Last active
April 12, 2024 20:49
-
-
Save GiggleLiu/d5b66c9883f0c5df41a440589983ab99 to your computer and use it in GitHub Desktop.
Slicing + multi-GPU for contracting OMEinsum tensor contraction
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# requires OMEinsum version >= 0.7 | |
using Distributed | |
using OMEinsum, CUDA | |
println("find $(length(devices())) GPU devices") | |
const procs = addprocs(length(devices())-nprocs()+1) | |
const gpus = collect(devices()) | |
const process_device_map = Dict(zip(procs, gpus)) | |
@info process_device_map | |
@everywhere begin # these packages/functions should be accessible on all processes | |
using OMEinsum, CUDA | |
CUDA.allowscalar(false) | |
function do_work(f, jobs, results) # define work function everywhere | |
while true | |
job = take!(jobs) | |
@info "running $job on device $(Distributed.myid())" | |
res = f(job) | |
put!(results, res) | |
end | |
end | |
end | |
""" | |
multiprocess_run(func, inputs::AbstractVector) | |
Run `func` in parallel for a vector f `inputs`. | |
Returns a vector of results. | |
""" | |
function multiprocess_run(func, inputs::AbstractVector{T}) where T | |
n = length(inputs) | |
jobs = RemoteChannel(()->Channel{T}(n)); | |
results = RemoteChannel(()->Channel{Any}(n)); | |
for i in 1:n | |
put!(jobs, inputs[i]) | |
end | |
for p in workers() # start tasks on the workers to process requests in parallel | |
remote_do(do_work, p, func, jobs, results) | |
end | |
return Any[take!(results) for i=1:n] | |
end | |
""" | |
multigpu_einsum(code::SlicedEinsum, xs::AbstractArray...; size_info = nothing, process_device_map::Dict) | |
Multi-GPU contraction of a sliced einsum specified by `code`. | |
Each time, the program take the slice and upload them to a specific GPU device and do the contraction. | |
Other arguments are | |
* `xs` are input tensors allocated in **main memory**, | |
* `size_info` specifies extra size information, | |
* `process_device_map` is a map between processes and GPU devices. | |
""" | |
function multigpu_einsum(se::SlicedEinsum{LT,ET}, @nospecialize(xs::AbstractArray...); size_info = nothing, process_device_map::Dict) where {LT, ET} | |
length(se.slicing) == 0 && return se.eins(xs...; size_info=size_info) | |
size_dict = size_info===nothing ? Dict{OMEinsum.labeltype(se),Int}() : copy(size_info) | |
OMEinsum.get_size_dict!(se, xs, size_dict) | |
it = OMEinsum.SliceIterator(se, size_dict) | |
res = OMEinsum.get_output_array(xs, getindex.(Ref(size_dict), it.iyv)) | |
eins_sliced = OMEinsum.drop_slicedim(se.eins, se.slicing) | |
inputs = collect(enumerate([copy(x) for x in it])) | |
@info "start multiple process contraction!" | |
results = multiprocess_run(inputs) do (k, slicemap) | |
@info "computing slice $k/$(length(it))" | |
device!(process_device_map[Distributed.myid()]) | |
xsi = ntuple(i->CuArray(OMEinsum.take_slice(xs[i], it.ixsv[i], slicemap)), length(xs)) | |
Array(einsum(eins_sliced, xsi, it.size_dict_sliced)) | |
end | |
# accumulate results to `res` | |
for (resi, (k, slicemap)) in zip(results, inputs) | |
OMEinsum.fill_slice!(res, it.iyv, resi, slicemap) | |
end | |
return res | |
end | |
# A using case | |
# --------------------------------------- | |
using Yao, YaoToEinsum, Yao.EasyBuild | |
# I. create a quantum circuit | |
nbit = 20 | |
c = Yao.dispatch!(variational_circuit(nbit, 10), :random) | |
# II. convert a tensor network | |
# 1. specify input and output states as product states, | |
prod_state = Dict(zip(1:nbit, zeros(Int, nbit))) | |
# 2. convert the circuit to einsum code, | |
code, xs = YaoToEinsum.yao2einsum(c; initial_state=prod_state, final_state=prod_state) | |
# 3. optimize the contraction order | |
size_dict = OMEinsum.get_size_dict(getixsv(code), xs) | |
slicedcode = optimize_code(code, size_dict, TreeSA(; nslices=5), MergeGreedy()) | |
# III. do the contraction on multiple GPUs in parallel | |
@info "time/space complexity is $(timespace_complexity(slicedcode, size_dict))" | |
multigpu_einsum(slicedcode, xs...; process_device_map=process_device_map) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment