Created
January 29, 2019 18:03
-
-
Save GJSissons/470a771ab2a73a79559ee15c716b5ceb to your computer and use it in GitHub Desktop.
Scheduling with GPUs - running RESNET
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
$ NGC/tensorflow/nvidia-examples/cnn$ python nvcnn.py \ | |
--model=resnet50 \ | |
--batch_size=64 \ | |
--num_gpus=2 \ | |
--fp16 | |
TensorFlow: 1.4.0 | |
This script: nvcnn.py v1.4 | |
Cmd line args: | |
--model=resnet50 | |
--batch_size=64 | |
--num_gpus=2 | |
--fp16 | |
Num images: Synthetic | |
Model: resnet50 | |
Batch size: 128 global | |
64 per device Devices: ['/gpu:0', '/gpu:1'] | |
Data format: NCHW | |
Data type: fp16 | |
Have NCCL: True | |
Using NCCL: True | |
... | |
2018-10-11 01:01:05.405568: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1045] Device peer to peer matrix | |
2018-10-11 01:01:05.405598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1051] DMA: 0 1 | |
2018-10-11 01:01:05.405604: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1061] 0: Y Y | |
2018-10-11 01:01:05.405609: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1061] 1: Y Y ... |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment