This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[10pt,a4paper]{article} % -*- coding: utf-8 -*- | |
\usepackage[a4paper,margin=1.5cm]{geometry} | |
\usepackage[english]{babel} | |
\usepackage[utf8]{inputenc} | |
\usepackage[T1]{fontenc} | |
\usepackage{times} | |
\usepackage{amsmath} | |
\usepackage{amsfonts} | |
\usepackage{amssymb} | |
\usepackage{amsthm} | |
% | |
\usepackage{mathrsfs} | |
%\usepackage{bm} | |
%\usepackage{stmaryrd} | |
\usepackage{wasysym} | |
\usepackage{url} | |
\usepackage{graphicx} | |
\usepackage[usenames,dvipsnames]{xcolor} | |
\usepackage{tikz} | |
\usetikzlibrary{matrix,arrows,decorations.markings} | |
%\usepackage{hyperref} | |
% | |
% | |
% | |
\mathchardef\emdash="07C\relax | |
\mathchardef\hyphen="02D\relax | |
\DeclareUnicodeCharacter{00A0}{~} | |
% | |
% | |
% | |
\newcommand{\dynkinradius}{.08cm} | |
\newcommand{\dynkinstep}{.70cm} | |
\newcommand{\dynkinXsize}{1.5pt} | |
\newcommand{\dynkindoublesep}{1pt} | |
\newcommand{\dynkinarrowsize}{.12cm} | |
\newcommand{\dynkinshortendim}{1pt} | |
\newcommand{\dynkindot}[2]{\begin{scope}[shift={(\dynkinstep*#1,\dynkinstep*#2)}]\fill[fill=white,draw=black] (0,0) circle (\dynkinradius);\end{scope}} | |
\newcommand{\dynkinline}[3]{% | |
\begin{scope}[shift={(\dynkinstep*#1,\dynkinstep*#2)},rotate=#3]% | |
\draw (0,0) -- (\dynkinstep,0);% | |
\end{scope}% | |
} | |
\newcommand{\dynkinanyline}[4]{% | |
\draw (\dynkinstep*#1,\dynkinstep*#2) -- (\dynkinstep*#3,\dynkinstep*#4);% | |
} | |
\newcommand{\dynkindots}[3]{% | |
\begin{scope}[shift={(\dynkinstep*#1,\dynkinstep*#2)},rotate=#3]% | |
\draw[dotted] (0,0) -- (\dynkinstep,0);% | |
\end{scope}% | |
} | |
\newcommand{\dynkindoubleline}[3]{% | |
\begin{scope}[shift={(\dynkinstep*#1,\dynkinstep*#2)},rotate=#3]% | |
\draw (0,\dynkindoublesep) -- (\dynkinstep,\dynkindoublesep);% | |
\draw (0,-\dynkindoublesep) -- (\dynkinstep,-\dynkindoublesep);% | |
\draw (\dynkinstep*0.5-\dynkinarrowsize*0.5,-\dynkinarrowsize) -- (\dynkinstep*0.5+\dynkinarrowsize*0.5,0) -- (\dynkinstep*0.5-\dynkinarrowsize*0.5,\dynkinarrowsize);% | |
\end{scope}% | |
} | |
\newcommand{\dynkintripleline}[3]{% | |
\begin{scope}[shift={(\dynkinstep*#1,\dynkinstep*#2)},rotate=#3]% | |
\draw (0,0) -- (\dynkinstep,0);% | |
\draw (0,\dynkindoublesep*1.5) -- (\dynkinstep,\dynkindoublesep*1.5);% | |
\draw (0,-\dynkindoublesep*1.5) -- (\dynkinstep,-\dynkindoublesep*1.5);% | |
\draw (\dynkinstep*0.5-\dynkinarrowsize*0.5,-\dynkinarrowsize) -- (\dynkinstep*0.5+\dynkinarrowsize*0.5,0) -- (\dynkinstep*0.5-\dynkinarrowsize*0.5,\dynkinarrowsize);% | |
\end{scope}% | |
} | |
\newcommand{\dynkinquadrupleline}[3]{% | |
\begin{scope}[shift={(\dynkinstep*#1,\dynkinstep*#2)},rotate=#3]% | |
\draw (0,\dynkindoublesep*0.5) -- (\dynkinstep,\dynkindoublesep*0.5);% | |
\draw (0,-\dynkindoublesep*0.5) -- (\dynkinstep,-\dynkindoublesep*0.5);% | |
\draw (0,\dynkindoublesep*1.5) -- (\dynkinstep,\dynkindoublesep*1.5);% | |
\draw (0,-\dynkindoublesep*1.5) -- (\dynkinstep,-\dynkindoublesep*1.5);% | |
\draw (\dynkinstep*0.5-\dynkinarrowsize*0.5,-\dynkinarrowsize) -- (\dynkinstep*0.5+\dynkinarrowsize*0.5,0) -- (\dynkinstep*0.5-\dynkinarrowsize*0.5,\dynkinarrowsize);% | |
\end{scope}% | |
} | |
\newcommand{\dynkintextnorth}[3]{% | |
\node[anchor=south] at (\dynkinstep*#1,\dynkinstep*#2) {\footnotesize #3};% | |
} | |
\newcommand{\dynkintextsouth}[3]{% | |
\node[anchor=north] at (\dynkinstep*#1,\dynkinstep*#2) {\footnotesize #3};% | |
} | |
\newcommand{\dynkintextwest}[3]{% | |
\node[anchor=east] at (\dynkinstep*#1,\dynkinstep*#2) {\footnotesize #3};% | |
} | |
\newcommand{\dynkintexteast}[3]{% | |
\node[anchor=west] at (\dynkinstep*#1,\dynkinstep*#2) {\footnotesize #3};% | |
} | |
%\newcommand{\dynkindoubleline}[4]{ | |
%\draw[postaction={decorate},decoration={markings,mark=at position 0.6 with {\arrow{>}}}] (\dynkinstep*#1,\dynkinstep*#2) -- (\dynkinstep*#3,\dynkinstep*#4); | |
%} | |
%\newcommand{\dynkintripleline}[4]{\draw[postaction={decorate},decoration={markings,mark=at position 0.6 with {\arrow{>}}}] (\dynkinstep*#1,\dynkinstep*#2) -- (\dynkinstep*#3,\dynkinstep*#4);} | |
\newenvironment{dynkin}{\begin{tikzpicture}[baseline=-\dynkinradius]}{\end{tikzpicture}} | |
% | |
% | |
% | |
\begin{document} | |
\pretolerance=8000 | |
\tolerance=50000 | |
\pagestyle{empty} | |
\newcommand{\highstrut}{\vrule height 15pt depth 2pt width 0pt} | |
\begin{tabular}{ll} | |
\begin{tabular}{|r|l|} | |
\hline | |
\highstrut$\widetilde{A_1}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkindoubleline{-1}{0}{0}; | |
\dynkindoubleline{0}{0}{180}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{1}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{A_n}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkinline{2}{0}{0}; | |
\dynkindots{3}{0}{0}; | |
\dynkinline{4}{0}{0}; | |
\dynkinline{5}{0}{0}; | |
\dynkinanyline{0}{0}{3}{-1}; | |
\dynkinanyline{6}{0}{3}{-1}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkindot{6}{0}; | |
\dynkindot{3}{-1}; | |
\dynkintextnorth{0}{0}{1}; | |
\dynkintextnorth{1}{0}{1}; | |
\dynkintextnorth{2}{0}{1}; | |
\dynkintextnorth{3}{0}{1}; | |
\dynkintextnorth{4}{0}{1}; | |
\dynkintextnorth{5}{0}{1}; | |
\dynkintextnorth{6}{0}{1}; | |
\dynkintextsouth{3}{-1}{1}; | |
\end{dynkin} | |
\\($n+1$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{B_n}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{120}; | |
\dynkinline{0}{0}{-120}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindots{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkindoubleline{4}{0}{0}; | |
\dynkindot{-0.5}{0.866025404}; | |
\dynkindot{-0.5}{-0.866025404}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkintextwest{-0.5}{0.866025404}{1}; | |
\dynkintextwest{-0.5}{-0.866025404}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{2}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{2}; | |
\dynkintextnorth{5}{0}{2}; | |
\end{dynkin} | |
\\($n+1$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{C_n}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkindoubleline{-1}{0}{0}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindots{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkindoubleline{5}{0}{180}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{2}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{2}; | |
\dynkintextnorth{5}{0}{1}; | |
\end{dynkin} | |
\\($n+1$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{D_n}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{120}; | |
\dynkinline{0}{0}{-120}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindots{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkinline{4}{0}{60}; | |
\dynkinline{4}{0}{-60}; | |
\dynkindot{-0.5}{0.866025404}; | |
\dynkindot{-0.5}{-0.866025404}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{4.5}{0.866025404}; | |
\dynkindot{4.5}{-0.866025404}; | |
\dynkintextwest{-0.5}{0.866025404}{1}; | |
\dynkintextwest{-0.5}{-0.866025404}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{2}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{2}; | |
\dynkintexteast{4.5}{0.866025404}{1}; | |
\dynkintexteast{4.5}{-0.866025404}{1}; | |
\end{dynkin} | |
\\($n+1$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{G_2}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{-1}{0}{0}; | |
\dynkintripleline{0}{0}{0}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{3}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{F_4}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{-1}{0}{0}; | |
\dynkinline{0}{0}{0}; | |
\dynkindoubleline{1}{0}{0}; | |
\dynkinline{2}{0}{0}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{3}; | |
\dynkintextnorth{2}{0}{4}; | |
\dynkintextnorth{3}{0}{2}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{E_6}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkinline{2}{0}{0}; | |
\dynkinline{2}{0}{-90}; | |
\dynkinline{2}{-1}{-90}; | |
\dynkinline{3}{0}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{2}{-1}; | |
\dynkindot{2}{-2}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkintextnorth{0}{0}{1}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{3}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{1}; | |
\dynkintexteast{2}{-1}{2}; | |
\dynkintexteast{2}{-2}{1}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{E_7}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{-1}{0}{0}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkinline{2}{0}{0}; | |
\dynkinline{2}{0}{-90}; | |
\dynkinline{3}{0}{0}; | |
\dynkinline{4}{0}{0}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{2}{-1}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{3}; | |
\dynkintextnorth{2}{0}{4}; | |
\dynkintextnorth{3}{0}{3}; | |
\dynkintextnorth{4}{0}{2}; | |
\dynkintextnorth{5}{0}{1}; | |
\dynkintexteast{2}{-1}{2}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{E_8}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkinline{2}{0}{0}; | |
\dynkinline{2}{0}{-90}; | |
\dynkinline{3}{0}{0}; | |
\dynkinline{4}{0}{0}; | |
\dynkinline{5}{0}{0}; | |
\dynkinline{6}{0}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{2}{-1}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkindot{6}{0}; | |
\dynkindot{7}{0}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{4}; | |
\dynkintextnorth{2}{0}{6}; | |
\dynkintextnorth{3}{0}{5}; | |
\dynkintextnorth{4}{0}{4}; | |
\dynkintextnorth{5}{0}{3}; | |
\dynkintextnorth{6}{0}{2}; | |
\dynkintextnorth{7}{0}{1}; | |
\dynkintexteast{2}{-1}{3}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\end{tabular} | |
& | |
\begin{tabular}{|r|l|} | |
\hline | |
\highstrut$\widetilde{^2A_2}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinquadrupleline{-1}{0}{0}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{^2A_n}$\footnotesize{~($n$~odd)}& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{120}; | |
\dynkinline{0}{0}{-120}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindots{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkindoubleline{5}{0}{180}; | |
\dynkindot{-0.5}{0.866025404}; | |
\dynkindot{-0.5}{-0.866025404}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkintextwest{-0.5}{0.866025404}{1}; | |
\dynkintextwest{-0.5}{-0.866025404}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{2}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{2}; | |
\dynkintextnorth{5}{0}{1}; | |
\end{dynkin} | |
\\($(n+3)/2$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{^2A_n}$\footnotesize{~($n$~even)}& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkindoubleline{-1}{0}{0}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindots{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkindoubleline{4}{0}{0}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{2}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{2}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{2}; | |
\dynkintextnorth{5}{0}{2}; | |
\end{dynkin} | |
\\($(n+2)/2$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{^2D_n}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkindoubleline{0}{0}{180}; | |
\dynkinline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindots{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkindoubleline{4}{0}{0}; | |
\dynkindot{-1}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkindot{5}{0}; | |
\dynkintextnorth{-1}{0}{1}; | |
\dynkintextnorth{0}{0}{1}; | |
\dynkintextnorth{1}{0}{1}; | |
\dynkintextnorth{2}{0}{1}; | |
\dynkintextnorth{3}{0}{1}; | |
\dynkintextnorth{4}{0}{1}; | |
\dynkintextnorth{5}{0}{1}; | |
\end{dynkin} | |
\\($n$~nodes)\\ | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{^3D_4}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkintripleline{0}{0}{0}; | |
\dynkinline{1}{0}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkintextnorth{0}{0}{1}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{1}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\highstrut$\widetilde{^2E_6}$& | |
\begin{tabular}{l} | |
\begin{dynkin} | |
\dynkinline{0}{0}{0}; | |
\dynkindoubleline{1}{0}{0}; | |
\dynkinline{2}{0}{0}; | |
\dynkinline{3}{0}{0}; | |
\dynkindot{0}{0}; | |
\dynkindot{1}{0}; | |
\dynkindot{2}{0}; | |
\dynkindot{3}{0}; | |
\dynkindot{4}{0}; | |
\dynkintextnorth{0}{0}{1}; | |
\dynkintextnorth{1}{0}{2}; | |
\dynkintextnorth{2}{0}{3}; | |
\dynkintextnorth{3}{0}{2}; | |
\dynkintextnorth{4}{0}{1}; | |
\end{dynkin} | |
\end{tabular} | |
\\\hline | |
\end{tabular} | |
\\ | |
\end{tabular} | |
\bigskip | |
The coefficients are such that the coefficient of each node $n$ is | |
\emph{one half the sum of the coefficients of all adjacent nodes $n'$} | |
with multiple edges counting with the corresponding multiplicity | |
provided the arrow points from $n'$ to $n$. (There is a unique way, | |
up to scalar multiples, of assigning such coefficients, and it is done | |
in the way that they are integers with gcd equal to $1$.) | |
The left column shows the (untwisted) extended Dynkin diagram. Nodes | |
with coefficient $1$ are called “tips”. Symmetries of the diagram act | |
transitively on the tips. Removing a (single) tip gives the ordinary | |
(= unextended) Dynkin diagram; and the node(s) to which the tip is | |
attached reveal the adjoint representation among the fundamental | |
representations (or, in the case of $A_n$, tensor product of | |
fundamentals). The number of tips equals the order of the center of | |
the semisimple group. | |
For the meaning of the right column (twisted diagrams, or Dynkin-Kac | |
diagrams) and why they are labeled that way, see Reeder, “Torsion | |
automorphisms of simple Lie algebras”, \textit{Enseign. Math.} | |
\textbf{56} (2010) 3–47. Note that it is \emph{not} obtained by | |
simply folding the untwisted Dynkin diagram (it is, roughtly speaking, | |
obtained by folding the unextended untwisted Dynkin diagram, | |
\emph{reversing} its multiple arrows, then extending it by adding one | |
more node). | |
Borel–de~Siebenthal theory describes how to compute maximal connected | |
subgroups of maximal rank as centralizers. | |
Over the reals, applying this to classify Cartan involutions gives a | |
description of all noncompact real forms of the complex Lie groups, | |
through their maximal compact subgroups (up to isogeny), which can be | |
summarized as follows: to describe all real forms of a complex simple | |
Lie group $G$, | |
\begin{itemize}\setlength\itemsep{0pt} | |
\item either remove a single node with coefficient $2$ from the | |
diagram labeled $\widetilde{G}$ in the left column (to obtain the | |
unextended Dynkin diagram of the maximal compact subgroup), | |
\item or remove two nodes with coefficient $1$ each (i.e., tips) from | |
the diagram labeled $\widetilde{G}$ in the left column (again giving | |
the unextended Dynkin diagram of the maximal compact subgroup), and | |
understand that the maximal compact subgroup is to be multiplied | |
by $\textbf{T}$ (the unit circle), | |
\item or remove a single node with coefficient $1$ from the diagram | |
labeled $\widetilde{^2 G}$ in the right column, if there is such | |
(and again, giving the unextended Dynkin diagram of the maximal | |
compact subgroup). | |
\end{itemize} | |
For example, we can read from the diagrams labeled $\widetilde{E_6}$ | |
and $\widetilde{^2 E_6}$ above that there are five noncompact real | |
forms of $E_6$, having maximal compact subgroups (up to isogeny): | |
$A_5\times A_1$ (first case), $D_5 \times \mathbf{T}$ (second case), | |
$F_4$ and $C_4$ (third case). | |
(Vogan diagrams are very closely related to this. \emph{Beware:} the | |
very confusingly similar-looking Satake(–Tits) diagrams, however, are | |
\emph{not} related: they are in the line of Galois cohomology, | |
describing real forms in relation to the split real form rather than, | |
as in the above, to the compact form.) | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment