Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
require(bsts) # 0.7.1
data(iclaims) # bring the initial.claims data into scope
# --- model 1 ----
ss <- AddLocalLinearTrend(list(), initial.claims$iclaimsNSA)
ss <- AddSeasonal(ss, initial.claims$iclaimsNSA, nseasons = 52)
model1 <- bsts(initial.claims$iclaimsNSA,
state.specification = ss,
niter = 1000)
plot(model1, "comp")
plot(model1, "resid")
# forecasting
pred1 <- predict(model1, horizon = 12)
plot(pred1, plot.original = 156)
# ---- model 2 -----
# Fit a bsts model with expected model size 1, the default.
model2 <- bsts(iclaimsNSA ~ .,
state.specification = ss,
niter = 1000,
data = initial.claims)
plot(model2, "comp")
plot(model2, "coef")
plot(model2, "resid")
# ----- model 3 -----
# Fit a bsts model with expected model size 5, to include more coefficients.
model3 <- bsts(iclaimsNSA ~ .,
state.specification = ss,
niter = 1000,
data = initial.claims,
expected.model.size = 5) # Passed to SpikeSlabPrior.
plot(model3, "comp")
plot(model3, "coef")
plot(model3, "resid")
# ----- model 4 -----
ss4 <- AddAutoAr(ss, y = initial.claims$iclaimsNSA, lags=2)
model4 <- bsts(formula = iclaimsNSA ~ .,
state.specification = ss4, niter=1000, data=initial.claims)
plot(model4, "comp")
plot(model4, "coef")
plot(model4, "resid")
# ----- model 5 -----
ss5 <- AddDynamicRegression(ss4, formula=iclaimsNSA ~ ., data = initial.claims)
model5 <- bsts(formula = initial.claims$iclaimsNSA,
state.specification = ss5, niter=1000)
plot(model5, "comp")
plot(model5, "dyn")
plot(model5, "resid")
CompareBstsModels(list("Model 1" = model1,
"Model 2" = model2,
"Model 3" = model3,
"Model 4" = model4,
"Model 5" = model5),
colors = c("black", "red", "blue", "green", "purple"))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment