Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
Functional dependence of right y-axis on the left one in Matplotlib: how to get nice numbers on both axes
#!/usr/bin/python3
#-*- coding: utf-8 -*-
import numpy as np
import scipy.constants as sc
import matplotlib.pyplot as plt
import matplotlib
## Ordinary plotting code
fig = plt.figure(figsize=(7,4), dpi=96, facecolor='#eeeeee', tight_layout=1)
ax = fig.add_subplot(121)
#XXX ax2.axis['top'].major_ticklabels().set_visible(False)
#XXX ax2.axis['top'].major_ticklabels.set_visible(False)
#XXX TypeError: 'method' object is not subscriptable
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(1, 2, width_ratios=[.95, .05] )
ax, axR = plt.subplot(gs[0]), plt.subplot(gs[1])
print(ax)
#from mpl_toolkits.axes_grid1 import host_subplot
#ax = host_subplot(111)
#print(ax)
#hax = host_axes([0.1,0.1,0.8,0.8], figure=fig)
#hax.plot([0,1,2,3],[1,2,4,8])
#fig.savefig("some_file.png")
x = np.arange(1.6, 3.2, .1)
p = np.arange(2.0, 11.0, .1)
xs, ps = np.meshgrid(x, p)
zs = 1/(1 + (xs-3)**4 + (ps-5)**2)
contourf = ax.contourf(x,p,zs, cmap=matplotlib.cm.viridis)
#x = np.arange(1.6, 3.2, 0.1)
#ax.plot(x, 6+4*np.sin(x*np.pi*2))
ax.set_title('Cathodoluminescence spectra\n\n\n')
ax.set_xlabel('photon energy (eV)')
ax.set_xlim((1.6, 3.2))
ax.set_ylabel('electron acceleration voltage (kV)')
## Here we define the desired nonlinear dependence between dual y-axes:
def right_tick_function(p): return 10.46*(p**1.68)
ax2 = ax.twinx()
#ax2.axis['right'].major_ticklabels.set_visible(False)
ax2.set_ylim(np.array(ax.get_ylim()))
ax2.set_ylabel('electron penetration depth (nm)')
## If we wish nice round numbers on the secondary axis ticks...
right_ax_limits = sorted([right_tick_function(lim) for lim in ax.get_ylim()])
yticks2 = matplotlib.ticker.MaxNLocator(nbins=8, steps=[1,2,5]).tick_values(*right_ax_limits)
## ... we must give them correct positions. To do so, we need to numerically invert the tick values:
from scipy.optimize import brentq
def right_tick_function_inv(r, target_value=0):
return brentq(lambda r,q: right_tick_function(r) - target_value, ax.get_ylim()[0], ax.get_ylim()[1], 1e6)
valid_ytick2loc, valid_ytick2val = [], []
for ytick2 in yticks2:
try:
valid_ytick2loc.append(right_tick_function_inv(0, ytick2))
valid_ytick2val.append(ytick2)
except ValueError: ## (skip tick if the ticker.MaxNLocator gave invalid target_value to brentq optimization)
pass
## Finally, we set the positions and tick values
ax2.set_yticks(valid_ytick2loc)
from matplotlib.ticker import FixedFormatter
ax2.yaxis.set_major_formatter(FixedFormatter(["%g" % righttick for righttick in valid_ytick2val]))
## The same approach for the x-axes (relation between photon energy and vavelength)
def top_tick_function(p): return sc.h*sc.c/(p*sc.nano)/sc.eV
ax3 = ax.twiny()
#ax2.axis['top'].major_ticklabels.set_visible(False)
ax3.set_xlim(np.array(ax.get_xlim()))
ax3.set_xlabel('photon wavelength (nm)')
## If we wish nice round numbers on the secondary axis ticks...
print(ax.get_xlim())
print(top_tick_function(1.0))
print([top_tick_function(lim) for lim in ax.get_xlim()])
top_ax_limits = sorted([top_tick_function(lim) for lim in ax.get_xlim()])
print(top_ax_limits)
xticks2 = matplotlib.ticker.MaxNLocator(nbins=8, steps=[1,2,5]).tick_values(*top_ax_limits)
## ... we must give them correct positions. To do so, we need to numerically invert the tick values:
from scipy.optimize import brentq
def top_tick_function_inv(r, target_value=0):
return brentq(lambda r,q: top_tick_function(r) - target_value, ax.get_xlim()[0], ax.get_xlim()[1], 1e6)
valid_xtick2loc, valid_xtick2val = [], []
for xtick2 in xticks2:
try:
valid_xtick2loc.append(top_tick_function_inv(0, xtick2))
valid_xtick2val.append(xtick2)
except ValueError: ## (skip tick if the ticker.MaxNLocator gave invalid target_value to brentq optimization)
pass
## Finally, we set the positions and tick values
ax3.set_xticks(valid_xtick2loc)
from matplotlib.ticker import FixedFormatter
ax3.xaxis.set_major_formatter(FixedFormatter(["%g" % toptick for toptick in valid_xtick2val]))
#axR = fig.add_subplot(122)
plt.colorbar(contourf, extend='both', cax=axR, ax=[ax,ax2,ax3]) ## todo: overlaps the right axis , fraction=0.07
axR.set_ylabel('relative intensity (a. u.)')
#plt.colorbar(contourf, shrink=0.8, extend='both')
#from mpl_toolkits.axes_grid1.inset_locator import inset_axes
#axins = inset_axes(ax2,
#width="5%", # width = 10% of parent_bbox width
#height="50%", # height : 50%
#loc=3,
#bbox_to_anchor=(1, 1.1, 1, .5),
#bbox_transform=ax2.transAxes,
#borderpad=0,
#)
#plt.colorbar(contourf, cax=axins, ticks=[0, 1])
## Finish the plot
ax.legend(prop={'size':10}, loc='upper right')
ax.grid()
fig.savefig('with_round_numbers_testcbar.png')
@FilipDominec
Copy link
Author

FilipDominec commented Sep 30, 2016

The result:
with_round_numbers

@FilipDominec
Copy link
Author

FilipDominec commented Oct 3, 2016

Using colorbar needed a little change (commit 9cd1d18):
with_round_numbers_testcbar

@FilipDominec
Copy link
Author

FilipDominec commented Aug 2, 2018

For logarithmic x-axis

matplotlib.rc('font', size=12, family='serif')
for          x,  y,  n,              param,  label,  xlabel,  ylabel,  color in \
         zip(xs, ys, range(len(xs)), params, labels, xlabels, ylabels, colors):
    # x, y = x[~np.isnan(y)], y[~np.isnan(y)]        ## filter-out NaN points
    # convol = 2**-np.linspace(-2,2,25)**2; y = np.convolve(y,convol/np.sum(convol), mode='same') ## simple smoothing

    ax.plot(x, y, label="%s" % (label), color='r' if 'CU' in label else 'b' if 'CB' in label else 'g' if 'CG' in label else 'k', ls='-' if '49' in label else '--')
    #ax.plot(x, y, label="%s" % (label.split('.dat')[0]), color=colors[c%10], ls=['-','--'][int(c/10)]) 
ax.set_xlabel('spatial frequency (rad/m)')
ax.set_ylabel('spectral power (A.U.)')

ax.set_xscale('log')
ax.set_yscale('log')

#plot_title = sharedlabels[-4:] ## last few labels that are shared among all curves make a perfect title
#plot_title = sharedlabels[sharedlabels.index('LastCroppedLabel')+1:] ## optionally, use all labels after the chosen one 
#ax.set_title("Power spectral density") 







## The same approach for the x-axes (relation between photon energy and vavelength)
def top_tick_function(p): return 1e6*(np.pi*2)/p
ax3 = ax.twiny()
ax3.set_xscale('log') ## LOG!
#ax2.axis['top'].major_ticklabels.set_visible(False)
ax3.set_xlim(np.array(ax.get_xlim()))
ax3.set_xlabel('characteristic feature size (μm)')
## If we wish nice round numbers on the secondary axis ticks...
print(ax.get_xlim())
print(top_tick_function(1.0))
print([top_tick_function(lim) for lim in ax.get_xlim()])
top_ax_limits = ([top_tick_function(lim) for lim in ax.get_xlim()])
xticks2 = 10**(matplotlib.ticker.MaxNLocator(nbins=8, steps=[1]).tick_values(np.log10(top_ax_limits[1]), np.log10(top_ax_limits[0])))
print("top_ax_limits", top_ax_limits, "xticks2", xticks2)


## ... we must give them correct positions. To do so, we need to numerically invert the tick values:
from scipy.optimize import brentq
def top_tick_function_inv(r, target_value=0): 
    return (brentq(lambda r,q: top_tick_function(r) - target_value, ax.get_xlim()[1], ax.get_xlim()[0], 1e-6))
valid_xtick2loc, valid_xtick2val = [], []
for xtick2 in xticks2:
    try:
        valid_xtick2loc.append(top_tick_function_inv(0, xtick2))
        valid_xtick2val.append(xtick2)
    except ValueError:      ## (skip tick if the ticker.MaxNLocator gave invalid target_value to brentq optimization)
        pass
## Finally, we set the positions and tick values
print("valid_xtick2loc",valid_xtick2loc,"valid_xtick2val", valid_xtick2val)
ax3.set_xticks(valid_xtick2loc)
from matplotlib.ticker import FixedFormatter
ax3.xaxis.set_major_formatter(FixedFormatter(["%g" % toptick for toptick in valid_xtick2val]))






#ax.legend(loc='best', prop={'size':10})

#np.savetxt('output.dat', np.vstack([x,ys[0],ys[1]]).T, fmt="%.8g")
#tosave.append('_'.join(plot_title)+'.png') ## whole graph will be saved as PNG
#tosave.append('_'.join(plot_title)+'.pdf') ## whole graph will be saved as PDF

@FilipDominec
Copy link
Author

FilipDominec commented Nov 4, 2018

This has been suggested to extend matplotlib in the issue: matplotlib/matplotlib#12734

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment