Skip to content

Instantly share code, notes, and snippets.

@HactarCE
Last active Jun 23, 2022
Embed
What would you like to do?
Factorio blueprint book list

This is just a collection of useful Factorio blueprint books I have either found online or made myself. (Links are included where applicable.) I recommend using this Chrome extension to quickly copy these into Factorio.

All blueprints use blue belts unless stated otherwise.

See also:

Belts

8 blueprints

Each book contains a 4-4 balancer, straight belt segments of widths 2, 4, and 8, as well as belt curves of widths 4 and 8.

Blue

0eNrtXdtu4zYQ/ZWFnu2CHF4k+XH3I/pQFEGSFVKhiW3YcrDBIv9eOY7XaTMmqdFhLq6fEsvR8ZAiZ4ZnzsQ/i6vbTbNctfPu4mqx+LuY/TxcWRezP1683L7XXi/mu8vr9mZ+ebu91j0sm2JWtF1zV0yK+eXd9lXzY7lq1utpt7qcr5eLVTe9am674nFStPPvzY9iph8nySDr5W3bdc3qxe3E3n7frrpNf+UXwu4vpvbFnUZ8p338c1I0867t2mY3CU8vHi7mm7ur3rqZPm75pFgu1v2Ni/n2Q3uwqf7NTYqH/hf7uLXoP1AUm8nXgLSDMxycGWCZChpmXyFt+tlZ3awW/c8jpqm9ZZP9dC823XKzXQ6v8J0Af6oHfIAfPLM6MLGl+DkRB1cNh9N7uEnxvV0117v3PANeDwZXLDYx2FoNWfu/lpjmJkFr6SNi51SL95JKGLeRgvNDt8JnpFg0J11OPJwX73192Jnt/MjG1KV86yfhV8JlxT+pWoim4huVlHRRsRuARHGJdXdEkm3OWyWJSbxRVvgoerv6iP6Uc8xe5DmT4r5ZrXdPx1ryzmrl/CEPUFsb3jQtOpad0L8yosHZSWpsMaAMRQfyCiMNTolZSiIaO1Q3IipDMpA9nMakIAqagaiAbbV0qLzPVdh4pqHBloRo/FCNdKgEyiue4QwosVAB47wQzRzz37eX/W39NXq6/cu6h2tv/op7dv1hPLvN7NkJ69kph2c3GM8ejGIOG8U8NIqV0nOQxXj20MTV4kUCc+2hg7TW2CAr9u5HzDPQMCt370fMc9gTuJhz4UdbYs/clZwfwBwMQ0kKKWgKRRqZpRAhMygy4iM18lTIj9RJFwkfYj32hF9Cs0WqkOkd1fL0jskmFDSTNVrOHTBoJESLZrJ2YCZLb57JDgQhBMib1nLS85Eoa0zY5MmgqgaEpFISsJ08C4pij2FZouClPD+KYlfyZCmKXWMzJ4XNnDSW3iEs+WSg/I680BOvSTlMaYKQqfyrxZkU7643q/vmy7ffo/HOfM54JxcsDPz4t4t3HhzvouAGFKA8lG1KAEdFP58z+nlk9NNQXiqL5IEv/Xto9EuY4nevTUyTq9XyUgU2Mmook6WhRJZKPN99Swh19sMUKarMRQqLLVJYaJEiWEIRxA2DrVIYaJUiWOApoUWPClouqrH1HXkFmjdP4OZDy07g50MPVhtoAUpbaAVK4NpDe0zg20N7TFKksKGiRyXGI1SZwgTsI3ABjzSWIxOUKvbjJVCxIlQQJAstCBJYskRgzZKgYBF8uJUUDlWxCE2eoGQRmjtBySK0cQU1i9C+MEbqp3jrrBSOPQgZcSbFw3kpHD9YbGHbYAvbpkYeSa1CHvMsljq2WOrYGqF74tGsEI0fqkMW3a1HHrdtKXRNPFolRONHWksdE3/CU1I41gs7LXVMPBxB5QrOQMUUTnza5uGg4lbnkeoHhxV6uAoqpnC10DPxMnmFlGZ4LZdmMGjSgzaPZoSeiUezQjSKkZTVQBGKO4tQgpyp/UScabQybEZwlBlEKAfGMoMK5cD95pChmGTwcgS7mUGHopKxaznJK2lFTudo4+hazonGwUfwtzlaldOX+RhuN4egJd21yHnfFMtPkAUmMAtswCywAbPAA2SdWYWYlFOJSTmlmJRVi0k5xZhjmOU4eC1nweP5mMqoI5Vz0AnTImekUyw/OX46xAB7LANcYtnzCsueYxuvxAR1gorWQruw3p+tTpYPj+Cu49hOzLLHsWGyZyDLnTInlZhBj2OfGfA3ZcANlgGn/xsDbrAMOIEZ8DiTpKCcM7Tx0ROUXTdiBjs+i1bMtQ9qYHnmyhP0vP60Wleqz9C6wtPaHsqZmxytK0dobQ/VINscvStHaG0P1SebHM0rKnlWKhQf76FSZpOlmUWlg2sQre0xnHn6nMsV0CnTYkGEvP/Y6ui4reUIVjuOXo3g4OPoddbGyTF8ehxd5+zLHKG4TkHP2fZJWfs+KWfjJ2Xt/JTrtgmr29ZY3bbG6rYTFsGpqrgTGkblnHlKN7jL2PIr13ungJcZ+4nHcO1x8JNUhoO59oQVcNaJn3XiL2nt+ClcySn4OLjGUt4kJ+Tjtp759DOfHue8FVSffooM+vsoylP+7UXJQU2fvrTqgPe1f+PLs0WXvb+4by72X9pwBP/xH8z6RpQ=

Red

0eNrtndtS40YQhl9lS9cmNdNzkOTbfYPc5CKVosyiEFXApmyZCrXFu0fGYc2G8Rx+fnEqrlgb9NMjj7p7vu5mv1dnl9vuet0vh9Oz1ervav798M6mmv/+6OXue/231XL/9qa/WC4ud+8Nt9ddNa/6obuqZtVycbV79ediM5wM68Vyc71aDydn3eVQ3c2qfnne/VPN9d0sT2FzfdkPQ7d+dK0Er73p18N2fOfH5fufOLGPrjTwlfbuj1nVLYd+6Lv98u9f3J4ut1dno3VzfcTsWXW92oxXrZa73zgqnehf3Ky6Hf9h73bm/E9HojfwqZrstUxIy+TapKIm2Z9ltuMdWV+sV+PXY0bpB6NmD/d4tR2ut7sN8ETdlaqrAnFfdjd15GbW2AcjIa2mUEs/aM2q837dfdt/zweU2zJlFRSWgLBW2Rv8x27SobVrDX0mwfuosadFZSzXQMrhFaMPkD5s8X55ZIdr8PnJ0vbIblLBe1BDWz6s1SA7KPzRtIiUSj+HoqD9E9zlUh5bgh5MpPgRDttTHFfC5ljk3o8WjZH4PlGYP8pMZtVNt97sPw5rxTurlfOH+K12BrxcInMspZCf0piylCI3ShhGWqEj+YCBYkxOapEpFVyhw1YYdAsejc/PzxsUL21QkRW20ArDPlQRXbvmRRxBpMIrNNAKTU4ykKkVTn8cssSwFBTqzTFnfLkYLxvfk/vLv2xGuf7ir7Sb1m/DTdsp3bQQ3bTQ3bThuWlLdNOW6KYZx7uYWQ3v0Nli+4Hjp2MnWMxRHzFMeCESdNVHxCwxpyh11lHDMK6hKSez2Em3Ac/jhKNZJH6XHsYiWYVoXrIjwkvCxGAHWdq5LGyVg/ZDODR64om6BrOdgFRDy8Gk5aWGRvFSVqPBg3pAShCpZJppC9NMedk0s0RBnq3wckWOZ6UjgmYjSXZrKHRdaHlwhrADs6mksEczmKRyDaYzSeEGzG2Swi0x0VHEREfzQIUQUYwhIiKLJWDpMo0j8HuhZdhPNmFW2Pr6WzJgmfcWsPBqfMnvnipgZRRaBQ2FSWXDCDL++dGroOrsKFHGPz9+qWzhmneCbhiR0NMCVkZ1EgxfGbdVa2LUEF4xwPBirAVjbPreOV5d24M4AKmt2rcB7Zspob0lQnvLg/bRYoIlFhNKPbwhYnvDw/aKh+0VEdvHqglgeTVsWKl7jm2JUvcc26ra8Gom2vJKOaUuObZVS31y7BEqhvY2VgFoMDFhYPs4I2KWrIrRvYmJCSZGgfexAphYXmFOHLGYJp5YTCsF+NF90UBamoHwY2ssRfixm1+K8GO7tZThxx4jYyDXE7bLQlrB84JxPFZoPI8VmhpyO2GtBtIKr7GlHdWsoh3VLLFYa4nFWmsQjxM2yyJSYat4x0/radVoWyPeJmxVg0iFrWohXxNuXFWQVtCfOs0ruDvhFdydgXxNWMtCWuE18joonaf1FLia1wjgGl4jgGsRZxM0yytEKmiV12BPQUBKaJ0O3iDOJmyVRaQk1TTRFDZNuM+miRBqtO8CNdKbJky2Mowh2V0TB1hKb5sw2co1SBnZbRMH5kjvm9DZNmsF4tu0sgYhYFpZQIRKnznN384gEjX8Box8twHi0hybP+FpOe/UTN45Xe8fiFIzusdksuY/HLOmpafr/wMRbI7yZB2AIJ7N6TlVIJBOK2sQt6aVBYTCaWVDRLGWiIgdEcV6IoqtiSi2IaLrlghQFRGg8lpmrUzUmmrNRK2pGPLNEXYYS04Lc5ppWXA451Y0GHVOC38scCxEcGw+MjiOYlVPxL28yTbHm2zDwLFhgOMYon09cPzw9KRBlMHYb1rYYny6aMChyR5w8B9lwKF52wMOYSDseajZ0AccjgBhxoSDyVZ2FCBMmHA4ArE9sTc2KcxBzX4y1Ox5qNnwRx7yt7MWBsT2zH7btLJlQGz/Vntx01bWKA9OSzcot05Lt9MNysEYOi0NQ+m09HTzfTLZgJ9MN+EnbqpBPBKi9gREHe04bogdxy2v4xjuEk6naR+rZzhjAA9GzWllN9UoJ4yh08oolE4rN1ONn75iH3L+nKclzsha3l+5xIC1ZnQlx8oGjtcr7Xm90h+pKzlnwF+B2DqtrEHAm1Z+zf7lGNL+xNDvCkO/zf5l4fUvm3fdv/w1gy7XIamT+//u5qD3a3f+5T+DFqNbuelOH/52/BH5u38BeRqUVQ==

Yellow

0eNrtnd1u4zYQhV9loWu7IIc/kn27D1EURRE4u0Iq1LENW85usMi7V3aaOG3GJEc8dDZorhLL4TFJUTPDb4bOj+p6uW83227VX12v139V8x+nK7tq/vuLl4f3ui/r1ePlXXezWiwP1/r7TVvNq65vb6tJtVrcHl7128Vqt1lv++l1u+yrh0nVrb6236u5fphEG+82y67v2+2LZsQ2u+u2/X64cmp5/IupfdHSjG5pH/6YVO2q7/qufRz08cX91Wp/ez30bq5f93hSbda7ocF6dfiwQWSqf3GT6n74xT4cevIfCTo3Y6+F6FHGcDImoScq2BH7rLAfRr+92a6Hn2e6op56MnmazvW+3+wPt/mVrhPoTrVA2CfPnA5MXC2ef+JkmpSV8HwDNCcxS+6JeurIpPrabdsvj28Ro6lV+vA0q+o5VS2denbOtHjts/OmjVRGJUyc/HHQp0Xbrc6sWT3iaUjS9dL7rNiprIVrkFdphMtDJSy5mVCTXSqkJAabtRekpauNXftEAoPNd8RITA7fCSuc1EFl8IhHXz1/ERdMqrt2u3u8d9aSd1Yr509+VB0++yJhxDmvTv+KJJK9eqrNNJmeXQf8spG6hYh3T1Rhh+TEQ2IfQz/CKWW5bpXkuRNVMp33NGCf5O6aN8AaYsZJqJLtnfV5a6etVIYPOZxwTLyKF6qYc3ZzuRiaDdfo2PzTbpDrbv6MW1T95hbVFrKohLGoBLGoQcNsMW7CQSyzh3iJWhrX2zyLGpqXmfhmZ5vU0AZPa4zT0oTxodpA/Ja2ECcqsKvByRHv6XXmNia4sWzkG8u8rUvIqZOChBikEV6dCBFhkBFvFBG7GH5ETnqzeRflMdvDGhLuUAMJvmgmj3cYt6sQsZfR8j0ro0JClWgEZ4URHF0sgktsTDmNL8LYs+IAGhEGRCmhyaWrhNiqJ2g6ebAQ1fQjApmoaC2PI6KajTyoiGrOMBGGwkQYGoMNCAMxDIQbWHGEEYf6Lg9MEyJkfbW4kvzK51+jHsW8D48yPmWb+LEFPEpCToxGuKmoqCmRvcv1L76Af/El/ItH+BcNIRwJUzjLzGJ6iH/R0Oxv0E1AtpAXdzbT9JSlQ+xLxf5FJe5UPie4FPvmmLkphJktpiTHJpXkRGVMQMaKZWxm6i7Ezj2G5NcYBN9gEPwMguC1gjB4eXGNzTSvoakR2NfQ/RYY2NDqE5jU0LMgsKmhJ1OCmW2IejdiHZ0Lmk0IlSixDmFKZaaUCZvDCMhgUjhkMSkccpAUDnlICodqSAqHGkiELUDOoVsuYM6hFSiAzqEHQkCdQ8+nMVJ7wYbOxkpl+N44qbXgZbxUhh9UDSFqpoHwPYNJ/VlM6s9CUn8Wsm+zkNSfhaT+rBMaCV7FC1X4EdVCE8GrNEIVfkQzqYFgrZ5TUhm+TkZLDQQvQ1IZflAGkud1FpJ1dg6SLnYeki52NSJd7BpEutjNEOlir+TpYkZFCy0Er0JCFX5ERmgheBUrVImm0RthGt39j9PoTaGkh8WUYD4jNmQanZJFx3AzYB79hL+QiXSTLFrLYRQwkX6idshMuk4evZzFpYhqOcSKi5Ic98VFR1A7yZG4ZKKITMmnP6Vj+F5ctAZRugZEDUEF0m9B+4L0sUilFhUp1aIStVpUoliLilRrUYlyLQFBFNz/ETwxHreoApVlY1hjXHQEeYyLfnDIDw75njhkfM9g8AWC1oq5YFxTTizjmtmFjBCaGdeUs8245gfp/CCdH6Tz/ZPOOGuRc8+4ppyCJpWAh8mnf9/l3s3PWO7NI0sPqhFElntTck+zOWhevfcZZOlBtYXAgm+VPPpsDupLcFBfgoP6EhzUl+CgPo+DCubUZsJVD+GgBlPZmDKLY+oc46pjqh6R3xM2NemHe1SRI0O6xJkhohEcNq5a5CgSlTiLRCUOI1GR00iEOY40hpj+FDWX6StFTkU1pgKTUBWY8SGO4KBxUSfHmXFRX+CsmqkLnFWT8FOTLIr5sjerIIWUl4ap6QfgxDRVQ2o8FaTGU0FqPDWkxlNDajwVqsYzvjscwUHjopenooSkoiaXiprk6XcYuOkxqLWG0M0GQlpnELqpIKRVQ+o4CUJajbyOE8BBKbEaNOWocs1JTY//0uCk91u7XK6/ffqnT4vhGbprr56+pPjMJzz8DVzAURQ=

Belt balancers

Reduced

18 blueprints - source 1 and source 2

This book contains all X→X balancers (X={1,2,3,4,6}) except for a few trivial ones. The need for balancers of 5, 7, or 8 lanes is rather uncommon, so this book provides a smaller alternative to the All belt balancers collection.

0eNrtXcFuGzkS/RVDp13AWpBVbHZ3jnue88xhsAjsRAiEcSRDloMJBv73bcd27Ekosvj6UYoHOQWW02V2q8l6Va9e1V+Ly6vb1fVuvdm/vdxu/1i8+ev5k5vFm99f/Hj/u/W77ebh45v1h83F1f1n+8/Xq8Wbxaf1bn87fXK+2Fx8vP/g4X8s/eLufLHevF/9uXjj784rrtQXV8rd/84Xq81+vV+vHhbw5YfPbze3Hy9Xu8n016tXf17vVjc3y/3uYnNzvd3tl5erq/1k/Xp7M12+3dz/6cnkcrrk8/SP3t2v6htzApuTlDmtNydP5s4X79e71buH30nCeKg27jJ33lVbyz3H+J21m+ur9X4//e77Vf2nyzzCHn6EPmVuQM25v38hIWF7rLjpp9dmuvm/G44Jw96hX07yGXiPvjnesFYBvnqXXCa8e3x58/iA7nSLcXQzJXeAj6C19Jffg1/+ZG06i9f71cfp0mfvcL64upgumz7zZ/vtmU4ffFrtbh7ejxAkdsG7Lj4f6e5+UafzLrGxd9Em3kW53iVpLlA9QEf1TvVbIHenPfy1Gn1K5tyXrLcb4TfEQ24ks9C8W074kNxN1zi7Ggfi84tUBIakj82AvjNt/MWjcQMqAdzHkus/KrzygLyhafQw4n4ucXI70JqYvGYsek3P8JpCislqrvztxZXK97eO6m6F6m091dk+u6DiloePk2/DzkBxxQdi2kjxzC5z/g8zovniUkfImabPVIe+qUKK73JJDMwh+9kO+Snw/hY0CNU9uzbu2Wc80/c76HY6H3cfdtvp37rg8/zp+F1vrm/3C5u/RuPxgelRE/65/BQk/xC2t/sDT0HQHZZ8EuKZEbnU+6nkq5s6pERB2+mVBhwFJazNyJLkMZV8yUSc/eu39fvV2a8Xu/XFZv/vIsSS1wqxfmkLsZ6TBkVsIFT8pqi1QEJcPnnjkYK4pEW2I3CyHT5jbaDC4HFGdr8c+ToWVA1zMyAF/Cc4IvjyIIr+rw54FVI/AX090zff8fI9kcTuiA1IVcG2IlBD4RUr/fEVsxYfBZwNMWzaGdiqjIaEigIVtMbCVktPBVdPUK38GFH/lM7SoP4pbW0AThMzoPxlu/lgB5R6WkD5k+n6yXQByfrArZ4I5nqWcUbWcjbbpTUMVRX3VYAswkLAkVRC4etYMLSux3d4EQqzSGLpIeg3Kz87gEkZS1oaAH45bltqdtEhmlc4OO/xLDFwngDQezRueBsA3GenghEYmEOVHXJUpeFuREJIT4V8fjbky2a4ZYQRfXFfqoMzsWXbnpNBTm0lFWpcotqKSBcbkR4YoFxhUO4bg3J7/kpakqOnJstzfGaHc8zF+44sNCfMUmhDSmdg1C5zUH0uq+V4OVc0z+S4MN7fUXG7JSjgZprgYmcrji9/w8IqVMskluD0rJLSs1/XlneDeu8GfdENdqd1g3IcNxi4ualgy01ZkgEkP+fM1OwMfU8Lr+ebSH6EKvlJO46xZaLBkZQ5YvN4ZQLrBeQrk4zSEFl5xVnHMpcbeHXHHY7S5vrDr8eLtXLb+v07jL8se25Pco5iphfxQrAW1OUyR4xxI29RKh7CE1VcvlLvOAxlrlCtZ8r5ZADfwO8OSQMQlCIQjKcFgvpPBoJHLlezS8dpAgExoUFDncyLGsMizuiphOtAAi1ClfMJBBbtVWOmB40LCRTS+ZmZ7oZoUWbznk9w36Rb6LhSVKQCTjPos5+xlz0bNOb5KUhQkCiiPLhWaRmciWfmSWcUupVRbstA7PSo8nE7yHwKVMgU6JILKnOAd6RRvepg7NyC9hSzbWkXgypcQJAujgvUsFO7GXGiISQpdwjpTxuShB8qJIGTycqNbgI1uukQHo9UL+mrtDJ1eOflqWIA2AM30z22DOsQNY1yCdh8baJwCwpPq5jxdaWT5kT+wZf0MESP9RWA3lRG2+OVimXjA76TXb3IemwoPxeH1xtSs9RtFDY5qbwotXcNrF921JS1J6Wszf3oZB7zU6u1H6oPDFvF8MipoAzM6szkm6FcIkghVMgqv8yRQBqYrI12rNofjUxNmfaw3q0cZ6JaAIttdMMYqkcDrK1ORxcwGEybQ7FgMIWwoRjCDqcNYePraqH8I7fd4vZM1lfR4xKoFobDZAO6bttpC5fueVoYJlh1Fay9U6pGrIodq9GIVbWGEHpriDpibFZLMFZbcqMiEC0hEwcXzZ+eAQOr0Wa00GpBd5mFW9JxqbTILW7jVufLwKXTRiadpo4aJXlmNRrMc1k4NOXEH6ZKt7Lyb2Rg8vCjVrp5aqGbo9a5CbfOzd6rtpvR1aRhI1xt0Qi3olvdwKM2Rmp4husfdHaTenqfjlx05rVlv9rQMvarAuXLKrg/ozGuYzTGnTVUZ6DqSUcqmQmXrlnb31pb9yJ0glDbDYo2ZB1n4Hlq9ZonVK89GLIQudLTGlpHjF8yY/3yvYxMNbM6JkWonsaPCKv5tqGAQLVh55MAhxic0rdkMCQ2SsoAulh8VI4sUaRlYnph6OZJRwYOJ3EoDJPYKKFgq2r07rTxZzgOJ9RxOaGOygl1VE6o43BCSyEN0nzmK3i1jTVyIUQAnF4qIuVwNcImxw1bPbeO0zftzQRWNvrTVDbyxHh4d3DyIDQHDUKbxS+NbXuXN48vIZaJVKDoq7gh60FleqzN1VAGZ6K8ZpCnUdeXnZCSOKAsyuYWTKlngmMVHLgbwHG5Xsr704LjmQVTlnmvrBYEWgWMLZ6dPC6HDIu7ubC4FhXPiSUGaiyB9sFJW5sh4KGhXn0lqLdKxxJaN7yABD91nR4ijuNbtE93de3TUfEg3GnqQOkrd46n+JaqImk5gRYX7jhusynLk+h48bBEKqkolJZtVVSKNX6x2R/x/gstNDtLuyCopUoO76nuoaorszsSQ1CqAXdGJvsdZ7hYZOqCLLbxvWp6LPhWNZlvOPogOJhWI0mF9DFYLfqCIHhrjrJmSrmaqUBL5wTIBaZXFVkJmNADQV56TQNzYF2AE0PpyBjlItLW0LxQ2hpae9OZ8kLlml1PGcocX9m4jkjNFFmgFLXsMlDDva5lViC2rJTsG4ZvQ6sizNbzOmbRWJ7IXAq1uK4yvZQdXBFojbQ7GkvjIzZXlcmbsuZy5JqpwYW3rIRQVuXkqYN3pdUMkmibQeL1tM5dXpMiR6iKnAqZy5EFOrASJbZUzPQttT4DtRhp5GleHFfz4pvKUqSlokaPqkwJ5M54x1TszNLQ9NwWfrTBoDhPxJLjVGhQPFWDIkfV+ihX8RJooFx4UBoeTvKjzdLNwnyc+lFW+ZSniugrO7TN6Tem1H4BAQ8a0jC/gOrDaVF9Y529o6J6/wp09tpSZy+Izh6OEY6sqifGCCNXGN9c//DqdfammCO0jDm6o8YckRxz9M1ijoEbczRX2oMxB5zsO7AwaRlzKDXmCEeNOU6qsq9URsAxx0CNOVqL5MGYQz035hBuzKHcmCNQYw7q/E2NR445utPGHK211XpKbTUsbjm5hMSRFCQFqUyPB2rF4GfAQ8oW0ymVG1Tk9SB+hq4CHVgOj1vyuBTUuNgZdbfGv8CbyuQjroQoT2vvSZNDA2twTNVTHrlzlAQWloJsQtUcnaLEWWbEnS3iEtey2ZeboUmpCv6Lj30GcYf0A8MmhEbm+HRLy+SxXXtrXP/tuaGOIa+lQh2big+dEerQGZk9dKYw6zQ27KXct9Nn1DUAs/cFVC4FGBxP7wBJ+K2jZqy4Tw0HdVCeMiNQVRD4EELTfUea+AOu3epIWpLHl7ojiUkcVUuy5IpJhCom8TYxSTQ2GYmnzRK1nsoUzFkFXEwSDMf+jJHIZS3hz5zSUdqSSFVbErT5iocL4TpShWnImatJD2n+RhXeztKGhw72jEhH7m5YtU30QCcWmU06F/J5A7fiYqSK4hJJH3IyEKefpWEXvgNPgzskcAb/bOu2I/DgQMuzRaYoaM3qe/SUZY1uCrl3YYTPQt8mixOqBgW3HKSo0rCNjrYcaaINc60w9b1kZYEOZLSF2vvd3XHGD9sznmOjsZDBHXXwZoBRpSfNJs6cIEE5EwSFkzDKEVWhQ89Ob2w0YjQnrDRRpgwMTxMZXHwYG01ywfNHhlXDrUkstoXRiPnwGdDpUUfcdAHuiVx+VB2Mbi2NpDocftaPlul6+I+Z7gWFpgbSpRtB22nxs2vKQkSPv/4m+0JjOaIyyyJjACZQpy11LEIjRvDNSa+rB5Jc6XUNTCojcrts9Y5JZfSe2bOrRxFh2hqKCG00i6FnV5+ys7zcbv94Yey/00rOLi+uLjbvJmvTLy6mw/LT6u2jEXfgr9z9H2kVeZE=

Full

54 bluepints - source 1 and source 2

This book contains all X→X balancers (X≤8) except for a few trivial ones. The 2→3 and 2→5 each have long and wide variants.

0eNrtnU3PHEeSpP+KwNMuoGpEuHt8ZN/mPuedw2LRkLqJATFqUqCoxjQG9d+XlMiXGikzwsPC/C2qp0+DpobBqqyqTHc388f+68W33/348vu3r16/+9O3b978x4s//tfnP/nhxR//7y/+54f/9urPb17//Mc/vPr319989+HP3v39+5cv/vjib6/evvvx/Z98/eL1N3/98Ac//3/c8ov71y9evf7Ly/988cd8/3rhb+ov/qbc/9/XL16+fvfq3auXP7+An/7H3//0+se/fvvy7fujn/72y//8/u3LH364vXv7zesfvn/z9t3t25ffvXt/+vdvfnj/19+8/vBPvz/y9v6v/P39/9H7h1f1q+MEPk7OjtP14+TTcV+/+Murty///PN/k5PDbfnwNHjnZfm00XWsvznth++/e/Xu3fv/9ttX9YcyuIQNvoT57LiOHpf++wdiJ2cfC2/609fm/Zv/7wfXk4NzQj+c02uQM/rNyY7XKsBHn05fJvzryfMfTzb0l+45HP0xnf4CcgVPO//wG/jhvz/t/b341buXf33/Vz8/Hb5+8d037//a+z/LX71785W+/4O/vXz7w8/fDzOpxXIq9fMtPX14UY97upTgp8vHm49xni5pcJrCz6rT49Z/EKO3Cj9OzPc48T9Hqc8U9T1T5vf97LnvH7Sn6MkTZPAan85S5+Pj+qw8Pko2nu7T5zH+AHE87PEHiOfwsvLJr1QSFf2Vex79jVumdPC45HipB3gdTisVWfp1ffpJOL7BArc3jv5B0MeR52wFr+/p3UuMWU9JAe5fp99QQX9N6qqlyrSWyo+tpWpwLaUhnbpyO3XlFFOZ2punpd7c+QhQUi2lS/354E4qw5rngL8hGWrJPQWVbBdUn752vse9IKWaOLtxRzF6/mA39DsT03t/PNxTl1V8asApmBYmHB35hp5PYg58ZuCqlrx1h+epWadPTXnsU7P9vp6awn1qZupT85ET7ed9aiprALH60MQfa1BXFDyyli/oKXklAZDm1SMZBHhK6uhtV/Q42nNx9Jj9B3oS6mAKkcHTPIOIlZ/Ix0mJ52st8BNESYOC29qkwDt3mJbmwOwgDV4p+kDxvNIOz3J+dbajemvT6k0Z1ZuQ3Akrf/PfXvzyTdDrvkQt+7hVH7fo+zxAmN634Gbw1wYMI6tS018dKtOeP6D7hq+FKlPdJqOBhH5ThVQ2juw8WKGYtwvF28ITFR+upJjhSh5UU7/9Bf34/v749t/fvnn/f9dsGF9/uv2+ev39j+9e+KpK1JnSmVXgSU05vwoyvghvfnx3cRUkUZWvzPSmAIqUehU/oNLUwSs1avW24Rca11Tykyfnq//1b6/+8vKr//PN21ffvH73v6cllv1eS6x/jS2xPs/C5g0TtX5TqnHINqZ2099ZoZaalWpKalRTUqeWwUeoEyaxSlXb1a8m9Z/gFcFPF2L6/FsrvCYTzvChHDyHrCTrk/gKqaWybVqooeUVa2R3btQSppYVY/45LY0rp9IaVYGo2yd/mUO8FDjEk8H0En0+nZ/WgbuJu6D81zev/91fUJbHFpTlS53ZfdZqAwrKi2q1foH1JVfGvZGt5Jkq5OYlIXen3D2opTi+hGSk0ZyOjhOqon5SJTpKnIvRsaPiMeSfO6//PZOwwpq5i6/29Oj+wlWCaZ7yNDqOt6Gx5CGXBefASRk5/27lyVdrMF9cUorHl0SprgIx/Dedr37SgwuxYUTklJrnHV31VZ6uBYbdsjMNTzpotg1NnFWSs9+XBtoulDQQPz0btryfr7rDupNjnUQL1SaiqPfi/LTG1AK0U7tfPZirM5ZYVpCTszPLwuLoYMuqJFJ/rx1stCTysVIoXLdxofpOCrVLLXem7FG4+87K3Xe2bbvxU9Vru3bjPDxpyW28vODM1GKEu8y+JmisrJ9DXWn63APPtZjCtefUSK7JxnLz/PDOFZIO3EU17xVS4FY9vvCcyCbmpTVthdsLprfE0+gVWndWqZpPo+pRMOXJM4g/8L5p3pSlwIV/zfD9XB2yrQq1D1JMvqJ0pqPesTAlP4XlCHN83nDd5zkctb8UUpuaPr5STpuaB6dl8BM/bztQ5d3uzsZ2TZptj21s/4mQ+CdCArhNGRfxaG7o5rGxULK9I6sr6IdMVOFomK5KwnTlNbwEjE0rXLmwknpI4TSow7FCxzeEI/BbQ2XvGbVT570Ea0edh+eYxVo3YwVx6I2av4LcqrwqqWM2maluPJ4smu6c/lO8tlBNHC2zMnXSFKKTDkUzjSLUiI9Q0x9blEcTavzl1uN5NRqyuiy+Gh2u2Cq13G/cRqnT6rOD2iPhy8f7nFxhF+CL7satjgvZObYNFi6z+ahhDVijVTXxrsWthksSrbbJVB0MqLD9/ZZoZPm+YQiWZT+wFG49D/ymsqsda9zNoE5d4j5orcdJGe617Mq6Y1epO/wqge0JlSqtRnUB7lgUHU3DHIx0MJoGhZuG/DzBGhKyKuWH3TwafpSXGgg3M2j6viurChOmQc3hz+6MVCaOFDDaUk68HfrMdKPgs/98pw77M2RY26kPYHuad/g//4TJS1FK7S6U1Fw4H4P64TGY55kI6bHPQfldBUwNd2UVGkix0c4BkD8/zqZyAyEb1/vbueGIR6Q8mSIJzhs7jj6nsgSWVllJoUy2q4ZP4McFL9Noe8JeYLT3808YkAZ0zWaSeGdcsl+IL3tEOuHqdV8ARVoCADR6/xK50dyBGkSK/qkSlHklmB9bCeo/ciX4zABCfyw2DfksrnLQz+lQT6HRqMJtJ1UtQo3XEqha9HMAXRcaR0MrlLvlVpIDy0XZtkterQ8KmzJDYhoOgBoYxVB+g5rkVI0TAfjgYDGvFcDI7kwyc1K6gS6MWOTzd2KPLyufgBvboq2QnZP/KDItLR5GcxxpgyXRsqgyOlBVjdp3Boq0P/UkOu9J5LE9iX1RPQk8TlZue2PU9qbQSBSVilxsPMhgdVTYnTvrPiL7OgSQrlwNdrzTJFwH4GMh6Hlt5QrFFVZHjV7XN4cy6P50bzghuBD3Lzmt00KPwEQhSfieEnVOHQNNH6UfiVJTLjewIcyhNQsWkt1W2T3tZxVv2oOCMI9AiiQ1ZlS5UpBCVSFrbWtIiYz2h4L2H61UnkmDeSbzRhPdIfacfXBwkcbhhzyBUzgAkduIRyI4K8XRw9q8h9XH9rDleZghlaurVS4zpFLtxJVqJ64kpqUuNbOezPviU8n8fbF5tKad6b3rH1jDiKTh1ciZOgzBMlON5B0eAWCBxlU/fyb8rUX99Frnh1ecNhvBEVnITAbMxsMV7I1dRoVYl/CcRPJ64u+HG1dIX+pX4kVp00wx6n61FKoOLoi34yK/ySG4NtJQxUj8S3++ixy06ZNnjIwjMc9nn5ojN5mW2tnxHo9SqbJKHQ9piUtq1grnYaflAbA2UmyFkbIc/FOdjZ+hxxJiKTbl0zJt8GPCXNQyZY4+jZoUboVFxbXKzEO3xrEUnN1SrcMPZlmPbbIDNzDMvamJOgkq3FFsEaTaPT9KmTzfYkyebynM+WmhRsCWFjcxLXCy0HniycEEQFfUgFhcQ80yH2raY4ea0SDkzAUhcylrOWZzlDLT1C+Zg+zv2vqzJoxCJssLr0oigoyfNwszC49EzM3CXDL9rxBzc+FB78L9/jvujdwD8ziXcmUneZyB0Zfhxn40m0bjzBRicRhbnMMm3MhY5dr6lRXSk5d8/TvpM4nq/cjMLVvYvi8hhDWFN3jnHORcHluUt+dxy7OKcqUW5YlLPuamk0iEa55UlSt1I/czeRdYyXUHnAM1PliY521W8m0ZluyOrUSK/Md66Yc5kGV9tddX5VfE1MGCmWlIbAkNlWyDEjdRCTqSSSJy3U7LFHI9ntw9iHFN+YUXIFKDrOKNaeeWHtgrHdQVZU3c3dJwI/tO84ab2Vmw4xs3BTMFONo9HU0L7Jb6M3ZLcwB0ro/tlvrzxMYUbrdUuL7swm2XCtWYXajtUuG0S7JkzXa7aKkrxEoIbxx7m3emBxE8omG/njEyrHH3hzWEQTQae0AM54u33bhhQx3RXexO3fd1uUcTl1krxJxTEZ5sKYrDdH1tDiolLrU4spB4JFzBDrdIe76G/VlNzLJp1lybzOGWadrGLzchZuREpro11WCDADA61MJaXfc4nWugZbsxzaS6vmPvAhIqdxyBbwk7Wkt8Z9jrkHY8JZVqjxaSPfo86GrXLD20s8JmaUd6gbXARXbYpHLexh7UvXjcDV1YbuiRTVhwR+o/vCFaP542Nx2jFkkDRmR9PiJrjBGZfalI8EwlgicqEFy4QHD/ynHZmPpMD6+RY5sWudvcebL1w2OYEyuGObNjmIUcw+wGq2WLnOIsOQtusmctcK8dAmy7Rp3SAO6DvET93oE+woxvr/cA3NJ1YdeEGwytgXTGDYcwFfNNyGa+aK4rC8N3Ee2Icfjc/fH8vRzUROREnVBlGkdO4F/wOmhVSZb8yvE2jFwmhWMYEN8MDt2w1UbtdpdmbsP5kB7M3tQSs2+2DHejk/7TnPj3/tj+055ny7Rwt0wLdcu0ULdMSQaN25qhHVbbW3SuUqcp5Adu41YQmrfVtmYu7z6HxtiDrvX8GAI8L7UsV26ceWRyfe7cjdUjFugT3l9Ce6tUYJ63mfTeqFyXNTw2ClUCBapmH5NDCgp/cnCrbC5YWjOzOFbBC3dHcezgSh+PLY6DudLpS8ZKZypVWqhUaQ2iSk/FnbZhKp8e3jfaoekT7iD6cxO1NcrkrhJjrLD40sLlSw/faOE5fCvVVr9BjNZQYrSHR32Qt/YTtwuEESueJlAkuMWGSuOlccOSL/qWFxK8dvDSc/txpbbM0hCNW6n7oDdWAT1a79bEUrUtFA1t20lH8pQHHZG5mpZA0TDBulBVW0WoA4klnrh5tbqxWiAAH/0IJFgbVbu0jUWCudsXf5iJB1e98ShznW9bauyca1zg82VZ7bVKBXJTh0NGW9rmGqRD4NHqPjyTsNfGsVIPndnK41QjDzuvidr7+1LH7aFQQ/9KA3rJ87eNR/xxmNKJypQeLD/UTOVdC3jdimvYOuddS3rssHWTd+2hg9lDQBEeGdW+SEjE0G5RaTFujToW69Tp5MGdACYycCJvjMK+cIvBUri6bcDMfd6QEj24yjUwtA2YyKY1qB6aAZcPbgZc4mbA5cioe4mcXeFp8ulOdR14rkQhcjYql7OxlyaP+Na9Uwrf+ZHTIHz6Gjp89VjEhTR5ckKzlwZ+U++8xY6eYJhfhsL8vJMghDrh/a26LksPHSjqwYlMq5yx7cAyZjlw8GQSOHgypfqtzHgUDegRaE44BYq5QGREIw1ZB2hVO7igiMSc5JRM5UQIPrNyzIXmkQuSHzsXeqbIhcJ14RVq5AJpQ4U7HRIqQlSpCFGjDog+gWYdDxgYD++xH26MjxxkFjByQcmDJJYT7yZrjFFPw6mk9ZTM9eKlNawo6gTCoxSMO/kx5+Tn+o3q2PKU0RuO3Vmuul9aFhFbHZPQapEZNQjPwNx2TgRBujgOInFOlnZUZtzagwaH1bSXkDm3K+W9dJ75PyDUBBhVWqAlwCmw0XEFPc7rrgsE7+D4AsyBBw2dSBDR5LawJSY5xp6V0LNEGFU/tNWUMyYTDnx0EO5k6O8xk5Cjo7Aba3hR4rIvctM8bYOXrese2pJ4jrIcOpQusS7XJWtdXnTW0TA6kNdOx18OpvPOvIJaQUcdDr5j6VzTJRXrU6lYnxqL9ZknL4k8dmj6TMlLysX6kHJqh5Ypo7JECzdGp1K9MI2Ks+GugR0bIwVe8pKQTXUeUKpsWNWATF7lTRUyL3ImEw0/uRLia5ymuaXRx2pucKcNFvJBHXkgO8zGTakdNEY741UENKrcUCOWr67S2D4sW93QTtiobCjEj5rvrFwmmIGaOEgr4bjnNNA8p4G7y8PUXKPm0hZuBi8ec+tpU+bpF6KMNqXAbUp+Hm+HfZFtSnKHVhor9kEoLUzeCMOAi8/GTYlcemAsRB4eXLlxqa/5xQWcW0ky7pKPSJf1UzNwK0jad4IMS6SMeqgclVyucebgNYvIz6/YtZXVqYoFTmbSbb/Ik92JtiU0WMYWNJlJnTRSGMppzJ1zKXFJf1Jxv/u4siofKqs8r6zssZWVPE9l5ZAdJJIFp5GBWEY14nGDxzcmxdMfT6P6GTt1Cn3gU+hIe21MxbU3Vmblbym5pDVezlwuNDQZXGDdMs92K1zbraf2O2Dl/Ddf+hAi/DC76pm3swPtb0JF9okxKW1SnjXZjYoKgznyicrCTLRZ8/n6tMcGy+t38M1sJXHmR32i8hoeeHqs3OmxkqbHshQfNn9gyZ1ptmWlh0XCLNXrttrZkSZtRY8Wl5XqBTOjhrKVqNyJn5p3mTfv5bHNu/6uQtm+5I3XhWyHsrGkpcuVcOXuR7YNbYwbDD5eITx4y4iJF/OQI4cKgi9NRmgh5x87OTBcoMBw/ziEFhN+Ljt5bEBLDf7MwdbJSYEHzbhWoabe/a/5tlszSU4kRb8tJH8rHnYwX23FAeHO6164lq8aSZBr1BhH6XHOLDmo6QyJZX37H+QYc3+tlrIv5HyJsfpGAUvbd6uznxrI1MKzM2Q7eHwyvjl4eK5EjRzIzLkSFHSR3aR508B8BGPS4i0WuY9v4Hqwd4074OEu+8UD19CUBSqEvwgV3aa0UAXDwwFc27IkpNxP8zWdz9fqY+drFjxfU26wq1CDXW/cZNdETXa9jYBRFeKTkYhytzWPi3/2YJ5W7ICGDawMgnwaMyu7DLnJVO4LG5z5g3yz4SzFyLmZknwvt1HyZG7clejcN6MdVud6G6CRm4eoISkw5wFPh1XaamWOzoNNKzMsI4W2GmdApn7fbMXHe+tQE2mRVqpOXdkQ6Gm4Pz37rG2x5mfJ7e9UoaZaLHlkFlY+1OJWYLQEzhArsnufY4ZjA8ejdjzNgxQVO8rlhH5N3AlZJk/IwqJg004SLC8YolCDIWqgWatx5AkjTct0aVrm6FSVFE0whHZl6pSxCA+Tp0ycWKEa0kqhQfAqDiaj0OJO59GVm+M6t1rBmVSsWNcbN9f1xg12HUXYKj7vdsxubT67bY+d3ZbfVxwId3ZLNkeS02JHg+VKHSw/OjF29E7hVINKmtYOA2gzHqUSaHUMWkMsfpemwad7ps2FlQpDQkOspMI0YioM5iRmpYckbm7scGwtPCEEGsJK9BB2acpryHTF7uSRK8eT6M+CkobHyMwP7/AdK4d4FG/FrVKsTV3tIghcqJuJ4BDWvyOyzm7diZH1qSPwfuONjMe7sfh4Q/QAlA+bYKCrdipSAM6HvUlIQGz2H56X1QYfm8IE99cznY7nH5ghBn1D2QpWcEjv/EJXKrIXMTsOVDyDn4WZZXYcyJUlBUqrULrITVD48drAV/2G+ILzL+bXyPA9lpjokV8kV80veY1bbyhti3Y8TUrpcGPhOv6A85Wm38dKTd6qmUX6cFg5gIHzbaDEAhPnm3n9/9Xw3ZH54WUvM2p6oStOg56/+AaDq+dnd+b6ST3wO6DnMrfE5Im0DMwizk8SFjGlKZwodXaacUT4UzRggUtaXV9baxA/+hyQ0KgaYeusBZZ2MOXBnqjaZc9MuboLvndycpoyN3+6wVL62Wlo8uNvBvIOzbbMNdv+WM22Po9my9q30f85+zZClWzzkmTrH526VmSI2tLBWzTKiQoRXtqvmS0CCQ6P4Qi0o5WqJUxsHr/RQtokIqmvtiO++qMZ55J6h08XLqCfp8mq+91L3rgjuRZ9hCwpK1fx5mo/sjEHc67yRDLPhRuWuRRINsY/y4FL1JzMsdFvHobGeParYGqMKzoAUlftsxoYoa76FRktgaoCzotxC6+gLF99Oqt7zrdO6tadiKcIHTaNJMhMW5UzoarZhlObOCsyboUHosrkhfuEwSUkS1y1JW3VK10A8HfbiCPIy5J5SVRVu2RcKeHAaPzaSFHqImExfM0xSGI91bgd9/dSqTuRpVEjQ0uPk4XKAdujXPe5mpjJDjVz4sOqT0KlYP8qLvRESKnm3Y+ElFQd/wAH35MV2efjTcl19Rte8ZtHD4bnKV5ddSdloyUSA7Luqqq3IeusCXXjtWmwOm3wTdN1fKEJjfjq6fT+AKir4l0WbT2UbtnQ8YrjV9ETLAP6xFjvTdjWtXdArP14M6tOtXZkHPz4RWZJtR/vi5Wk1X68L54fB3kWzt9oo1oD0Mrx/G3CU5DzpcnEFPOPDBsN5gHfAv6mz1+pwmDPX7VNDqNAnRsFjscaBdo/MpgT1pCN6zkoVM9B5QnSjWo46FQzxMFTo1Fn8cWCeMaXrjmmAIvc4S6R1M0hbXYpW3a2rFyJS9QbS2yubd3ceQzXg2ox2UmaUTBpxrGo7EVnDoYY451n+GejUIqM83ALAWQurBEjgTIjgKO0DT9MCATT3JxBOTbCujg2gWEk1dZiNjUz1qUokzPP1TYWoyOsAMl/eN3bmZ7K6S0Qh4xvYHvcKQcplkx8PgBEdL7eFs7cVWfhStiKPDyF5Awo7q8AZA0oqFxtlbvm/PglbLcAhaxkmxf+WxLuBPWt8ELqSNonbuZR3lvRWLm3GM17VAps7wncqK4cuX8QQwio/QMrTzk4AG1h7kuztP3bYFPzS92IFp+M7xapgbiLWqjhfbXitqL5pdnYIdIg/X5g1dndi17b+m9LkWp+00TLW+j0xa9jE3jXe/5OFBapfbr/fFR0vq+N71TL+tekcuRu4bgABmGOrYOFu8MrBYj+g8dLT1R6fN9gtM8tCRvumvnheEXp8Vd1qKAsJNF/tDxeqYvtDdCajCT5D7TqfjBDKI8EtPhGUvvLhtrvbfABz82hTIvGYVyLBrpdfn4aul1+fhr65KkuKn6bGic0PdY40YONEx9nVp1knLDBcfBiwvlxsFns/DiccNqpjIXOMVCkwWnw7LxzsPifvnTN6aIYIYQ/jYhZFopPX7lG8lB8+kU0J1nB4x6od5JLYuSyyfD84OK9Yn6idt9F1+fxUZAnot5ZAaNP1iSPiSFtZBlwMkVvIwOUyCYKZnGmILqRvrBLs3+yMl9cixKdHA3FiH4Ou/b8Cw0ySpU7xyThD6eWgxq4s0SxH/ukNOP3BFueAakE8nA0MllbI5O1tWwkzJAgCn7pGQ8W9YQPa2eBhyoJoWCRKPub7rDsufngUFbpCUhnJa3UzyWaXx/bgEBFxJWOMD1WcaTS/LU25PkgJG+FH4RlByVfaIWy4DDVComwYO47apHALKCiuNkmBHDvj7BeSj+9yTAjvdT15B9XEgiOWbixnBe3vGS9WEIUxbEVHJ6WmuFsBmYe6vkHVTWYzlON6pSshRosEGhlqng4hPPK4u6mObHiwA2p85X0hBsx5yp6ppqVmuyZG9fgOU0D/T/NAn1XrZDCHITjuhgxhXCYvef716mOMJhv77isPW05WBexNH09xcyVWdiFaZ3sCqc/cFgL4v70CtMq2yvsolp34vdG9ad2OL/MWGyGAYfogCl5jnHhkdcDxfQPMZwGv4vq0EAX1WF7sUWL8shRKICkwT+ADlk816qFwoGOzrJiHQecLzJfq08JrtQ9VyEnnDy0bmTOSeKITDkpE8mUk+E/nuK69BsCoe8fgHhF58p2ogKLckJE94tXdjD9nhlmeFz4TxDswMUrE6ZLL2f051Idv8WM5+OWdXNlznCHd24JAZI/Pv4wL85DN6EvjkN5XxfHodvOzWWx7HOLZWZYLCtssczPE2LlkCCFpW8axX45ChnhZowUFkWhUqyYF0AJoTgz/WENS8FXspCufjDH/jlRBRUwCCuz/JqDCQxm15TtEKw0WvZeo1ml4YuqrNzT3KiEYyTParCAlg9mSq7A338lmTIHV07wtcvJw71+eLjn+cNdHvtwl9iH+yjojpvCpyxXmHF2KfyFB3SDOq8TaqTBqUX6mzrV3nTQQsiAp/co2W9j48JRbOHP8wQxLN0Tn/WwqY11DUIZsFIsZniVKZNKg5FLBNrfSFykZSaVBX6MnWSm1wTa2xA0CUqUWpSvLW0Mi3LhldKCSiMsfuXAZABFWLISLEd1uXIraZxMqSQw5ejFKbMHgdcnLsv8SVWvj63qNbaqT9SqPlOr+lGPYJE9QonsESqvR2iRPUKP7BEO6oQ2J2rLsTSXm/Qcwu05NLTnsMieozxrz1HJPUcL6zk6t+c4qD2HJFbPAQ/7Ll6YRPYcSu057Fl7jsLtOSqv52i8nqNTe46D2XMsrVQPew7N3J5DuD2HcnsOo/Ychdpz1GfuOeyxPYc9T4RV4UZYFV6ElXEjrAo1wqrwIqyM01WIO0yl4y1lgNT/uSUkif2jNJJMWrofuMMgrrq703BHZvherHEQAYN/AYmdvbgaNTCDIze8R5wfjifPOq/ysdGSkjwGsqMmIDvMl32nyEbfGdGXJP/hBlul5tSizeZ/etk3hLv5hWmkjJzK6WTEuz8M9zWOTxTP1srcVscx18JztuRODdYSUuOTBqdBwl6mdj0Oo6riESMI92l5x5VFfBq045aQau38KCibx+4sclNyr2EthWI9fT2NFIo1GD9AKVj+JTyrrCU8g71bhZV4NSCi28HcniqwSl5I5KXBlSuCr2M5/KY2nxKVx06JynNNieaFDozi8yAVNwZSEW7Uc1ZopUyY8lJI+k7keqNOvzot2fzgBpsnaoD7kjA9hvbiGemVNi664CFbjKXU1nLS/ajQbQL4p6mhpwjNjTfozaEWD2Qw5B8kQzHqt80c9a0VCQmOvBeNDpY3HODJEapH1pgloXos9AADHz83WDq8MO5EmR8bt+J1WpomViS8kOZCflqqhk5rVQHPkG8SYZFLxLQo9soZKi288kb1UmkPjo2Hi80YgvgwHD3jChhrzCSTe9T1PdGUG+1uOMKZNXs6H397ICJIBLt5dQFkPGWDfPeOX5p11yiS0D4CJsMaiYeXnakCTNkg9nvudQA7fOCxK8aypZbCdBLCqew5JJVd3Wf3uFT1cjyn/RVgiA/S5mveAnJOw7oFV5TmSeMsjLFxgOJPGGNSgvuA9lkhHtz5K2tU02ztVNNsPZimWQAJPlCiW2ZacCEE+Ge2dQDz2/1DbLhQiRC/vVRLl7sLjloXEvPbqOHqtwEHsx14Avp8mS7hsN0vIF7dcfcsJJB3Grxro4WKI9bQQkN2qz8uvrGomr1Tk7Q7PN2vJD73KEo7UzPIhQlKPRSHmzpsA2VuG6iPtQ3UYNuA+TUk2JPgyZBkqV/1n6soSJIqMwy80MBURnIJjDaoMhww53UKOEwHxlpfP1dzhGsK8CxSlA0cLssi4MpiyY24BtS5oIaDytLdMgFIkAlggYEsuBbG2Q4ZUTA21tadfoISKH8JXpc7X/2GSYCzBzKSlOQIVeUTriCxksNvAjsWJFCWUQ1kqGjgihau+rOWRy6sFUIKDh8IddoDF6VW6sQVcIylvdDQVQk9cyV0Yeo0pnH6lXGzU61wBfJKFWKsUekx+HaJx+FyrPurXPYqfO3E8apL5mRJVpaIn34tV17fA4rumQQWU90KioTxXKoCV7cePang5WdeThsrjSECXR+PlqYe48HB1JdqCl1ehNwAN/+SYBXacmRVpjBcDVAh1Cn0gxJOrUwtsTZgyGUkhX+wAVkP6gZkS8wNyJaZgXQNrQjPT0MrQt92Zp3LLO2xMkt7nqgvFsMrLzG8duQJo2oKhaopVOrkvlFlhR45XT8idb4Nkpd5IiAhxJyyUryEK7gMx/cWvXSHRXxdvPnKU+gaFzDdg0fr+aBpdpK4c+4cPZeXyI0xWdrpss+RffOTLZR7VrgwQ6lk6luLhiPCyGCewJLdUjYeD3Jj4bWSfxgvJPgaSU8ZaaRwegi4OMkZ9WulioPaAoVX7VSdAN+RzHfOVuTNvJw5QCK5FS/MDxBMbuV0RZCjnyysBBp1U81KICrQ6rPuG0JOnURSWpJ3SIuvRWbnWqR3SptcKkWGVw1jFJaMLrMVDVwntMB1wsIUd4GlSv9yYgvUNjpVmgWkkltx7/Ml9HDPJmLGt/vmhwt+x5Z1TbIq3qh4xLYlqWVMBa2FtF1qPvnFexOXZYGztlhdr+NjLddn+ugtTbcq3jJL6GsSqq83pW4SGnXLsYTK8a2S9hSFs6H5tFjoW9FEFe1GJct2Llm2Z9pmojAV2q5MhXZp/1IX9y83tN5eQ7XeNtd6+2O13v48JN7KzWuqHK33NoLWGhVa+2igrlCBuqNPtVPpsMeG/urTcz2Ka9lG6t4mKuEG4tOFdswQPf/ijRtuHze6lCsBSm4hKbm2htCFicxH5HKkwA2+6/TMXY4UIcuVyvNowDlJNw0KSvpt7BozKOkiMlw4O3G34UZjJ6l1wlFw/bFrupFIjkBxkUw35oLcUG5UXG70SbiOWy4rJfZWyEtvA01HG0mVM45Oe7EhaqSsJCHrtv68byw/KZH22obOjaXApPSHskatdVSPiaTBDtYvrXIy8CpnoW24tthJsfPC0VmVS58dpMGVjMtPnPSkJ3FsruopyeVhHOH0XG4SjnL6JC75pFNHd3v++bc9SPVc7O7UWEUIO7uwC1lXhhAfhS/P8mnNcfJOlbhER0gYlYXrjfoVPK+9wPrP/Oy9TdD5dWm4ck/TQk/VepecvhFW4pF2W8LFMs7Gm5+72fDxoWGS6dL26ppk3wwHns6vVIEF9fnZaECJOYm33rui6+vdgRkrS14dCOodXRrx0m69t1DPRezQ2jWXd1udeusWshXZvWYJrgP2a29M9mtHJvKFhLg1KuFWF7ivfS5SHwyRusEidX6ehWTjitTKFakd013IAHg+Ki2BSkUNHHC35QB3X25aD5z4H4GLRTlxp6k54wQ80tbyaOaZlYNjqz7Ze9a2/3ZHq3L4sP71zVxJY8fKkcQHY8clRfxpli733S3m8fRKElLjyZ2ZC5udSve8KGPhXwfkNsHHLdT1Y71TVWwl5b2OQnmkM+3ecjBjdDTBOTecteKn6zauaduHmjZPa1pLj61pJbimzdSaNg1Og7G1WEm75eYpG+W3q5L1owd0eeezbTilgALX4w8UjmdzSI5Je+Hki4uTOZNShoVT7qobMLJk8fz0xXClAlggmBoPR0h3Trk7wjuDgQiZGoiQtivcsbtDEtOSARS5/oZjqeaVhR5MSBjoSuLzjOrrJdCVDgv/Sl3Pl0YLz5TODNcV5Mci1Co4U6vgGLbOwA6ChxMoCaYzSm3VQu3qEDPmoKvTxuzqtFO7uiO0D5N5H5Yf24dpbB+WqG1YprZhI9kjNBCrRK6rhIVjtQ0lKEBfuGii6yMaMrhVzJmlh1VOuzXS7jI3JSsjmbQXl7FEZjblSs1syi2ynezryR4+kh4eQLcvKwwd9bKRLbAOHhOyYodHz2Vy9BxA2ZIN5Y7Tjg3kNGmRjXinZhHhoXOsLu221qahwqQKs69VpWmTakxtUgtLm9TK7RS5gp12bltMVewsUbti25DsKNtuedx4TvpMeWyfaXt9ptva/pvcAc9jLDJCQbkBIeH55TDDo1KzRqLzyx1igfnEPXf+gC2vAuDx5vT0DV0RzCQ0rFxZsxmW2Ddsmksk7T5XlibujENnh5Z07kjh4MaCJzz4AAG/uHklaJwHOS9EN6YuJJ1wMGeREpmjLJUVOiJUX11yqolLI5LpUOSIzLFIkQkcmUFUZ/Jg8kZeOikzw+Ko4YrzzeeVdkXGFJnLj8nONhm1LCyFoj+NPLxkGNSuYAjF1ZtuDloVTBnr49cJFEiyq5CQMG7khlXOfr6REs8Hu6p44vn5cQd1NFUSdQ5XMpUWXQTfGSdRYAaTs2LUoWNBl/OMlJExunJUr0uhel3KwdxgqGgg8vnwiDpcrQKv5P9qbOLw+Nh89qqPnb2W4F2LJzbrPKoR7hgdHlbl8rSNS/vGYyRJecfDsXKj0r47F0V+cGfeGbEeuBnYO1xzCIN9K+dahGO8vDNJJc1Oi38yC/m+3Vhsv9+M5OmRtZhjnK1+rO9tu3hrkoKh7fC+8IXfVHCLKLJAga5puSRLC1SGpERPjpHFQZtcrOvp5PqPs7g9logRqKylI7spcjcglU1TpHVSMzfsWoWL81CMbu91EPnVsvVkN6XJG9U3S3Xf2z3TM2DA6tcttZN2WOvuAHa8EWkJv8+6RpQZJzhHpCqbe5fXlLQoTEpVHv3ugfHt8EtRqdKDNaqoigxp3St7+MjWcXihGc5LxrdG57tBQpFql5KRqXRnYNg7iCwvSBRSos55M2nOOzBYlx6YpXzEKa7ADHjwCQEz4IGQWIUq2FSlSbhrQcVCDipOXqB+rThVfn5420MqhwQTL+QeH8zl8o1c4udOIobEY+HEELujIBpa4PFCiW/ljMhtjudng5OQSkxI8SA+tkG+FhZFeySId3gDaj+l+DYmQAst2LkjCUf7+cR5MZ94fvfhZhMbCZV90yVWtvPrWknA7BGv/EhMmPqRmZTxQ5gE9EOj2OA/aftlru3bY7X9+jzavkVq+xai7fv1DttAps/7L+paVOVK4Q1CWdidSQgvHMmfpvhP1FR4plruVCJiue8yECcSubFij420FlXcgB2c2AGuRXnEea/Q7191lWV6RT42iK3iknZT9FpT3pTZYhan0uQjoa5RZW7I9nAHDsqi97LH3buzvg8OTixl0ciNrezrwtvHpXzPck3GA5rnh8tGmvT8dPKeIib0n+NSPR9riQxwVtoeY/XJ/I5HZaJyH10+lSNyV9RS6JIhDCZxvXYJXO003DSXlg0zawtbP/8jHhskvL5F0/8XcrIbRwyszIBvz9kHKfPadp0BN3vaXpwfnPFqWxw//CK4GYO09eW3X2xkfzN3wDLJG5C8KcaAU2AYzt2pyPJycDKzhbkh5jkbj5KKyPoesPiqwt4ObpY3xz6g7qu4Aa6bG082Vo/n3y3uInI9aHaPlqgiacvM9dImsZaOpjThtFlstnRhLgG3ytJmoUht3YnU3gjCbgcwyqZ5AWTJC+D71XjtAM7nOStGOy/ZAnxP8OK0BvieNix7wJOTxaH81rnyWx6r/LbnSdCr3FToysluyNTF7UTd2x5tgaPx7+enwfNu59a2f/Nsffn4YKEAjBT7rG7QQIZ42Bcyq5CX28m82aWUholFIHO9ELlyTQKNZxLgmiHyQTUJLEUvjE0CwnVDIOEKo7V8UW58KpSusCafl3B1u/LcC9JwQCoz9O7Gyn8eCeuaqMI6nH3nWlJlBa1Wn57KxQMo3p47/4FCNQpopRoFEPhk8UudHRfyScqpX1JKXHyA5Y0SNy+7rZZYlrfh9qJpJG7YLFT+LtTkKKs4aSWv27OsxSF8DY9EjlimdlN8S8I1ap9OyiEZF6FK80Vh9ZykiNrSpvROhFSp1Aip0rjyb+cq3wdeded1R1eFB9KO6qxm0tquUxr13nvzsmGnBpMKqsWp/rVwdHWnsuqtvz2uEmg1229aqZ2T+V05a9luPRvQXt2MhpaZjoPGJR80xYtmZP/ZcG73/EIXpCI3pyzrngW51NRgQsLa7nZa3N1mwhZ6YsrpPdNWnYUFWuhK07qNqcH3guMCpsV5r9wV/cbdyO7UjWx8wbuQFrxHloYjU/fFhbovTnU0HMY0bxyFuste8V32k9Ma021xdKYT5ECZVOfU7JRCrSBtbgWpj7WC9GAryMehSCdZQcrgOHzO2bkQ/35nLvN37jJ/57hBRlcOZqh2EsK/jED5CWLB1/u2m+PT+setOd0cHmdIIzs5KtHJ0e67LP40vvx1Q/GurpBRyNjRuMaOyjV2VAjP73aHzQ/PkbQXkQ1QDckHMor9wHwgv7CvBflABI9Ar5GAHTzO9OL671AzfNf/2Mu2WGS5p417oHlw6zvQjALsrG8gNFyfD7DTf/7jIAWgZj/JquDmlrL+zdoQy30fRMO9ifNr1fGUE45XZeRWNPgBa3fOGv9Crr1JZDaTKTcFxSwS4AQYUm7ivxZ10yS6aDJaQmzoRb4TyZ1yGxkoAUdKcn+mSD5r9p+eqd7PIrj30+dLcTQ4rKjWkTOyFKozstQ9hNKi9avsGDFJrpVRosHB5RrVhHc1Hk5NzZEgoyqRIKMKD2OSc41/CSE1vdQlNr4Jzwa4+OpBINLzS9v37KFh6P/zdw6z/xNpo1+8Zuy2MtvUC5dm5UQBuB3kzTC2D2er/zaKFaj43da16NMaMovOd85m/22Ud3FQzaA9xfn4eqSbssue7XT6FejBDspuHC+fcbwnbo9sr3HuzN6YvJ/emc7AHuiPPBLDlXr9XTtgAKmSTCq3ge/q4JkkPfPVY8MkyfGx/MLJOOmdj0rFKR2NykA6OsxAmr9z2PTliUNPOFV0XaHICa0sXW9FYIen43DUQOYY5ueEPgHN88oL08yZU10u4NUzJ8wJfeSZh+SxgSUpd883+0C8JBdWkoTU3OfQhwxlTl28ro1K03URM15p+s43wHBycS0KMC29+Igq4AC/eFU4m813ATvskZz/RjPu55wfLjDWvp9btGCd7cLyBQ8eL14fPGq8eH1wrXhxHsyjv3i/8Czx4jwUSnJxHFogXlw9uCa8MAmi88PzdwtTSS6OQ4WuizeLlnIXx6FiV3NUhoqC45rLlN7npvTGMKV32JSuwab0BfsZy6toHMP6iEKGkziMY1hfiLbj8tcabrqi2NfT4LSDC65LLKePcRLqVsLPBLCbZFcbifvdxel3J6PUljqJWRBc3QsdQ1zwOxaW3JENACW54K+YTLu0w6f2Pt3J0XMe1V4kEvIkGgl5gizx/owjKYHpT1LxjCOS232AzgEakBEnSA4qJ0gTruXO/b8ZsYWch7YJ7soEED+q1NQXNRIxSFiOdBTqo4HSqzbYCMAxn7tBNXrA4rbPiI4mjFhGnpbnfnZBqiNz0g/nI1u974bADaEnhgSjGinxbQTCsIZDO6gu8EIygY/IFSUx6RCFGu1RhElgKIoTGMbzpP5hnqTzeVJ/7DzJnifvQrl5F0rNu1Bq3oWSJkb+ZoyWy26uARIcpe4p8TowCHFRS4+NLpA0bRq1N5gufTFFEGrnBYyQRqRhSHS+eKOFlNFbOUEYftp7blTWb+57IfCLtiUWnVw4gIVhY76RFpuW1wZFqDmiorQFDmiSlMeXYQm0sBEkKxXev+AMknRwWofNv9QxknLHSHrfHhx9amPlzonSuA3wk6q41dY3GHI8jM/faGGmgcJzHnVGYsyfxNypjpKIAoNv7dIcRz6/S0d7Z/P27nhse1eC2zvhMuyUy7DLVIZdoiLs8hLCzlGzlFPMlCMzEN/Hbo6FI7g3ddiBDiKvDma/XjDNcO8NgYGXx+8VtxU72XC434YIxms0R8AmFw8O/PQMTHLfiPwkNXfllD3E6u4WoxLXiG7zVkY2BmC+f0EhvKWXobdlnJONcNG5g7Du4eCm3XjDrXTzF79BRFjfFJNjPczJPJgA5eK2AKez33GK5y8WKH/RjTGbH26RFDItGwIAp8u8mPgLKYhR/ddiSUCQBXCXRoK2LFHlJttR6hDq3ZoHdJHFBlMpNSSkceFCFao7FGLgCQzqskalllmnUsvgJMYLgTatc3hcBuySuTyxIrj4wjFAPNHTps1/sY1BRl5PuSplT+yZ3YkgUt4CYKy0SNoaAsobBoweVF24JobXeRBMCD8Tz4lowjJ+V1ZK4wpvzUjKufg4eXNj4flFrhyImfnoeO4Y2/nhneoHrwdOSZt+XA2eyTguRIM0w8xKYBzx0hSZqJ6/MqOi19byFIfCXKuw3ZqVnrhAVms9MA00kNLVE1V+7pkKY+pCdQF0pZKnOirEGSlbcSC390pJCx24HTfiSAGtoPc4aFM/OMymyglmNPfZGUbErI9xD6EuJRzwT7E6YxxRNtJRQslFR40lLx2NBUYKj3j0PoB91K5EQy+ljMdHcmB2w3BL5eKFknHxPQmK1G5eQt0Ougfg0g3JQgmKzL54qwcVtJO5GKCMhGQ3L3rO93O4eGUKFscXxxmQvN1clrsytdyV9FjLXQ223I2cPQKFbhaS3c4GrwyPjK0+vx1smajcQFD47nh+HHRzPH+j8LiWZpgbOXly3ojS2kfq/GH42jY41DeNcsyN5Ky8g6hi58laEElnuA26hNJ5Eqc9lpl8UClYkgJzESF/XDoVuCtmlsMCJKvPJ+eWv10/QmhHSicXiwnfObcEVVLy7GjTUnZcrcAasPQNCxIrefaXK9hA2OyWuKqZl3foAciE5nypbjw9XFffSN6syrHX+TMQtSLW9nznGOvE/zo7aRvamAtfHinWEv7Y8Hz3LHN9TYLL0tQM2RRinrsNZFQrVGuTVXyTfP7WN3B0SEYs4mMaWPtgGobjB7dkpRtvrZccnOVVhGVVKcpceS+oLTWTAmPV7fGrcbp6aUz3QumwmYjjfhtgKmpCJnfnXiFupFeF5ijnR2kgb7EaKVNQWMmvvwjzApJfEaPB9flUhmPtLHAg4Gsb8DwBI5u6TXKZE5woHGObLfnanL//cqdlvRor63WgCbdKi4Vqjeppap0G6WwHUkwVZ6IrSOnsmRX21AV2DZGsaQMPQ4e39irJmzZy63RYuDo/DhauKiliNQ1OQ58T556cBH7pqkuirnOJOj9Wom7PI1E78CASiQdRLtLDuHicwsXjVC5vpHEJHnBwTKMq2Z2M8uwkJTuvkV+cY91GonmOvsXZqOSjjE4q3LQX53Hnr66x2ChGIrlcQJ98qrVfASsu+TTxcEySiUwUIjpJdpSsEiZCp5V/AIIpVSeYc24XvjiqAS3FxefdcRnfdwWPDevTXGlLG0ao+elLP6xPhgMXH0O4liPVjfRCatpLFINlgWqya79aDdppOI4kQkpegJPoQU08tMRNFci4QYojFo88c6Y4DGrajZlxcSIFv8uvL27hWvKFLN+4/izDa8fspKus+b2mqIu0kUs5Fw4zi2BlJASL+jEdGuhlKjgf0HN6CfZ5lQ1iYI4BsIzCUksnOceqT4B2VMw89Ir6f+yVa5FakqR1/M437FE+EXpaXSeP57zC5WVyHA4rCZ7DWUap6lOil/In59Cgg+nqaSnYztQyzXrVJC6osSnT3dTQEWRyitReu6jLetcq04XUGtOF1Hqcl6sd8DPGdV17CkQkda6nqgteXa/zM3uk7apz0Ue90EJXe2V6nnB53HMRO0ytmZ99wJEx80y9BOMoAB7pkZcZ2C6w70G1Xx3oDEWdSBZvFM78fRfYLudDsjgnJI6Z+MFN3z3gaYk5qSw7jrszCsuOGw1BsYx4YmcsFjcGtQAJF0nxKt+HvcE1N99ucyrPyvk6Q76s4JcW4yBTi6UxnSFivM8ZA95OIMnsDCnjbS9clyqjAQyuFy9xHDaEQTMCRmV8mdt3oQvVa5pzxc2mjovbcO+p4/ROA8flfPDIV4IjpavnOyCZh65acqmM0WtLgUJjzpQYFbu25D3R8SurXIKbNC7BTToXkyYHleKmXLSZZip4DU76uThOcVqaw/Dd5oZveazhuz9PDGjhxoA6uWQeY6BRI0ALyc+dl7BkHvCXcbzco8+z46FqmxGeeQzpSniAF8fFPfraZkizNJKDe8wKMy5rJ5dNdM28v62Qo1dJnu40evOdGuSFubbzwrUUrsFNMjXyCgeKyZcJFMOgOZXKD5M7hxg2sudBwDBdubY7jrd5Tu1B9YUgnm7zOiwwVNh5lo3EoMKGpDNlocfE5/p21IvnHyKaLZEggzeYJiVUO/f5J9ZhwwVi354G3SaPymdpL1FrNTwx40izL5IKNgJtGQcvJFQmWOYywYRl4z61VlSSp3sg0CLMLx3QlBKOEGORvtIW6MvrBolwbJ97QyotQzOf2rKwCE2a7Q9Ahfkv01402ZpEWDrcOLh2IwKjymqKi1iDbd5el7e3g3B50uGAA72T8GOnTp36ZeDHHEXy6XCqNvg+7nqlPRiUBuGWjEQjy9ffryVn99AX2RDkpZFIY4NfUENCY2icMVnijO2EtjW0GSsky/aT84aTkpmXiGMb4WedmijWUYmxuDTBPtcE9eyc27dv3vzHLw77l+++++rDq/nq22++++b1n9+f+P4/fvP+WfG3l3/6eFC6+Jfu/x/B/4K3

Trains

Generic loading and unloading stations

6 blueprints

This book contains two unloading stations and four loading stations. All stations have eight inserters per wagon (plus eight more to feed the buffer) The "smart" loading stations balance each buffer using circuit conditions. Half of these output the contents of the buffer to red wire, carried by medium power poles. These work best when stations are separated by 6 rail widths.

0eNrtXV1y4zgOvkpKj1t2L0mRlJQz7NvWPG1NpZREm6jakV2y3DNdUz7A3mNPtidZyc6PWyYkAKLS7YQv3RUnBgEQBKkPH6i/otvVrtjUZdXc3K7XX6Prv94+2UbX/zr5sftdebeujh9vy4cqX3WfNd83RXQdlU3xFC2iKn/qfqrzchXtF1FZ3Rd/Rtdyvxj9yrbJ774uy2pb1E1Rn3xZ7X9fREXVlE1ZHAc//PD9pto93bZ/eS1fZRR/bupiu102dV5tN+u6Wd4Wq6YdY7Petl9fV93orcilWkTf2/+SdpT7si7ujr9TnZo94YouPHYK1w7hMVvz9Efh1iFcszVPxzU3dOESrbllC0/2DnEJWZxAh0dKlj2kaUaWptCxJgVX1XTcDVJyNUfEmnxbg0/Ffbl7Whar9u/r8m65Wa8KRzToo2zj8rE8X3S7NtHUD/W6/X9kZdietovXXFZtdk3kGk5DGQ5c2wbhEsPOHNbpFIvWUuCVTPCmS7zUlJ0d3KZn3PTgFKcEI7zUW3Q9x9N61wABpSTaq3inKsVNDm4nxMQVGw8sWHW6gopitbx7LLYDAa6dQgx5GcYIt1mcamJIswRpnhwSkpKXGsa8jJoVEEJjgbN3yNyYvAYwiilSnEmnYjE1zIRTjKbElVsTQwortwzqruA2hrwNuMWklLhx25MRw8apiBa844hyCpPUgHGLUdzzAGJh6Aknphg6MMEbnNbEqHN7xFCjzi3GMk8HGL8m3JMMRnhKjHW3+RnzXIDQ0PBPSvF+/OBtJOsM4nSDYaMAGuEHNgqAEX6OAmw3q7IBMswXcxCMODEaw1wYGKW5iw6jN3vR6XHgwnDhAIxsLjiAcLgVTNkGAeZIpk8Qk2nZ254dxzRszI0Ui9Ccsi7F87LEyDWU9f4i+Aw++n1xRGevT/DfRbTKW7Pbz36rVuv8vqwertqt5fCVRfStqLfHGNBaWaOlMPYNwxWdqgFKDlBygJIDlByg5AAlByg5QMmXACUvovacUh3t3Xa/ld0/dXF/enoo7zsY92S87oO4PWzsf2EoeoJlArKMDGXjlbA9JZSGlPjAUDjFXW7v/BrIOd4O3Y89Axn2c5B3tCWt4j1LUsgSKnKP10H1dYAW0UUj/3h/9KPLSMgfP7lygDYJtCAUGkKhIRQafqlCAz5Ppb08paETWChUhEJFKFSEQkUoVLgLFVd/lM3j1fORYKxoIflFC7ACgSlf9CoecxQt4gHkWPkC+9WcZQqNKlMMhJR8DikM4G084d0aVaEYX18YnRN+AcBLcQJfXcomouijB30pvKL+cgJgTqlQ0DHpcekxo4QwsRQhh+QYPmI+bqzlI9E+KxJiyAEpHYLHVR48lwqETxheMiDa4VIDHkkfrjFMoGC/M0190DGWjlZPwPPRzHQuRT6jY7s08B0JTo4LlR445MoDczsm47fjtmkyBjou00wnutvpvPBkGu44hhCdANjTGeNxxkdghzFpMjY4EWaWrzjY2Lle0bFrDtiMBVyHsWQqfjkNU8Y70ZLRbg6w7BNZ1ak/CjcDYH5e4c4jjBF8oHUYQyYuagSwZdiPFG7TY85jttts7QdyUz5xX7fRnMd0t80JG8L0A+SqAd0yztQ6eTsOpBaF7+GAWQwEOYIN/oNIYVYfGA18hZW+GF+I4IvI9IuZBxUEB5iMDKo3Z8yADAqS4qS0Q9CbnoTkSJCkfIlnnvCHEr4MYQ9DzIEUvoxgvvhDC3/Ueg7EkDYCBTUc8wcFORyTxaAuC5rllr++cQMQKFJizB14LHFUFGe1SeJiI2OKY7FFwhVfZMWALMWIeUgWGl98EaQPHuSSJBVELcRjlDxFYixbk4BzijHnWsYKgmQhAU/Bc0+KoSwPTQtz3D6Bu50nQJFToLU9eD48NsvD+ROskCnE4U6ghSq8UIkVKvAyFVYmQU/O1ikwO0fM2Uhxkg0xS4hJ2Sq2GBIyJm2S9DgnZGeQHpw9Gudpxo6NE5wRMwrNdRbLR9SCllBpamR9+rYaJz8zHh7U6XEGBisV99FBUoyGbZzwEK3c2yED1H5di5BIQ89aEvWEb+mJFic44T9kQE5I2U8VkMSMnEhQxhtBT304wXLCAwZuQRrFfLwgrUct+rkQWqAc+vRLCtLuaTeaLxI4AhvDTyMag+MYy08qkBsSOrwHmc9fmhqDdDLI0UsxbD0JaRdDxnMY0CO6KbZESMeYPtcAXGBpfNFjWQEQZchzcFCKVKIgkZfjQF4O5GWgROGHYGxnJEVfInnZB7VYzE6Ffi/yMuWGkjYxNfV6dXNbPObfynXd/cldWd/tyuam/d396/f+Xdbb5uYsA30r62aXr04y2OEvlnn1vXlsE2h0HKNVqcuEpvvhaZPXedMNFf3vP/+N9vgDn+zjF1p2Oe6hLorKAYi6z4IynpXlrVm3pVzWNPR72aWFpwGCod+Lfk64COey14LM4ElIoEl4S/Z53Z5wnoqmzZ6tWrdldVALys6vIPiZw97kvPlsy3Bakd89/uiwZbuXrDdFfeSMXEd/b79zzLZUqQQ3qw6ZXEQKmgUIuJTpnA0QGefyoMsK7z7O2YXqi7aHiYGjHZqT97zUyUOnxnt3WDAuXjrD8eH9WCpMYXRKR4qZ7wakfnG1S6iQneDlSO/bGCKmz6aCdxRpp18BNTiZ2WzXMyUjiWUghMEqlZijSUbOdrPTGVcgBm3W4LU8ao4enni2+5ekgx8B2Qw9OsR6htYeM9etV2ezDCctbaZfRoWf5GSuO6UGphQ6Ac/dH+S1mYnTMKT8NAy5e3su/cFVw4kvBm/zUn67tuKpXVsXNgm6n4k1vGxjKBMzyuPCS8+X+BBT0N8aNLw1gDxCbb223SUT2+4ubQoGgh7aqxzcBa8tf5nHt7YIvy1/0m/Ln5qz5e+n9ugNdg9+nLY8fCti6rXlL/PZ8kfr0xtu+ZP+Wv7UHC1//3zK6+aK+u4SHSrpoZIeKumhkh4q6XNX0lWopIdKeqikh0p6qKR/sEr6WeEcn3JCJT1U0kMlPVTSQyXdQyVdfcJKuv6YlfQUthjRUU06IJ639L33aVH+eFj8m8/DInQaNGJ6Qzh+raQ/gZCQjr/uarYXVSFaxufhL0i//AX16fkLmsFfiP3yF/Rn4y+cTYJl8BeMV/6C/WT8hTP0MmXwFxKv/IX0k/EXBoIe2tp0Nu/L4MTsL4PLzu7POWtK2PvlLxjfr5rz+nI5DB1C+6NDGL90COuVDpF4o0OkM9IhMp90CPYr4fR0DsMwHUL5o0PE70aHIF0yYFwjLG/X66+OWwzy6v5q138h27b9w7yNlW/FzbNMAQy6/z/eOsS9

Here is the same book, but using red belts and fast inserters, marked with [T2] (tier 2).

0eNrtXV1y40YOvoqLj1uSt39JymfIW3afUi4XbTM2KzKloqhJplI+wN5jT5aThJJsS0M3SADqli2nX2ZKsvQRDTYg8PtA8M/kdr4ul01Vtze3i8VvydWf+3dWydUvBy83f6vuFvXu7VX1UBfzzXvt92WZXCVVWz4lk6QunjavmqKaJ8+TpKrvyz+SK/k8Gf3Kr8WqnVb1qmzasjn4rnq+niRl3VZtVe6OvX3x/aZeP912n7ySP0K0TVGvloumnd6W87bDXy5W3XcX9ebIHd5UTZLv3X9Zd4j7qinvdn9TGxN7yIqHnP+InDqQNRFZO5GNA9nwkLNxZEtDFmg3p0ST5SuyAyvjYSFOWU5DVmi/zljAiK0gBQ3Z7QvXGZOShew8Y3IfZU/lfbV+mpbz7thNdTddLual45yZHZp1ojEjK0W4sxda6y4/NQ/Novt/BNz2wCdvGbBertvEdSzLSz2p0ycpkGRBGIvwBjPS3BbmrNzixpqhVyvRq1UCCyrwmJIV+IidqhR1pyruRlWalQmcZ04ZrJMJJ84Ss4seSC6KHEgaYeE+kFZtWc6nd4/laiDEjdOynLg/MYaRAwkBqgVutWJgsVoiPSaHQBRxs2EWp3GGDdpliHtMOFEsaVNJJ0ZK21NuQzLiJnKj5JRd417NjLRpnBhG0PaMcy1GUjaJ2w5myaScYLyKCREOxrCKGAyyZZZiCvqBW6xb4BfOUJO+28sZp8LBuCJn1WEYZGr+dy7cEisnNwirVEKs0SpO+YIB1rwSjLFBLbFscnuYVye5sXoRs1rOqxaImEu7xUFUcjZjZRODQM5ZGRCDPONEPcIZqeAAIyxOJSudmHH+JGWFGsYXmpMcLMJiwwHGONlyXIHxccqKkRTB0WXYmBYvIY24Tk1zdKJ4RUXwaemMtYXf2Xs92THUVwcc+CSZFx1K995/6/miuK/qh4tVW2y/Mkm+lc1qd26MUak1Uth0T2SLja2RTo90eqTTI51+pnR6UM7bhKPuvxydLjyy6cPU/LnS6SFJbxWMuY90+snp9EnSlWH1DnO1+avc/NOU94fVUXW/4Z0Pjrd9wz5fP/+z6PgjnKUBZ9HpfLwRomeEyiAjPoMcQFkXsIyPUQ/Qhnf+7+2KGbSS1ItwkPnQMIjqA/40znreMBLyBlW9wNtg+2ckB2z4EPUDv468tw4LJWe+eoI2Bj62PqFwYYIJOzaYsBPFlmNkEuFFsZGnky5UKF1Hh9J1PlRsQScg06++jAIy0icRa3QwsUZFseZUYg0GWIdSgUwoFciGUoGiWPNhYs3F71X7ePHywzQm3Ei+cAOpMBgFpyf6eBdu9MtZmmaXbnqGi5df2vE9qvE/O3srvcs1CrQZIdkMhBXBZGIWECSLiT/DEgT3IOHIkf024+631I3X12sw11qvkHa7/tH69UC4wV5KHh5hWL5B5sNDL4zLDJobIDh4Av005giLv5YZg+KGGG7N1FKXCI+mkvfAkB/w15gjSEowQx8IVbp2I4mRqqikz9j+7Cs1mP2pAShG1EBQWOb2zSZzOabNjFDAY0AZedNBa2NEAgSFpFPFyOKw8sl0FOiQFu0Kv4fHdrqt/0C5XiFKLIUGVXhQjQUVeEyDxSTYif/9ePtNFpiETBEmaMAZPQ3ggHNiLAtgk86IyQXAwQsJ+7hBLdRIcq7B4SpimEML17S0A8EYZqWsADzLLpTl4a8v2C9xwOoTy2QJWJwxy1jIAzmz6obwZuRQlqgLUEHOPThcyaxhgfVTef0xOE2Na9yqDTkP4XAtrzqGVp9yi2NcdB5w9bTSGAhO+u0UL3hAsWa5xABQa/Xp+FHqCbCLzL6rA7u8M/BvAQ+tWtPIK2jRhhfZBsMJUqn2qRhZc8oLRAiOyaZBrsQT6i+kN4AzI+5n4Io2E7QdsoUZ5t1/It4iob44045ixpVnHj8y7Z+ZaQdOWh6SuJ+FJ8aFbzI/Mu2RaY9MewhmXHrm8iPTDjPt+EbptN+WC7V885h6vCHv+oOhFvqvw/R76MNnCQP4k9JvHFcWc3NFFBZOKyzIUMKC4goLeP7/iEwF3UCA1iEkxw6dMW6m8CsTnEDXwOsP/DsnwF5hrA7CMuNdy7JNPd5EQdMrwgksDP0Df9cJ6LDUs1ySeZZL8jByCWWC1TEyzNFyifQrl6hAusZpZBjv+kYwOYYul+CzoeonZajCo99qMcxyh5Zv2HKLCCq3SM9yi/Ijt+iQcovxLLdYv3JL6lduyTzJLbkfuQUv23DlFtJNDvqLSi8Do3IUfkO8sfWIqy0vs6iUD8kFPdrIUu8Xwjgi9TEuyYPUooLPpBqUWHxMYRLcyUiIYVO0kU7jyo/ijloiSyq4wUtdFmubxfzmtnwsvlWLZvORu6q5W1ftTfe3+7fv/Vo1q/bmXb76VjXtupjvU9buE9Oi/t4+dtk22R2jy7mbtGk3L56WRVO0m0Mlf/3v/8kzvuyTqaPsmyQPTVnW74gXA1SE1EFaItwcLYmHTjlzps7r5OreyZUZfHIhll1mjNFZ5x0DSsJugrhGmTNHdCHUPNJksXH9TTBHfpEnoqEGgJ3XVulzvhu559Xa7Wtw52iIHSbrl4MjzjR9xNmwbul7qNn7iUwa9JmERngpS553dtw8ODkEkwWbJ6ZMf7/lsLPS8eFwnmeuvT+XcOaUoIy7z3ZF011APpVtt/W7KL2t6m2UQtlOX0L5Y4+zTyErRg4pi7vHH/PHtPPlYlk2u/bCq+Tf3Xd2qZaK+kwabXfdfVpBZ0GOi8LYGXNHjMtj7O58JJsO/A7Lo+fqvQ2k8zZXjzGerh/fOgWXDBKyhBl8Er1kS51jR5GbfY+U046WEciL4Py/LNTQvdQxghCyDiFlI2fhjZ+PWajJeLD3rT561p/Grs9Inw8tUszZdr5n8nmXktWAoZY8HK8/ke28r5cNHKngdFmTMkf2eZwreJTkLb7CqTT9hjULX2WADYaMB1Kdt9P6rZcGvtrQ0NUGtVdhIP8cMxhyVKRnPojrqDaFr7FLBjYFVFwdtFwc/7QvS5bRDOY2V+QvJULbZw+j9PessCM7I8SQ48iNERI2idoGIQagfDzvS3l83pfHJ3whmh8QYZBiuh5QYxY9zYAcaS/4+alo2gvqY6/MWTYWeGoGUMEk+8/TZjDUYvEZGguUv+dbBWslwDc/xMaC2FhwLo0FFPnfButZiI0FsbEgNhbExoLYWBAbC2JjQWwsiI0FsbEgNhbExoLgjQVGHNVYQEqS7+8jP3XGlD8mzH+dImFuPDyQMK05egIAOpCMCNe+0Z+vgE2ecHuHDP8IRDM+RCBAu4X22BcSWzfOq3VD+OvcGOwCia0bsXXjI1o3vPZbSH9tIbF1w3/rhhG+Wzf4g3j6BQf4KNHYCRI7QWInyOk7QcQgTMZpKGF0gpDGTVjXEaa3i8VvB4f55T/q+uJ1qEVR31+s+8/xXHWfLrod8q28eQEWwJGf/waW9Q8J

Logistic Train Network Stations

Providers/Requesters

8 blueprints

This book contains four requester (unloading) stations and four provider (loading) stations. Each type has a base and an extension, and each of those is either hard-coded (filter inserters are preprogrammed) or adaptive (filter inserters are wired to the station).

0eNrtXcuO2zYU/ZVAy9ZqRVIve1GgiwJdFEVQpKsiMGSLMxZiS64kTzMI/O8lrRk/ZFF8y86Mskjg1yHvJXkvyXN0881ZrHd4W2Z5PV8UxRdn9u30TuXM/jl7ST/LlkXevF1lj3mypu/Vz1vszJysxhtn4uTJhr5aF49ZVWdLd7nCVe2W+N8d+ReXzn7iZHmKvzozsP88cXBeZ3WGG8zDi+d5vtssyDdn4IhWFotiW5Q1wd8WFflBkdOWCYgbTZxn8g8guKRvdVms5wu8Sp6yoqRfWWblcpfV802R4nnxMC+2uEya33vNT3K8pK8r+m1A/3osMc7P+5OlzgztP+/3+8lVH+G1xXWZZLlb1cXWLXb1dtfVa/+n4KXfPwWkG2lWNr1wZmFHI6i3kSzntAEPbfR5h3yWHn/7kJVVPb8a36esrHfknWNfmm+4Sf5cr7L80WnaqOqEThWPvthsE+Js2pTzC/14V2HS1LooibPrcodlBgCc+YW+DhgD4vf5qstLLz5qjUK3vyqcp/O6mB8QndlDsq7wxClxks4fymLz+j61beIcXsxps1ucivvzk0PMcogbm544f+f08/TDH5/+/PDX2TK6sjw4Ir0Og0uGYJHlhyG4thxezsEuex+yNWmMseCvDFjXubtJvjb+rpr5sKOTAZyt+Yko0rYsnrIUl269KnG1KtbpOSIEQRRAMD1BQ3HoYzTqxIYe+XOERZ2wl8EuKwvS33VS4zMYN7jA8Wm0y6p58TpvTESf8DR56mT5xW3Gi0SECpd0llwNOmLGHb8DPpKF96XgY1a22CZVlT3h4xToaYjGtg7oqTo04kADT9YrgZRXAJDFD+XwobpvQp5vkDp2wMP2Zf0SyfklkMWP5fBDdd/EPN9E6tgRDzs+8wuJ7I8rsp1LsjUzl3qXvoBdmFNhTCiKCT1RTE8YEohCivcSikIKOxMiUchQGNIXhYyFIQPVXAW65yUMVbMTCzDSz0eMNQRj/XzEgp6qpiOGG5Cnmn9YgEA/4TCMR1A/37CgkWq6YbnBV80vLMBAP6GwjA/188kBmu556VZ5dnaNMHHWyQKT3bRDjzTuh9+TMiUnlZSccU7nm4nzRA4ezVksjiCIUegh/3R54NFe38PVhOBYuqjznOn3XimIYkNhbI392WsrSPDULYyLenClk4YLhH0hnT88YWiNTOL1eEMji7z6BfWflgQ9Ie5k+dOS+GQGGomlbzLrnJD63AyQYtQAZs5DLyu4Gy3Qjgxwb/jU82I95Jx45CID4J5xJGJBN9hUd/V3Wnx2vlFd/d24QG31d9oOodpy7wZDuuu722Bfd3lD9Y3Nh9++1jg/bGx4WxxgeYvDv9cscer+R2Lw2c/gSNp0kTYSnaLffbGv4TW6+zhyPu+O8+nyC1mCnAkEqVNGwmgkjOQIo6TM6tUGH5JEz6B7jIgHu8f/hHqKL5VCgMHJckVdU2EKMz/FGLqTOUsHzg/kp03AlgXfy/iTLrKJAxkr0m/FqZjhfZN8mnTmBOIRJm7ZAyDDoNgg/2jToKhl0FUIvfwYThn2Tu0xlsCzSFmapBRtjhNojwQIGSMBoEEW1qpJ7U1MxLIIWeRlfYu8rEne1OpIMOdSaJBZtmpB0F4erNODDiEcixPC5snmqXmyWZwYliCbgXmyGZonm5F5stk3TzYH5snm0B6VG9mjcmMdRttm4CEbosvAg5hXK1Mdmt+qDbHgLh159vhqYI+vhjq0vU3HI9SePKwtkDznHgxlw9URgTl7fHusfGCIle8l/BXECVY9z5wskY5Aw2qXw/aEb87PIpzBr2myrclQSkgh4HfOE8izWX4PySqvnui+Dba6kQ/EL/1vLs8ARuUZcHhnt0N3aEpMz9Ka2J05l8ZMuVeN96JAMSpA8Yb3fDuoA4919vYMyWlsWtPe0APWhv4eRTbIqMjmBiEJeG33+yz3S6t80A3MYU6eQDvLQzM3di9owOrGD0wtXMf1qqtiO5ogMFXWllm+wW2dwlgxGHrK8jDLE6RlAPMeBdgRkUED2ifORaOUfs7qxq8dZSErykJfVQNntf/tixPIOgvDwI5SLtTN0ZBzhSopErTqbV/0ikf+nhYN0f9I45JBQpaIjF03XE2i+68NwZdjgbFQxG1Fg++yMMTH0xJ61zK/SymeMYVfh3oQHRRhEoK8CVfEaVOvF5rR6/XJGK+0et6lVO/HHqkeG1dCGAtOIj2pyBBpqdhMyOJ8DiBTd7bYPTxoFrEQRPSNa8wCjtEAaqnWpCRWLKsDZWEVCzE0LqeKeFaHWgItqesMltXqmiIW4qgkGpVEwyqJlDQ5vGe9Iz25DA8+Vg3z/GoTkpkI2qg2wX/eHegpSnjwUDX886tOSGYoaKPqBN8BgZ4IgwcfqiYaljsi1TyjUs7i4+l2rP9Oxb+zOxXpohZiFx79nu5VMEivi96yEr6ObkH6Cs9sXYveU6Kgc/oofukV0qsQiTWYfROOVi9tYeTU1MuAA1k0IMany/PeJjytUd2CX+nDVwwmUI6V5gQTU1w07LTb0DBEGswnbxhitUAD5cpkcAINNEP4ehYHQb2mBn9LD9ViEJSrsNEfgqAZEtXcOlDcmEnQXsEwW7Q3VZTjntgyiYefx4IcI7c2cmsjtzZyazfg1nz+CvnOilwM92RDJKoXe5N8YjiU2wesUjFcSRR2KYE3SZrGg00Wa1UnBqxZAgJpYfvIBI9M8MgEM6guyzrg1tPHzEO2QfJ5yJ0aDPnC7HdAd1t9hL2dARDr0QmTDLvVZXH1UD7r2aG3SOpHt5lFnnDlj8A00R9qEf0myk3Et/G5L/8YiLBOIXwbl+CifJO1OhN3VFlCidX3jWo7gkHVGPdVN+KOK0WoqBBik0qU6ZDakTurA3HXlR+Ym1+leg9K2hk0pNrl3uo63FUlB072NF+/YbCqFlNjl169tRZio9qm6e3USPdWx2HAiaJd1UFFbwMNqrF0KjgMdoQfpJ7DYNYYqO7Qn4glazqo6Meim0m+7qyuw4C3u8rHewm1W9TVgrsoii9XzbyiVz8fq0lU5EvJkrY9f/3vOhkN7v8HG0I1rA==

Depot

12 blueprints

This book contains eight depot station blueprints of various lengths (4, 6, ..., 16, 18), a "junk provider" station, two roboport spacing blueprints, and a constant combinator with all powers of two up to 2^18.

0eNrtndtuI8cRhl9F4G00Rp8PexHAsZ0YQWAEcXIVGAJX4u4SqyUVktrYCPTuGYqSOJqdUVf1dLXZ2r7xWqfiTE13Tx/+/6v/zd5e3y5uNsvV7uLtev1x9uZ/x+9sZ2/+3fly/7Pl5Xp1+PZ2+X41v95/b/fbzWL2ZrbcLT7Nzmer+af9V9fr98vtbnnZ7Dbz5arZ7tY3s7vz2XJ1tfh19obf/XI+W6x2y91ycQh3/8VvF6vbT28Xm/YXXgrUrG93N7e79sNu1ts2xHq1v4w2bMPFN/p89tv+/77R7cddLTeLy8MvmPNZe+2rw5fb/R/w/X82i6vu5y/br3z7m8vN5e1yd/9le613d3fnX1yiePESl6vQFYr7K2yvabdZX1+8XXyYf16uN/vfe/z09mdXT3/8brnZ7i6+yPrn5WZ3237n6WIOv9HMV7/tPixX72eHz9ju5vsHyPZffLqZb+a7/UfN/rj/8e120X7U9XrTZmW3uV3cDWfq/WaxWPVzZUaSI19sCENpeUjK0EP7IkHbxerqYre+uA85e/Nufr1dnLePcn518W6z/vT4/f3NnM/uv7jYf+7N4gqewH/O2vuatXk7XMns+8XNejcbuFX15a1eflhsd81m8Z/b9t/2d768Xw9vBZ/WV4uL9buL9c1i83AxHPOI+FgD1sdb3s0vP7ZNdrvYBC6XkzZaFmytd7G9WIwkwTxdw+PnNu1nvl2u7j9zoKGycCreLa/bNI4Mk1/c+/Vu1Vw9NK423O3+znlnpDyHBvk0//XQybaDkfYZQDSbsYTZseY+b6N+XjQ3m/Xn5dVgK3LdRj8Q2sEbpBsd59VAYP8UeL5Z7j58Wtxf9UuP2Txd6sgzPgY6tvhtRJNfzC8/7B/XdrEPA/i7v/3zp+Z63V78ep/u/Z92BobZtz993/7q4f2IvQhE57p/fw+PNuy+mYmRP9Sdp3P/62qkmXGG7Jgq8Oaf2Eufj1BxnfQhBu/EEJ3uiYkhOjHUUwyJiiE7MdxTDIWKobr5ME9BNCqI7gSRx4wYVBDTCWKOKbGoILZ7O+KYFIeK4roPWB+z4lFRfCeK5se0tD0ME+bb7i0xccwMx7XaP3Vviqljbjiu5X7XbbnMH7PDca33+27r5b6TH1wL/uFZC5aukyBcK/7zs1ZsTSdDuJb8l25L1lp2UoRrzT92b01yZjtJcrjZAHBNxHnMZFjkmwyr/vtHj92JiJ/n8MA8h0v4RIejJjpcwSOLPHN6Tjmn7z1MO/YwNW4ywZPOJZ5vjKxuL68X803z7nZxPTKZ+AW5vOtlYWxNzk1E51QZF6r9yaEYW4NwC27mKk8rFwlbOe8PUkKO5cFFD1I6NEZ5cIo1aogSDBz4hd28wcg8OhvPd+WGYouIvsN5xs4z1usF/GXDeZ7OIlN2lrExX3RfhZv58v2H9lnNl9fjm4/seRMTQ0E1PCgDBzXgoA4c04JjGnBMB46pwDE9OCb4IUkGjQl+RJJDQ8KvUkBDgpMpJTQk+JlLcC8CN00J7kPwLiTBXQje1yW4C/GRJ/TL+WHu96ZzhnY+u56/bWd+9xt5Z83Z/bFC+69qf/K5nUIeZpnOCu6kYVIdz8zul/0lHcYJduqHcccrrIdxz9LydR3GcVvWadzxeutxnKvHcdHbVCbdedwxFtGBHFf1RK6wE7mgGKceydUjuXokV4/k6pHcyR3JcfbKzuR8wjM5T3YmB1GXfa2Hco2pp3JPuZCFH8sdb6Cey70ghph2MNcIqpM5letgTlGcy8msx3K9NqOmn9PJIo/pennQ4XM7xElrxumK6L/hhBu7FfieXq4Xv0r4TIXsJ8KPJcJEn0GHhpb4/S8ekmkJF9MSM+4lj48l8HdErr1knbLhjY0dEqEtwTkI5ARtScj2AD8JfjyZSXoW3HCX/jS44Sb9eXDDVfoD4YbiRBih/pAuvfpD+vTqD8XSqz8UT6/+UCK5+kPJ5OoPpZKrP5ROrv5QJrn6Q9n06g/l0qs/lJ+q/hg44gV3IfjoqcFdCD7Ma3AXGnsfYZQvJqh84cUpX8zJK19MVb4MpuXrUr4IWZbyRciqfHlMharKl+g9VpFO+SIEsfKlI1KsypdClC+uKl+q8qUqX6rypSpfilO+mNfmRtcp7eiaTvtiqvYll5a2bPGLL1384qv4JY4QhhG/OCrxC5LJMUH9EiSJRMlfcvJWSPQvudAlBQlgVOH6F1XlLzEsDUvG/4gTv/Cs4pfn6ZcigRqGF6mG6SVCJpDHiGzyGAGXxyBaosvYEl3/AYweR8lofRJVSzQpW6LvJ2Js/SPh60KOc1t01ETolhjyiMiY1YrQ+Vri6BAo4YsTofM0PJuw4Y2PePCDHIFzMHckVth2JkK+a4TUShgKrZVKL7ZqhEgvt0LoIZUi0EMqTaCHVIZAD6ksgR4SrrtC6CHhwiu4HhIuvGoIhFdwPaQW6fWQWibXQ2qVXA+pdXI9pDbJ9ZDaJtdDapdeD6l9ej2kYen1kIan10MakV4PaeRUPeRATHgfgj8jcCeCv+ENuBfBpyIG3I2Em64vdUF9qShNXyrVqetLpar60sG0fF36UsnL0pdKXvWlj6kQVV8ae2wnWTp9qWTU+lJX9aWF6UuFqfrSqi+t+tKqL6360uKKHalXpi997iGbqC/tG7xS1jtSVV8KMBlVfWleHjiJwDQX1aU8hWkQeo2RmCKp1xiNqc+mMfUkGtOcRC4akWkuJFdBKtOc2EkSmWku7OTJ60yxaEhLB7SMUprKwoWmsupMI0Cikg4kGqcyZaWrTFlVmcZgJ6eoTDmFyjTnkkX238yKTZed5lqxJJad9hLBp+tQsWBKTwem7OhQEXrnjPtbsj/xV2MT/2fq14AQONM+kUvZEvvzfjU273+m2MUpwQMtUcl4RXTIjaRiVis5xQejQ6CCL05yiQ98woY3OuIp+FpE4tYiKn4tIkNrEYSiWSoCRbMUBJJmyQg0zcJRiJpNelUzws0A1zUj3AxwZTPCzaANgZtBWwI3g3YEbga4wLmhUDgj3AxwiTPczQCXOMPdDHCJM9zNYFR6NwNc4swIFM7pBc7wZLrkbgbjk7sZLEvvZrA8vZvBivRuBivTuxmsSu9msDq9m8Ga9G4Ga9O7GaxL72awfqqbYUAfCu5H8MmdA/cj+CzUgfvR2HQZ4+TgLGjlkKVZORQ7dSuHYtXKMZiWr8zKYQuzcthq5XhMhatWjmgrh0lo5TDEVo6O665aOcqwckhRrRzVylGtHNXKUa0cpVk5JHttVg6f0srhyawcklUrRy5zaNlWjqwFrkisHLlKXpVn5QhWccJYOZBlnFC4cJ2PF65pzBymeDOHqWaO37GMAo2Zw1czR1SpA0tXoCHKzJGzIAGJmyNXQYKTt3MgS2NIwtIYUYYOVbifQ1U7R0QZhQluDk1i5uClmzl4NXNElVHwdGUUoswcOcsokJg5cpVROHkzB7KMwgQzR7CMQpSZI2cZBcX6D8BNd3fkqquQ2N3RS4SfbvdAFlqYYPcIF1qIsp5nXK2o/mpFj03SlY/221C1xG9TtsT+akWPjYkavlqRONiUjl+tyBAjS8ef2qgQbFTLmFaecXdodHjV8Bm/wmFSNcKWl2mb6U8pu8vYOI0wDilGYBySBIURGmkIjENwfx/COARXViOMQ3AJOMI5JAiqIyD8fRjvkEpvHkL4++D2IYS/z1gCf59xBP4+4wn8fZYR+PvgPiKEvw9uJIL7++BGoobASAT391md3t8HNxIxAh9RehuRSu8iMulNRC69hwjeheAeInhfdzK9v8+p9P4+p9P7+5xJ7+9zNr2/z7n0/j7n0/v7PEvv7/M8vb/Pi/T+Pi+n+vsGYoL7EXxe78H9CL4A8eB+BF8pebgxXCTwS4qgX1IV55d0J++XdNUvOZiWr8svqXRZfkmlq1/yMRWm+iVjZTlKpfNLKkXsl1Si+iUL80sqVv2S1S9Z/ZLVL1n9ksX5Jd0r80s+Z6JM9Ev2gSUp/ZKu+iUB0Izql8xbsJnEL5mLolyeXzJYlRjjl0SWJcb4JZE1AKf4JYO1C+P8kjkZ+DR+yVwQ/JL8kjlrbNAYJnMV2Th9xyS2cp8lrDgY55nMWnuIxDSZq/jQ6bsmfTbXpKdwTWYtC0hhm8xVFvDkfZPIsoATjJPBsoBRzklZuHFSVt9kTFlAT1YWMM41yUp3TbLqmowpCzjFNckpXJM5lywkrslcK5aTd00iywJOcE2GywK6Ey8LSOKazLUjcvKuSWRZwAmuyWBZwAmuyWApuDjXJM/qmuw9XDPdRomsxadPr7phYhtlL8U27KtEtJaM56G6P003Y8sVjViuZDpX/C7hM9X9MdGMiiddtEc41G3iFywytINjYlYsOcWqo8OUgS9QcolVv0/Z8MbGDgNfjyjctrWJX4+o0K41wqGrHIFDVxkCh65SBA5dJQgcunDPCcKhKwkK/SHc+QiHLtxuhHDown1RCIsu3MCF8OgKR2HSNeldugh3Ptyni3Dnw526CHe+9QTufMcI3PmOE7jz4YbdhsKxi3Dnwy27cHc+3LILd+c7k96d72x6dz7csssIHLvpDbsqvV/XpLfruvRuXXgXgrt14X0d7taFD0pwty589IS7deHDvHfp3fnep3fnc8bS2/M54+n9+ZyJ9AZ9zmR6hz5nKr1FnzOd3qPPmUlv0ufMpnfpc+bS2/Q581N9+kOeCfh7Cf6gOLhHwRfMnIN71NjSHoUpUEFMgS4NU6DVqWMKtKqYgsG0fF2YAs3LwhRoXjEFj6kQFVMQqz7ULB2mQDNqTIGrmILSMAWmYgoqpqBiCiqmoGIKSsMUKPXKMAVKJsQUKEmGKVCqYgpygY8KxxTY4jEFtmIKRjAFJiWmwNBhCnw+TIEnwRRIVjqmQLKKKfg9S97TYApylbw/fUwBtir9hB0xIWgwBaZ4TIGpmIKHTOh81Z01CajAlw4q8BVUEFPyfgqowFGACnKWvCchFeQqeX/yqAJsyXtPV/I+ClagCmcVqIoqiCh5P4FUoElABbx0UAGvoIKYkvdTQAWCAlSQs+Q9CaggV8n7kwcVIEveTwAVBEveTwAVBIuYR4EKhC4cVICsIo8AFQhdQQW/Y8l7GlCBqKCCqJL3nq7kfRSoIGdZet1frhg1nVyQq5p8YnJBLxE6AcqAZUMZMDjKALFuzrixbforFjO2YjE6miVB1RJ/SNgSTX/FYsZWLAa+YlG4whsmfsWiQvVCTMyKRWc88BsfAuELFJ3peO/PKRve2Ihn4esRjaOa2vj1iA5hTRFQDK0IoBhaEEAxNCOAYsDZNQgoBtyKh4BiwE2DCCgG3N6IgGLAjZgIKIYkKGKPYNcgoBhwGy4CigE3DCOgGHBrM4KKIQgq2SPYNRguhkoPxkCwa+BoDAS7xjMCdo3nBOwaLwjYNV4SsGvgjAwEuwYOyWgISto3BJAMOLvGu/TsGjgkg1EwMggQGYqAkGEIABmOgI/BGQEfgwsCPgZXBHwMbgj4GNwR8DHgbyYEHwOBsYHzMRAYGzgfA4Gx4ZIAY8MVAcaGawKMDTcEGBtuCTA23BFgbLgnwNgIRoCxEZwAYyMEAcZGyKkYm6Gg4B6lEQ8K3KM04kGBe5RGPChwj9ImARrIBNFApjQ0kBGnjgYyoqKBBtPylaGBfGFoIF/RQI9NlVU0UDQayCVEAzliNJA2FQ1UGBooiAasaKCKBqpooIoGqmigk0MDafHK0ECaJ0QDaU6GBtKiooEAfMiKBmpyljKjQQPlKm5WHhpIqYRoIKXI0EDSZkMDSUuDBnLFo4FcRQN9kRNeOhooVxXZ00cDSZYNDSQZCRooZ0lwGjRQrprgp48GEjIbGkhIEjQQt6WzgbitcKBhZBchHYgbEjwQZ6XzgTirgKBBZhchIMhTAIIaWTghqJEVETTI7KJjBDWCAhIkC2cEyYoIGkJ20RGCFAkgiJUOCGIVEDTI7CIEBHE6QBB3FICgnMshEkAQd1SAoFzrrIIAQTm3ckgAQbl2ck4eECR0LkCQ0CSAIF46IIhXQNAgs4sOECQFBSAo5xEaCSAo1wnayQOCpM8FCJKeAhCUUxJh+isWK6YTg3IpIhITg3qJkNMRQsrkQggpA0cIIVBVGfVzpr+qsGNTXgs/ZMmlQ/tLypbYn/vbsTHRqmiIV6glxh+x6NB5nzXRsU3oZNvamFae0Tg1Orxa+Jzf4KQEFoF6y2TJ+jFhdxkdpxEwKiMIYFSGEcCotCOAUWlDAKOCm5QRMCq4nRoBo4IbvxEwKrhFHQGjgpvpETAquO0fAaOCAwoQMCo4SgEBo4JDHxAwKjieAgGjgoM0EDAqOPIDQaOCw0kQOCo4RgXDozLpgVQIEB0CSYUg0SGgVAgUHQJL1WDYRJIARodAUzUY4pMmwNEh4FQNhqNl0wPpEHSqxhDQqRpFQKdqKOhUjAJORcCmUgRoKkNApnIEYCpEZ4KDqRD9Hg6mQgxRcDAVYjSFg6kQAz8cTIV4R8HBVIjXKRxMhXjzw8FUCCgdHEyFgNLBwVQIKB0cTIWA0glHAKUTngBKJxkBlE5yAiidFARQOikJoHRSEUDppCaA0klDAKWTlgBKJx0BlE76qVC6IXc6uEfB99C4Avco+G4fV3C8r0jA5HNBJp9NwOQ77LJvd+vN/P0iDsu3Wb9d36w3Q4g7+7Arjd+dZyg9exSXbxQdqBKQA20MDW8UFaheFSmwLx4Y1dwjyYHq1MGB/1rtf351tu/ph37+19vVx7O/Px6cvQjmg0EqBAWRLgCTQ2DpHs8Im92HzWL7YX191YUaYdlXzyK2g+B606buGd4IS8LaR7xeX35cXDXb6/Vu+H4VDsUhg7TBkdH4ZWfGizi+w4nh4UmjrBIgN2Gv/46dczv0DYacBB57gwi9KeKIeHC87+FWZBhkB81KSCMyDlkaDRkShXKBzbSJakpcgjE1EntFOuqK+ioOPsqaUeishywEXKNDhrgk3GDTZuMeJJy7hB6lXNwVmTAaJ92+tU+/bQ3fvQOvYRB7d+CQIvmeNXzfDrzMhO/auelLt+eTutAqzsWv4u7v4C4wD+v9yeNi7a7LAp6+1GMPo5B5eR0GasgNd+EnKrExVTimwsYEtDyNjGnCIQ0ypACUFcSFBER0uIiA20ZWluKgM0xkTAU5ykHGdJDNbHAXFOoONVj94yHe2c8380vAcOVfxXDFgeMVat+IHxff/oudo2R7QcdPEexkd4MS7ObwxzoQrLxCEGi9CeiVh9abgKJi9SagoFi9CSgoVm8CCooWnMCicoIpD1ZyAguK1JzAgiJFJ7CgSNUJLChWdgKLitWdwKJihSewqB6dAZVy8coRk2n4+pXDp9PwFSyHT6jha1gOnlILbN1OyM1rZEzQY8J2KlCLshNnZXuGXHhSNgTZxMzKuC5pUiZ83KyMm/ImZZJhZ2WgfQiOnZWBogrkrAwUVCJnZaCgCjkrAwXVyEkZKKhJvzCHi3cQ1+lwMzJQTI+bkEFiwpU78CaqsC94UFCBnI2BgkrkZAwUVMH3LiZu9Jz94eznw5i5De75HCoMxW36DMkWomRGIP3D8ElIrfdV633Vel+13let9/W83lfg/fH39X/b8fFs/e5MhF8RfChY83a9/jj8Rmq/e+BGXDxEYCMfcfd/G/gA+Q==
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment