*
* clipNone generates a clip function which doesn't clip
* but complies with the preclip API by applying the rotation
*
*/
function clipNone() {
return function(rotate, stream) {
var _stream = {
point: function(x,y) {
var r = rotate(x,y);
return stream.point(r[0],r[1]);
},
lineStart: stream.lineStart,
lineEnd: stream.lineEnd,
polygonStart: stream.polygonStart,
polygonEnd: stream.polygonEnd,
sphere: stream.sphere
};
return _stream;
}
}
/*
import {halfPi, pi} from "../math";
function sphere(stream) {
return function() {
var phi = 1 * halfPi;
stream.lineStart();
stream.point(-pi, phi);
stream.point(0, phi);
stream.point(pi, phi);
stream.point(pi, 0);
stream.point(pi, -phi);
stream.point(0, -phi);
stream.point(-pi, -phi);
stream.point(-pi, 0);
stream.point(-pi, phi);
stream.lineEnd();
}
}
*/
function intersectSegment(from, to) {
this.from = from, this.to = to;
this.normal = cartesianCross(from, to);
this.fromNormal = cartesianCross(this.normal, from);
this.toNormal = cartesianCross(this.normal, to);
}
// >> here a and b are segments processed by intersectSegment
function intersect(a, b) {
var axb = cartesianCross(a.normal, b.normal);
cartesianNormalizeInPlace(axb);
var a0 = cartesianDot(axb, a.fromNormal),
a1 = cartesianDot(axb, a.toNormal),
b0 = cartesianDot(axb, b.fromNormal),
b1 = cartesianDot(axb, b.toNormal);
if (a0 > -epsilon2 && a1 < epsilon2 && b0 > -epsilon2 && b1 < epsilon2) return axb;
if (a0 < epsilon2 && a1 > -epsilon2 && b0 < epsilon2 && b1 > -epsilon2) {
axb[0] = -axb[0], axb[1] = -axb[1], axb[2] = -axb[2];
return axb;
}
}
function intersectPointOnLine(p, a) {
var a0 = cartesianDot(p, a.fromNormal),
a1 = cartesianDot(p, a.toNormal);
p = cartesianDot(p, a.normal);
return abs(p) < epsilon2 && (a0 > -epsilon2 && a1 < epsilon2 || a0 < epsilon2 && a1 > -epsilon2);
}
var intersectCoincident = {};
// todo: publicly expose d3.geoIntersect(segment0, segment1) ??
// cf. https://github.com/d3/d3/commit/3dbdf87974dc2588c29db0533a8500ccddb25daa#diff-65daf69cea7d039d72c1eca7c13326b0
// clipPolygon
function clipPolygon (p) {
var segments = [];
if (p.type != "Polygon") return clipNone(); // todo: MultiPolygon?
var polygon = p.coordinates.map(function(ring) {
var c, c0;
ring = ring.map(function(point, i) {
c = cartesian(point = [point[0] * radians, point[1] * radians]);
if (i) segments.push(new intersectSegment(c0, c));
c0 = c;
return point;
});
ring.pop();
return ring;
});
function visible(lambda, phi) {
return polygonContains(polygon, [lambda, phi]);
}
function clipLine(stream) {
var point0,
lambda00,
phi00,
v00,
v0,
clean;
return {
lineStart: function() {
point0 = null;
clean = 1;
},
point: function(lambda, phi, close) {
if (cos(lambda) == -1) lambda -= sign(sin(lambda)) * 1e-5; // move away from -180/180 https://github.com/d3/d3-geo/pull/108#issuecomment-323798937
if (close) lambda = lambda00, phi = phi00;
var point = cartesian([lambda, phi]),
v = v0,
intersection,
i, j, s, t;
if (point0) {
var segment = new intersectSegment(point0, point),
intersections = [];
for (i = 0, j = 100; i < segments.length && j > 0; ++i) {
s = segments[i];
intersection = intersect(segment, s);
if (intersection) {
if (intersection === intersectCoincident ||
cartesianEqual(intersection, point0) || cartesianEqual(intersection, point) ||
cartesianEqual(intersection, s.from) || cartesianEqual(intersection, s.to)) {
t = 1e-4;
lambda = (lambda + 3 * pi + (Math.random() < .5 ? t : -t)) % (2 * pi) - pi;
phi = Math.min(pi / 2 - 1e-4, Math.max(1e-4 - pi / 2, phi + (Math.random() < .5 ? t : -t)));
segment = new intersectSegment(point0, point = cartesian([lambda, phi]));
i = -1, --j;
intersections.length = 0;
continue;
}
var sph = spherical(intersection);
intersection.distance = clipPolygonDistance(point0, intersection);
intersection.index = i;
intersection.t = clipPolygonDistance(s.from, intersection);
intersection[0] = sph[0], intersection[1] = sph[1], intersection.pop();
intersections.push(intersection);
}
}
if (intersections.length) {
clean = 0;
intersections.sort(function(a, b) { return a.distance - b.distance; });
for (i = 0; i < intersections.length; ++i) {
intersection = intersections[i];
if (v = !v) {
stream.lineStart();
stream.point(intersection[0], intersection[1], intersection.index, intersection.t);
} else {
stream.point(intersection[0], intersection[1], intersection.index, intersection.t);
stream.lineEnd();
}
}
}
if (v) stream.point(lambda, phi);
} else {
for (i = 0, j = 100; i < segments.length && j > 0; ++i) {
s = segments[i];
if (intersectPointOnLine(point, s)) {
t = 1e-4;
lambda = (lambda + 3 * pi + (Math.random() < .5 ? t : -t)) % (2 * pi) - pi;
phi = Math.min(pi / 2 - 1e-4, Math.max(1e-4 - pi / 2, phi + (Math.random() < .5 ? t : -t)));
point = cartesian([lambda, phi]);
i = -1, --j;
}
}
if (v00 = v = visible(lambda00 = lambda, phi00 = phi)) stream.lineStart(), stream.point(lambda, phi);
}
point0 = point, v0 = v;
},
lineEnd: function() {
if (v0) stream.lineEnd();
},
// Rejoin first and last segments if there were intersections and the first
// and last points were visible.
clean: function() {
return clean | ((v00 && v0) << 1);
}
};
}
function interpolate(from, to, direction, stream) {
if (from == null) {
var n = polygon.length;
polygon.forEach(function(ring, i) {
ring.forEach(function(point) { stream.point(point[0], point[1]); });
if (i < n - 1) stream.lineEnd(), stream.lineStart();
});
} else if (from.index !== to.index && from.index != null && to.index != null) {
for (var i = from.index; i !== to.index; i = (i + direction + segments.length) % segments.length) {
var segment = segments[i],
point = spherical(direction > 0 ? segment.to : segment.from);
stream.point(point[0], point[1]);
}
}
}
return clip(visible, clipLine, interpolate, polygon[0][0], clipPolygonSort);
}
function clipPolygonSort(a, b) {
a = a.x, b = b.x;
return a.index - b.index || a.t - b.t;
}
// Geodesic coordinates for two 3D points.
function clipPolygonDistance(a, b) {
var axb = cartesianCross(a, b);
return atan2(sqrt(cartesianDot(axb, axb)), cartesianDot(a, b));
}
function transform(methods) {
return {
stream: transformer(methods)
};
}
function transformer(methods) {
return function(stream) {
var s = new TransformStream;
for (var key in methods) s[key] = methods[key];
s.stream = stream;
return s;
};
}
function TransformStream() {}
TransformStream.prototype = {
constructor: TransformStream,
point: function(x, y) { this.stream.point(x, y); },
sphere: function() { this.stream.sphere(); },
lineStart: function() { this.stream.lineStart(); },
lineEnd: function() { this.stream.lineEnd(); },
polygonStart: function() { this.stream.polygonStart(); },
polygonEnd: function() { this.stream.polygonEnd(); }
};
function fitExtent(projection, extent, object) {
var w = extent[1][0] - extent[0][0],
h = extent[1][1] - extent[0][1],
clip = projection.clipExtent && projection.clipExtent();
projection
.scale(150)
.translate([0, 0]);
if (clip != null) projection.clipExtent(null);
geoStream(object, projection.stream(boundsStream$1));
var b = boundsStream$1.result(),
k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),
x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,
y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;
if (clip != null) projection.clipExtent(clip);
return projection
.scale(k * 150)
.translate([x, y]);
}
function fitSize(projection, size, object) {
return fitExtent(projection, [[0, 0], size], object);
}
var maxDepth = 16;
var cosMinDistance = cos(30 * radians);
// cos(minimum angular distance)
function resample(project, delta2) {
return +delta2 ? resample$1(project, delta2) : resampleNone(project);
}
function resampleNone(project) {
return transformer({
point: function(x, y) {
x = project(x, y);
this.stream.point(x[0], x[1]);
}
});
}
function resample$1(project, delta2) {
function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {
var dx = x1 - x0,
dy = y1 - y0,
d2 = dx * dx + dy * dy;
if (d2 > 4 * delta2 && depth--) {
var a = a0 + a1,
b = b0 + b1,
c = c0 + c1,
m = sqrt(a * a + b * b + c * c),
phi2 = asin(c /= m),
lambda2 = abs(abs(c) - 1) < epsilon || abs(lambda0 - lambda1) < epsilon ? (lambda0 + lambda1) / 2 : atan2(b, a),
p = project(lambda2, phi2),
x2 = p[0],
y2 = p[1],
dx2 = x2 - x0,
dy2 = y2 - y0,
dz = dy * dx2 - dx * dy2;
if (dz * dz / d2 > delta2 // perpendicular projected distance
|| abs((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end
|| a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);
stream.point(x2, y2);
resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);
}
}
}
return function(stream) {
var lambda00, x00, y00, a00, b00, c00, // first point
lambda0, x0, y0, a0, b0, c0; // previous point
var resampleStream = {
point: point,
lineStart: lineStart,
lineEnd: lineEnd,
polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },
polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }
};
function point(x, y) {
x = project(x, y);
stream.point(x[0], x[1]);
}
function lineStart() {
x0 = NaN;
resampleStream.point = linePoint;
stream.lineStart();
}
function linePoint(lambda, phi) {
var c = cartesian([lambda, phi]), p = project(lambda, phi);
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
stream.point(x0, y0);
}
function lineEnd() {
resampleStream.point = point;
stream.lineEnd();
}
function ringStart() {
lineStart();
resampleStream.point = ringPoint;
resampleStream.lineEnd = ringEnd;
}
function ringPoint(lambda, phi) {
linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
resampleStream.point = linePoint;
}
function ringEnd() {
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);
resampleStream.lineEnd = lineEnd;
lineEnd();
}
return resampleStream;
};
}
var transformRadians = transformer({
point: function(x, y) {
this.stream.point(x * radians, y * radians);
}
});
function projection(project) {
return projectionMutator(function() { return project; })();
}
function projectionMutator(projectAt) {
var project,
k = 150, // scale
x = 480, y = 250, // translate
dx, dy, lambda = 0, phi = 0, // center
deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, projectRotate, // rotate
preclip = clipAntimeridian(), // default clip
theta = null, // clip angle
polygon = null, // clip polygon
x0 = null, y0, x1, y1, postclip = identity, // clip extent
delta2 = 0.5, projectResample = resample(projectTransform, delta2), // precision
cache,
cacheStream;
function projection(point) {
point = projectRotate(point[0] * radians, point[1] * radians);
return [point[0] * k + dx, dy - point[1] * k];
}
function invert(point) {
point = projectRotate.invert((point[0] - dx) / k, (dy - point[1]) / k);
return point && [point[0] * degrees, point[1] * degrees];
}
function projectTransform(x, y) {
return x = project(x, y), [x[0] * k + dx, dy - x[1] * k];
}
projection.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = transformRadians(preclip(rotate, projectResample(postclip(cacheStream = stream))));
};
// spherical clipping (preclip)
// if argument is false-ish, falls back to clipNone
projection.clipAntimeridian = function(_) {
if (!arguments.length) return polygon === null && theta === null;
return preclip = _ ? clipAntimeridian() : clipNone(), polygon = theta = null, reset();
};
// if argument is false-ish, falls back to Antimeridian
projection.clipAngle = function(_) {
if (!arguments.length) return theta ? theta * degrees : null;
theta = +_ * radians;
if (!theta) return theta = null, preclip = clipAntimeridian(), reset();
return preclip = clipCircle(theta, 6 * radians), reset();
};
// if argument is false-ish, falls back to clipNone
projection.clipPolygon = function(_) {
return arguments.length ? (preclip = _ ? clipPolygon(polygon = _) : (polygon = theta = null, clipNone()), reset()) : polygon;
};
// planar clipping (postclip)
projection.clipExtent = function(_) {
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipExtent(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
projection.scale = function(_) {
return arguments.length ? (k = +_, recenter()) : k;
};
projection.translate = function(_) {
return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];
};
projection.center = function(_) {
return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];
};
projection.rotate = function(_) {
return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];
};
projection.precision = function(_) {
return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt(delta2);
};
projection.fitExtent = function(extent, object) {
return fitExtent(projection, extent, object);
};
projection.fitSize = function(size, object) {
return fitSize(projection, size, object);
};
function recenter() {
projectRotate = compose(rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma), project);
var center = project(lambda, phi);
dx = x - center[0] * k;
dy = y + center[1] * k;
return reset();
}
function reset() {
cache = cacheStream = null;
return projection;
}
return function() {
project = projectAt.apply(this, arguments);
projection.invert = project.invert && invert;
return recenter();
};
}
function conicProjection(projectAt) {
var phi0 = 0,
phi1 = pi / 3,
m = projectionMutator(projectAt),
p = m(phi0, phi1);
p.parallels = function(_) {
return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];
};
return p;
}
function cylindricalEqualAreaRaw(phi0) {
var cosPhi0 = cos(phi0);
function forward(lambda, phi) {
return [lambda * cosPhi0, sin(phi) / cosPhi0];
}
forward.invert = function(x, y) {
return [x / cosPhi0, asin(y * cosPhi0)];
};
return forward;
}
function conicEqualAreaRaw(y0, y1) {
var sy0 = sin(y0), n = (sy0 + sin(y1)) / 2;
// Are the parallels symmetrical around the Equator?
if (abs(n) < epsilon) return cylindricalEqualAreaRaw(y0);
var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt(c) / n;
function project(x, y) {
var r = sqrt(c - 2 * n * sin(y)) / n;
return [r * sin(x *= n), r0 - r * cos(x)];
}
project.invert = function(x, y) {
var r0y = r0 - y;
return [atan2(x, abs(r0y)) / n * sign(r0y), asin((c - (x * x + r0y * r0y) * n * n) / (2 * n))];
};
return project;
}
function conicEqualArea() {
return conicProjection(conicEqualAreaRaw)
.scale(155.424)
.center([0, 33.6442]);
}
function albers() {
return conicEqualArea()
.parallels([29.5, 45.5])
.scale(1070)
.translate([480, 250])
.rotate([96, 0])
.center([-0.6, 38.7]);
}
// The projections must have mutually exclusive clip regions on the sphere,
// as this will avoid emitting interleaving lines and polygons.
function multiplex(streams) {
var n = streams.length;
return {
point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },
sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },
lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },
lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },
polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },
polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }
};
}
// A composite projection for the United States, configured by default for
// 960×500. The projection also works quite well at 960×600 if you change the
// scale to 1285 and adjust the translate accordingly. The set of standard
// parallels for each region comes from USGS, which is published here:
// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
function albersUsa() {
var cache,
cacheStream,
lower48 = albers(), lower48Point,
alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338
hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007
point, pointStream = {point: function(x, y) { point = [x, y]; }};
function albersUsa(coordinates) {
var x = coordinates[0], y = coordinates[1];
return point = null,
(lower48Point.point(x, y), point)
|| (alaskaPoint.point(x, y), point)
|| (hawaiiPoint.point(x, y), point);
}
albersUsa.invert = function(coordinates) {
var k = lower48.scale(),
t = lower48.translate(),
x = (coordinates[0] - t[0]) / k,
y = (coordinates[1] - t[1]) / k;
return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska
: y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii
: lower48).invert(coordinates);
};
albersUsa.stream = function(stream) {
return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);
};
albersUsa.precision = function(_) {
if (!arguments.length) return lower48.precision();
lower48.precision(_), alaska.precision(_), hawaii.precision(_);
return reset();
};
albersUsa.scale = function(_) {
if (!arguments.length) return lower48.scale();
lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);
return albersUsa.translate(lower48.translate());
};
albersUsa.translate = function(_) {
if (!arguments.length) return lower48.translate();
var k = lower48.scale(), x = +_[0], y = +_[1];
lower48Point = lower48
.translate(_)
.clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])
.stream(pointStream);
alaskaPoint = alaska
.translate([x - 0.307 * k, y + 0.201 * k])
.clipExtent([[x - 0.425 * k + epsilon, y + 0.120 * k + epsilon], [x - 0.214 * k - epsilon, y + 0.234 * k - epsilon]])
.stream(pointStream);
hawaiiPoint = hawaii
.translate([x - 0.205 * k, y + 0.212 * k])
.clipExtent([[x - 0.214 * k + epsilon, y + 0.166 * k + epsilon], [x - 0.115 * k - epsilon, y + 0.234 * k - epsilon]])
.stream(pointStream);
return reset();
};
albersUsa.fitExtent = function(extent, object) {
return fitExtent(albersUsa, extent, object);
};
albersUsa.fitSize = function(size, object) {
return fitSize(albersUsa, size, object);
};
function reset() {
cache = cacheStream = null;
return albersUsa;
}
return albersUsa.scale(1070);
}
function azimuthalRaw(scale) {
return function(x, y) {
var cx = cos(x),
cy = cos(y),
k = scale(cx * cy);
return [
k * cy * sin(x),
k * sin(y)
];
}
}
function azimuthalInvert(angle) {
return function(x, y) {
var z = sqrt(x * x + y * y),
c = angle(z),
sc = sin(c),
cc = cos(c);
return [
atan2(x * sc, z * cc),
asin(z && y * sc / z)
];
}
}
var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {
return sqrt(2 / (1 + cxcy));
});
azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {
return 2 * asin(z / 2);
});
function azimuthalEqualArea() {
return projection(azimuthalEqualAreaRaw)
.scale(124.75)
.clipAngle(180 - 1e-3);
}
var azimuthalEquidistantRaw = azimuthalRaw(function(c) {
return (c = acos(c)) && c / sin(c);
});
azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {
return z;
});
function azimuthalEquidistant() {
return projection(azimuthalEquidistantRaw)
.scale(79.4188)
.clipAngle(180 - 1e-3);
}
function mercatorRaw(lambda, phi) {
return [lambda, log(tan((halfPi + phi) / 2))];
}
mercatorRaw.invert = function(x, y) {
return [x, 2 * atan(exp(y)) - halfPi];
};
function mercator() {
return mercatorProjection(mercatorRaw)
.scale(961 / tau);
}
function mercatorProjection(project) {
var m = projection(project),
center = m.center,
scale = m.scale,
translate = m.translate,
clipExtent = m.clipExtent,
x0 = null, y0, x1, y1; // clip extent
m.scale = function(_) {
return arguments.length ? (scale(_), reclip()) : scale();
};
m.translate = function(_) {
return arguments.length ? (translate(_), reclip()) : translate();
};
m.center = function(_) {
return arguments.length ? (center(_), reclip()) : center();
};
m.clipExtent = function(_) {
return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];
};
function reclip() {
var k = pi * scale(),
t = m(rotation(m.rotate()).invert([0, 0]));
return clipExtent(x0 == null
? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw
? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]
: [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);
}
return reclip();
}
function tany(y) {
return tan((halfPi + y) / 2);
}
function conicConformalRaw(y0, y1) {
var cy0 = cos(y0),
n = y0 === y1 ? sin(y0) : log(cy0 / cos(y1)) / log(tany(y1) / tany(y0)),
f = cy0 * pow(tany(y0), n) / n;
if (!n) return mercatorRaw;
function project(x, y) {
if (f > 0) { if (y < -halfPi + epsilon) y = -halfPi + epsilon; }
else { if (y > halfPi - epsilon) y = halfPi - epsilon; }
var r = f / pow(tany(y), n);
return [r * sin(n * x), f - r * cos(n * x)];
}
project.invert = function(x, y) {
var fy = f - y, r = sign(n) * sqrt(x * x + fy * fy);
return [atan2(x, abs(fy)) / n * sign(fy), 2 * atan(pow(f / r, 1 / n)) - halfPi];
};
return project;
}
function conicConformal() {
return conicProjection(conicConformalRaw)
.scale(109.5)
.parallels([30, 30]);
}
function equirectangularRaw(lambda, phi) {
return [lambda, phi];
}
equirectangularRaw.invert = equirectangularRaw;
function equirectangular() {
return projection(equirectangularRaw)
.scale(152.63);
}
function conicEquidistantRaw(y0, y1) {
var cy0 = cos(y0),
n = y0 === y1 ? sin(y0) : (cy0 - cos(y1)) / (y1 - y0),
g = cy0 / n + y0;
if (abs(n) < epsilon) return equirectangularRaw;
function project(x, y) {
var gy = g - y, nx = n * x;
return [gy * sin(nx), g - gy * cos(nx)];
}
project.invert = function(x, y) {
var gy = g - y;
return [atan2(x, abs(gy)) / n * sign(gy), g - sign(n) * sqrt(x * x + gy * gy)];
};
return project;
}
function conicEquidistant() {
return conicProjection(conicEquidistantRaw)
.scale(131.154)
.center([0, 13.9389]);
}
function gnomonicRaw(x, y) {
var cy = cos(y), k = cos(x) * cy;
return [cy * sin(x) / k, sin(y) / k];
}
gnomonicRaw.invert = azimuthalInvert(atan);
function gnomonic() {
return projection(gnomonicRaw)
.scale(144.049)
.clipAngle(60);
}
function scaleTranslate(kx, ky, tx, ty) {
return kx === 1 && ky === 1 && tx === 0 && ty === 0 ? identity : transformer({
point: function(x, y) {
this.stream.point(x * kx + tx, y * ky + ty);
}
});
}
function identity$1() {
var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, transform = identity, // scale, translate and reflect
x0 = null, y0, x1, y1, clip = identity, // clip extent
cache,
cacheStream,
projection;
function reset() {
cache = cacheStream = null;
return projection;
}
return projection = {
stream: function(stream) {
return cache && cacheStream === stream ? cache : cache = transform(clip(cacheStream = stream));
},
clipExtent: function(_) {
return arguments.length ? (clip = _ == null ? (x0 = y0 = x1 = y1 = null, identity) : clipExtent(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
},
scale: function(_) {
return arguments.length ? (transform = scaleTranslate((k = +_) * sx, k * sy, tx, ty), reset()) : k;
},
translate: function(_) {
return arguments.length ? (transform = scaleTranslate(k * sx, k * sy, tx = +_[0], ty = +_[1]), reset()) : [tx, ty];
},
reflectX: function(_) {
return arguments.length ? (transform = scaleTranslate(k * (sx = _ ? -1 : 1), k * sy, tx, ty), reset()) : sx < 0;
},
reflectY: function(_) {
return arguments.length ? (transform = scaleTranslate(k * sx, k * (sy = _ ? -1 : 1), tx, ty), reset()) : sy < 0;
},
fitExtent: function(extent, object) {
return fitExtent(projection, extent, object);
},
fitSize: function(size, object) {
return fitSize(projection, size, object);
}
};
}
function orthographicRaw(x, y) {
return [cos(y) * sin(x), sin(y)];
}
orthographicRaw.invert = azimuthalInvert(asin);
function orthographic() {
return projection(orthographicRaw)
.scale(249.5)
.clipAngle(90 + epsilon);
}
function stereographicRaw(x, y) {
var cy = cos(y), k = 1 + cos(x) * cy;
return [cy * sin(x) / k, sin(y) / k];
}
stereographicRaw.invert = azimuthalInvert(function(z) {
return 2 * atan(z);
});
function stereographic() {
return projection(stereographicRaw)
.scale(250)
.clipAngle(142);
}
function transverseMercatorRaw(lambda, phi) {
return [log(tan((halfPi + phi) / 2)), -lambda];
}
transverseMercatorRaw.invert = function(x, y) {
return [-y, 2 * atan(exp(x)) - halfPi];
};
function transverseMercator() {
var m = mercatorProjection(transverseMercatorRaw),
center = m.center,
rotate = m.rotate;
m.center = function(_) {
return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);
};
m.rotate = function(_) {
return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);
};
return rotate([0, 0, 90])
.scale(159.155);
}
exports.geoArea = area;
exports.geoBounds = bounds;
exports.geoCentroid = centroid;
exports.geoCircle = circle;
exports.geoClipExtent = extent;
exports.geoContains = contains;
exports.geoDistance = distance;
exports.geoGraticule = graticule;
exports.geoGraticule10 = graticule10;
exports.geoInterpolate = interpolate;
exports.geoLength = length;
exports.geoPath = index;
exports.geoAlbers = albers;
exports.geoAlbersUsa = albersUsa;
exports.geoAzimuthalEqualArea = azimuthalEqualArea;
exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw;
exports.geoAzimuthalEquidistant = azimuthalEquidistant;
exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw;
exports.geoConicConformal = conicConformal;
exports.geoConicConformalRaw = conicConformalRaw;
exports.geoConicEqualArea = conicEqualArea;
exports.geoConicEqualAreaRaw = conicEqualAreaRaw;
exports.geoConicEquidistant = conicEquidistant;
exports.geoConicEquidistantRaw = conicEquidistantRaw;
exports.geoEquirectangular = equirectangular;
exports.geoEquirectangularRaw = equirectangularRaw;
exports.geoGnomonic = gnomonic;
exports.geoGnomonicRaw = gnomonicRaw;
exports.geoIdentity = identity$1;
exports.geoProjection = projection;
exports.geoProjectionMutator = projectionMutator;
exports.geoMercator = mercator;
exports.geoMercatorRaw = mercatorRaw;
exports.geoOrthographic = orthographic;
exports.geoOrthographicRaw = orthographicRaw;
exports.geoStereographic = stereographic;
exports.geoStereographicRaw = stereographicRaw;
exports.geoTransverseMercator = transverseMercator;
exports.geoTransverseMercatorRaw = transverseMercatorRaw;
exports.geoRotation = rotation;
exports.geoStream = geoStream;
exports.geoTransform = transform;
Object.defineProperty(exports, '__esModule', { value: true });
}));
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<style>
.poly {
fill: #999;
fill-opacity: 0.4;
stroke: black;
stroke-width: .5px;
}
.graticule {
fill: none;
stroke: #777;
stroke-width: 0.3px;
stroke-opacity: 0.5;
}
.sphere {
fill: none;
stroke: black;
stroke-width: 2px;
}
.face {
fill: lightblue;
}
</style>
<title>Furuti 1</title>
</head>
<body>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="https://unpkg.com/d3-geo"></script>
<script src="https://unpkg.com/d3-geo-polygon"></script>
<script src="https://recifs.neocities.org/d3-geo-projection-clip-polyhedral.js"></script>
<script src="versor.js"></script>
<script>
var width = 960, height = 500;
var scaleProj = Math.min(width/2, height)/Math.PI;
// imports
var atan = Math.atan, sqrt1_2 = Math.sqrt(1/2), pi = Math.PI, degrees = 180 / Math.PI;
var d3Geo = d3, polyhedral = d3.geoPolyhedral;
var phi1 = atan(sqrt1_2) * degrees;
var cube = [
[0, phi1], [90, phi1], [180, phi1], [-90, phi1],
[0, -phi1], [90, -phi1], [180, -phi1], [-90, -phi1]
];
var cube$1 = [
[0, 3, 2, 1], // N
[0, 1, 5, 4],
[1, 2, 6, 5],
[2, 3, 7, 6],
[3, 0, 4, 7],
[4, 5, 6, 7] // S
].map(function(face) {
return face.map(function(i) {
return cube[i];
});
});
var f1 = function(faceProjection) {
// it is possible to pass a specific projection on each face
// by default is is a gnomonic projection centered on the face's centroid
// scale 1 by convention
faceProjection = faceProjection || function(face) {
var c = d3Geo.geoCentroid({type: "MultiPoint", coordinates: face});
return d3Geo.geoGnomonic().scale(1).translate([0, 0]).rotate([-c[0], -c[1]]);
};
// the faces from the cube each yield
// - face: its four vertices
// - contains: does this face contain a point?
// - project: local projection on this face
var faces = cube$1.map(function(face) {
var polygon = face.slice();
polygon.push(polygon[0]);
return {
face: face,
contains: function(lambda, phi) {
return d3Geo.geoContains({ type: "Polygon", coordinates: [ polygon ] },
[lambda * degrees, phi * degrees]);
},
project: faceProjection(face)
};
});
// Build a tree of the faces, starting with face 0 (North Pole)
// which has no parent (-1); the next four faces around the equator
// are attached to the north face (0); the face containing the South Pole
// is attached to South America (4)
[-1, 4, 5, 2, 0, 1].forEach(function(d, i) {
var node = faces[d];
node && (node.children || (node.children = [])).push(faces[i]);
});
// Polyhedral projection
var proj = polyhedral(faces[0], function(lambda, phi) {
for (var i = 0; i < faces.length; i++) {
if (faces[i].contains(lambda, phi)) return faces[i];
}
},
pi/2, // rotation of the root face in the projected (pixel) space
true // use clipPolygon
)
//.clipAngle(1) // no antimeridian clipping on the Sphere
.fitExtent([[20,20],[width-20, height-20]], {type:"Sphere"})
proj.faces = faces;
return proj;
};
d3.geoPolyhedralFuruti1 = f1;
var projection = d3.geoPolyhedralFuruti1()
.rotate([30,0])
var path = d3.geoPath().projection(projection);
var graticule = d3.geoGraticule();
var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);
svg.call(d3.drag().on("start", dragstarted).on("drag", dragged));
var movable = svg.append("g");
var countries = movable.append("g")
.attr("class", "poly");
d3.json('countries.geo.json', function(err, world) {
countries
.selectAll('path')
.data(world.features)
.enter()
.append('path')
.attr("d", path);
});
movable.selectAll(".graticule")
.data(graticule.lines)
.enter().append("path")
.attr("class", "graticule")
.attr("d", path);
var rot = projection.rotate();
projection.rotate([]);
svg.append("path")
.datum({type: "MultiPoint", coordinates: projection.faces.map(function(face) {
return d3.geoCentroid({type: "MultiPoint", coordinates: face.face});
})})
.attr("class", "face")
.attr("d", path);
projection.rotate(rot);
movable.append('path')
.datum({type: "Point", coordinates: [0,90]})
.attr('d', path);
movable.append('path')
.datum({type: "Point", coordinates: [0,-90]})
.attr('d', path);
svg.append('path')
.datum({type: "Sphere"})
.attr("class", "sphere")
.attr('d', path);
var render = function() {
movable.selectAll('path').attr('d', path);
},
v0, // Mouse position in Cartesian coordinates at start of drag gesture.
r0, // Projection rotation as Euler angles at start.
q0; // Projection rotation as versor at start.
function dragstarted() {
v0 = versor.cartesian(projection.invert(d3.mouse(this)));
r0 = projection.rotate();
q0 = versor(r0);
}
function dragged() {
var inv = projection.rotate(r0).invert(d3.mouse(this));
if (!inv || isNaN(inv[0])) return;
var v1 = versor.cartesian(inv),
q1 = versor.multiply(q0, versor.delta(v0, v1)),
r1 = versor.rotation(q1);
projection.rotate(r1);
render();
}
// projection.rotate([29, -11, 12]) && render()
</script>
</body>
</html>
// Version 0.0.0. Copyright 2017 Mike Bostock.
(function(global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.versor = factory());
}(this, (function() {'use strict';
var acos = Math.acos,
asin = Math.asin,
atan2 = Math.atan2,
cos = Math.cos,
max = Math.max,
min = Math.min,
PI = Math.PI,
sin = Math.sin,
sqrt = Math.sqrt,
radians = PI / 180,
degrees = 180 / PI;
// Returns the unit quaternion for the given Euler rotation angles [λ, φ, γ].
function versor(e) {
var l = e[0] / 2 * radians, sl = sin(l), cl = cos(l), // λ / 2
p = e[1] / 2 * radians, sp = sin(p), cp = cos(p), // φ / 2
g = e[2] / 2 * radians, sg = sin(g), cg = cos(g); // γ / 2
return [
cl * cp * cg + sl * sp * sg,
sl * cp * cg - cl * sp * sg,
cl * sp * cg + sl * cp * sg,
cl * cp * sg - sl * sp * cg
];
}
// Returns Cartesian coordinates [x, y, z] given spherical coordinates [λ, φ].
versor.cartesian = function(e) {
var l = e[0] * radians, p = e[1] * radians, cp = cos(p);
return [cp * cos(l), cp * sin(l), sin(p)];
};
// Returns the Euler rotation angles [λ, φ, γ] for the given quaternion.
versor.rotation = function(q) {
return [
atan2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2])) * degrees,
asin(max(-1, min(1, 2 * (q[0] * q[2] - q[3] * q[1])))) * degrees,
atan2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3])) * degrees
];
};
// Returns the quaternion to rotate between two cartesian points on the sphere.
versor.delta = function(v0, v1) {
var w = cross(v0, v1), l = sqrt(dot(w, w));
if (!l) return [1, 0, 0, 0];
var t = acos(max(-1, min(1, dot(v0, v1)))) / 2, s = sin(t); // t = θ / 2
return [cos(t), w[2] / l * s, -w[1] / l * s, w[0] / l * s];
};
// Returns the quaternion that represents q0 * q1.
versor.multiply = function(q0, q1) {
return [
q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] - q0[3] * q1[3],
q0[1] * q1[0] + q0[0] * q1[1] + q0[2] * q1[3] - q0[3] * q1[2],
q0[0] * q1[2] - q0[1] * q1[3] + q0[2] * q1[0] + q0[3] * q1[1],
q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1] + q0[3] * q1[0]
];
};
function cross(v0, v1) {
return [
v0[1] * v1[2] - v0[2] * v1[1],
v0[2] * v1[0] - v0[0] * v1[2],
v0[0] * v1[1] - v0[1] * v1[0]
];
}
function dot(v0, v1) {
return v0[0] * v1[0] + v0[1] * v1[1] + v0[2] * v1[2];
}
return versor;
})));
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment