Skip to content

Instantly share code, notes, and snippets.

@Fil
Last active Jun 22, 2017
Embed
What would you like to do?
La bombe de Kim-Jong-un [UNLISTED]
license: gpl-3.0
<!DOCTYPE html>
<meta charset="utf-8">
<body>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script src="https://d3js.org/topojson.v2.min.js"></script>
<script src="versor.js"></script>
<script>
var width = 960,
height = 500;
var radius = height / 2 - 5,
scale = radius,
velocity = .02;
var projection = d3.geoOrthographic()
.translate([width / 2, height / 2])
projection.rotate([180,-60,-40]).scale(250);
var canvas = d3.select("body").append("canvas")
.attr("width", width)
.attr("height", height);
var context = canvas.node().getContext("2d");
var path = d3.geoPath()
.projection(projection)
.context(context);
var init_scale = projection.scale(),
init_translate = projection.translate();
function zoomed() {
var t = d3.event.transform;
projection.scale(init_scale * t.k)
.translate(t.apply(init_translate));
}
canvas.call(d3.drag()
.on("start", dragstarted)
.on("drag", dragged));
var render = function() {},
v0, // Mouse position in Cartesian coordinates at start of drag gesture.
r0, // Projection rotation as Euler angles at start.
q0; // Projection rotation as versor at start.
function dragstarted() {
v0 = versor.cartesian(projection.invert(d3.mouse(this)));
r0 = projection.rotate();
q0 = versor(r0);
}
function dragged() {
var v1 = versor.cartesian(projection.rotate(r0).invert(d3.mouse(this))),
q1 = versor.multiply(q0, versor.delta(v0, v1)),
r1 = versor.rotation(q1);
projection.rotate(r1);
render();
}
d3.json("https://gist.githubusercontent.com/mbostock/4090846/raw/d534aba169207548a8a3d670c9c2cc719ff05c47/world-110m.json", function(error, world) {
if (error) throw error;
var land = topojson.feature(world, world.objects.land);
var plane = {
"type": "Feature",
"properties": {},
"geometry": {
"type": "LineString",
"coordinates": [
[
-121.28906250000001,
35.17380831799959
],
[
125,
39
]
]
}
}
render = function() {
context.clearRect(0, 0, width, height);
context.lineWidth = 1;
context.beginPath();
path(land);
context.fill();
var mile = 1.6 * 360 / (2 * Math.PI * 6371)
context.beginPath();
[180 * mile, 600 * mile, 800 * mile, 2200 * mile, 6200 * mile, 7200 * mile].map(d =>
path(d3.geoCircle().center([
125,
39
]).radius(d)()))
context.strokeStyle = 'red';
context.stroke();
context.beginPath();
path(plane);
context.lineWidth = 2;
context.strokeStyle = 'red';
context.stroke();
context.strokeStyle = 'black';
context.beginPath();
path({type:"Sphere"});
context.lineWidth = 2.5;
context.stroke();
};
render();
});
d3.select(self.frameElement).style("height", height + "px");
</script>
// Version 0.0.0. Copyright 2017 Mike Bostock.
(function(global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() :
typeof define === 'function' && define.amd ? define(factory) :
(global.versor = factory());
}(this, (function() {'use strict';
var acos = Math.acos,
asin = Math.asin,
atan2 = Math.atan2,
cos = Math.cos,
max = Math.max,
min = Math.min,
PI = Math.PI,
sin = Math.sin,
sqrt = Math.sqrt,
radians = PI / 180,
degrees = 180 / PI;
// Returns the unit quaternion for the given Euler rotation angles [λ, φ, γ].
function versor(e) {
var l = e[0] / 2 * radians, sl = sin(l), cl = cos(l), // λ / 2
p = e[1] / 2 * radians, sp = sin(p), cp = cos(p), // φ / 2
g = e[2] / 2 * radians, sg = sin(g), cg = cos(g); // γ / 2
return [
cl * cp * cg + sl * sp * sg,
sl * cp * cg - cl * sp * sg,
cl * sp * cg + sl * cp * sg,
cl * cp * sg - sl * sp * cg
];
}
// Returns Cartesian coordinates [x, y, z] given spherical coordinates [λ, φ].
versor.cartesian = function(e) {
var l = e[0] * radians, p = e[1] * radians;
return [cos(p) * cos(l), cos(p) * sin(l), sin(p)];
};
// Returns the Euler rotation angles [λ, φ, γ] for the given quaternion.
versor.rotation = function(q) {
return [
atan2(2 * (q[0] * q[1] + q[2] * q[3]), 1 - 2 * (q[1] * q[1] + q[2] * q[2])) * degrees,
asin(max(-1, min(1, 2 * (q[0] * q[2] - q[3] * q[1])))) * degrees,
atan2(2 * (q[0] * q[3] + q[1] * q[2]), 1 - 2 * (q[2] * q[2] + q[3] * q[3])) * degrees
];
};
// Returns the quaternion to rotate between two cartesian points on the sphere.
versor.delta = function(v0, v1) {
var w = cross(v0, v1), l = sqrt(dot(w, w));
if (!l) return [1, 0, 0, 0];
var t = acos(max(-1, min(1, dot(v0, v1)))) / 2, s = sin(t); // t = θ / 2
return [cos(t), w[2] / l * s, -w[1] / l * s, w[0] / l * s];
};
// Returns the quaternion that represents q0 * q1.
versor.multiply = function(q0, q1) {
return [
q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] - q0[3] * q1[3],
q0[1] * q1[0] + q0[0] * q1[1] + q0[2] * q1[3] - q0[3] * q1[2],
q0[0] * q1[2] - q0[1] * q1[3] + q0[2] * q1[0] + q0[3] * q1[1],
q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1] + q0[3] * q1[0]
];
};
function cross(v0, v1) {
return [
v0[1] * v1[2] - v0[2] * v1[1],
v0[2] * v1[0] - v0[0] * v1[2],
v0[0] * v1[1] - v0[1] * v1[0]
];
}
function dot(v0, v1) {
return v0[0] * v1[0] + v0[1] * v1[1] + v0[2] * v1[2];
}
return versor;
})));
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment