Last active
January 7, 2022 15:55
-
-
Save FriesischScott/35eb27a6899e3556debd77242edf5ec5 to your computer and use it in GitHub Desktop.
Sample from a clayton copula
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
using Distributions | |
using SpecialFunctions | |
using Plots | |
""" | |
Generator | |
""" | |
function φ(x::Real, ϑ::Real) | |
return (1+x)^(−1/ϑ) | |
end | |
""" | |
Inverse Generator | |
""" | |
function φ⁻(x::Real, ϑ::Real) | |
return x^(-ϑ) - 1 | |
end | |
""" | |
First generator derivative | |
""" | |
function φ¹(x::Real, ϑ::Real) | |
α = 1/ϑ | |
return gamma(1 + α)/gamma(α) * (1 + x)^(-(1 + α)) | |
end | |
function sample(ϑ::Real, n::Int64) | |
Eₖ = rand(Exponential(1), 2, n) | |
M = rand(Gamma(1/ϑ, 1), 1, n) | |
return φ.(Eₖ ./ M, ϑ) | |
end | |
function rosenblatt(M::AbstractMatrix, ϑ::Real) | |
u1 = M[1, :] | |
u2 = M[2, :] | |
return [u1'; (φ¹.(φ⁻.(u1, ϑ) + φ⁻.(u2, ϑ), ϑ) ./ φ¹.(φ⁻.(u1, ϑ), ϑ))'] | |
end | |
function inverse_rosenblatt(U::AbstractMatrix, ϑ::Real) | |
u1 = U[1, :] | |
u2 = U[2, :] | |
return [u1'; ((u1.^(-ϑ) .* (u2.^(-ϑ/(ϑ + 1)) .- 1) .+ 1).^(-1/ϑ))'] | |
end | |
ϑ = 5 | |
M = sample(ϑ, 2500) | |
U = rosenblatt(M, ϑ) | |
M2 = inverse_rosenblatt(U, ϑ) | |
p1 = scatter(M[1, :], M[2, :], aspect_ratio = :equal, xlims=[0, 1], ylims=[0, 1], xlabel="Clayton", label=:none) | |
p2 = scatter(U[1, :], U[2, :], aspect_ratio = :equal, xlims=[0, 1], ylims=[0, 1], xlabel="Rosenblatt", label=:none) | |
p3 = scatter(M2[1, :], M2[2, :], aspect_ratio = :equal, xlims=[0, 1], ylims=[0, 1], xlabel="Inverse Rosenblatt", label=:none) | |
p = plot(p1, p2, p3) | |
savefig(p, "rosenblatt.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment