Skip to content

Instantly share code, notes, and snippets.

@FrozenWinters
Last active July 31, 2023 07:40
Show Gist options
  • Save FrozenWinters/614478c3d919f96691f8dad80e0d2f49 to your computer and use it in GitHub Desktop.
Save FrozenWinters/614478c3d919f96691f8dad80e0d2f49 to your computer and use it in GitHub Desktop.
Weak 1-Categories
{-# OPTIONS --cubical #-}
module 1cat where
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) public
open import Cubical.Core.Everything public
open import Cubical.Foundations.Everything public
private
variable
ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
-- Weak 1-Category
record WeakCat ℓ₁ ℓ₂ ℓ₃ : Type (lsuc (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)) where
infixl 20 _◾_
field
𝑜𝑏₀ : Type ℓ₁
𝑜𝑏₁ : 𝑜𝑏₀ → 𝑜𝑏₀ → Type ℓ₂
𝑜𝑏₂ : {x y z : 𝑜𝑏₀} → 𝑜𝑏₁ x y → 𝑜𝑏₁ x z → 𝑜𝑏₁ y z → Type ℓ₃
isProp-𝑜𝑏₂ : {x y z : 𝑜𝑏₀} (α : 𝑜𝑏₁ x y) (β : 𝑜𝑏₁ x z)
(γ : 𝑜𝑏₁ y z) → isProp (𝑜𝑏₂ α β γ)
-- inner horn filling says that 𝑜𝑏₂ behavess like equality
𝑜𝑏₂-𝑓𝑖𝑙𝑙ʸ : {x y z w : 𝑜𝑏₀} {α : 𝑜𝑏₁ x y} {β : 𝑜𝑏₁ x z} {γ : 𝑜𝑏₁ y z}
(𝑓₁ : 𝑜𝑏₂ α β γ) {δ : 𝑜𝑏₁ x w} {ε : 𝑜𝑏₁ y w} (𝑓₂ : 𝑜𝑏₂ α δ ε)
{ζ : 𝑜𝑏₁ z w} (𝑓₄ : 𝑜𝑏₂ γ ε ζ) → 𝑜𝑏₂ β δ ζ
𝑜𝑏₂-𝑓𝑖𝑙𝑙ᶻ : {x y z w : 𝑜𝑏₀} {α : 𝑜𝑏₁ x y} {β : 𝑜𝑏₁ x z} {γ : 𝑜𝑏₁ y z}
(𝑓₁ : 𝑜𝑏₂ α β γ) {δ : 𝑜𝑏₁ x w} {ε : 𝑜𝑏₁ y w}
{ζ : 𝑜𝑏₁ z w} (𝑓₃ : 𝑜𝑏₂ β δ ζ) (𝑓₄ : 𝑜𝑏₂ γ ε ζ) → 𝑜𝑏₂ α δ ε
_◾_ : {x y z : 𝑜𝑏₀} → 𝑜𝑏₁ x y → 𝑜𝑏₁ y z → 𝑜𝑏₁ x z
𝑓𝑖𝑙𝑙 : {x y z : 𝑜𝑏₀} (α : 𝑜𝑏₁ x y) (β : 𝑜𝑏₁ y z) → 𝑜𝑏₂ α (α ◾ β) β
𝑖𝑑 : (x : 𝑜𝑏₀) → 𝑜𝑏₁ x x
σ₁ : {x y : 𝑜𝑏₀} (α : 𝑜𝑏₁ x y) → 𝑜𝑏₂ α α (𝑖𝑑 y)
σ₂ : {x y : 𝑜𝑏₀} (α : 𝑜𝑏₁ x y) → 𝑜𝑏₂ (𝑖𝑑 x) α α
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment