Skip to content

Instantly share code, notes, and snippets.

@Fil
Last active Jun 25, 2016
Embed
What would you like to do?
Raster Reprojection of panorama images — inverse colors version
license: gpl-3.0
// Copyright (c) 2013, Jason Davies, http://www.jasondavies.com
// See LICENSE.txt for details.
(function() {
var radians = Math.PI / 180,
degrees = 180 / Math.PI;
// TODO make incremental rotate optional
d3.geo.zoom = function() {
var projection,
zoomPoint,
event = d3.dispatch("zoomstart", "zoom", "zoomend"),
zoom = d3.behavior.zoom()
.on("zoomstart", function() {
var mouse0 = d3.mouse(this),
rotate = quaternionFromEuler(projection.rotate()),
point = position(projection, mouse0);
if (point) zoomPoint = point;
zoomOn.call(zoom, "zoom", function() {
projection.scale(d3.event.scale);
var mouse1 = d3.mouse(this),
between = rotateBetween(zoomPoint, position(projection, mouse1));
projection.rotate(eulerFromQuaternion(rotate = between
? multiply(rotate, between)
: multiply(bank(projection, mouse0, mouse1), rotate)));
mouse0 = mouse1;
event.zoom.apply(this, arguments);
});
event.zoomstart.apply(this, arguments);
})
.on("zoomend", function() {
zoomOn.call(zoom, "zoom", null);
event.zoomend.apply(this, arguments);
}),
zoomOn = zoom.on;
zoom.projection = function(_) {
return arguments.length ? zoom.scale((projection = _).scale()) : projection;
};
return d3.rebind(zoom, event, "on");
};
function bank(projection, p0, p1) {
var t = projection.translate(),
angle = Math.atan2(p0[1] - t[1], p0[0] - t[0]) - Math.atan2(p1[1] - t[1], p1[0] - t[0]);
return [Math.cos(angle / 2), 0, 0, Math.sin(angle / 2)];
}
function position(projection, point) {
var t = projection.translate(),
spherical = projection.invert(point);
return spherical && isFinite(spherical[0]) && isFinite(spherical[1]) && cartesian(spherical);
}
function quaternionFromEuler(euler) {
var λ = .5 * euler[0] * radians,
φ = .5 * euler[1] * radians,
γ = .5 * euler[2] * radians,
sinλ = Math.sin(λ), cosλ = Math.cos(λ),
sinφ = Math.sin(φ), cosφ = Math.cos(φ),
sinγ = Math.sin(γ), cosγ = Math.cos(γ);
return [
cosλ * cosφ * cosγ + sinλ * sinφ * sinγ,
sinλ * cosφ * cosγ - cosλ * sinφ * sinγ,
cosλ * sinφ * cosγ + sinλ * cosφ * sinγ,
cosλ * cosφ * sinγ - sinλ * sinφ * cosγ
];
}
function multiply(a, b) {
var a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3],
b0 = b[0], b1 = b[1], b2 = b[2], b3 = b[3];
return [
a0 * b0 - a1 * b1 - a2 * b2 - a3 * b3,
a0 * b1 + a1 * b0 + a2 * b3 - a3 * b2,
a0 * b2 - a1 * b3 + a2 * b0 + a3 * b1,
a0 * b3 + a1 * b2 - a2 * b1 + a3 * b0
];
}
function rotateBetween(a, b) {
if (!a || !b) return;
var axis = cross(a, b),
norm = Math.sqrt(dot(axis, axis)),
halfγ = .5 * Math.acos(Math.max(-1, Math.min(1, dot(a, b)))),
k = Math.sin(halfγ) / norm;
return norm && [Math.cos(halfγ), axis[2] * k, -axis[1] * k, axis[0] * k];
}
function eulerFromQuaternion(q) {
return [
Math.atan2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2])) * degrees,
Math.asin(Math.max(-1, Math.min(1, 2 * (q[0] * q[2] - q[3] * q[1])))) * degrees,
Math.atan2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3])) * degrees
];
}
function cartesian(spherical) {
var λ = spherical[0] * radians,
φ = spherical[1] * radians,
cosφ = Math.cos(φ);
return [
cosφ * Math.cos(λ),
cosφ * Math.sin(λ),
Math.sin(φ)
];
}
function dot(a, b) {
for (var i = 0, n = a.length, s = 0; i < n; ++i) s += a[i] * b[i];
return s;
}
function cross(a, b) {
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0]
];
}
})();
View raw

(Sorry about that, but we can’t show files that are this big right now.)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment