Skip to content

Instantly share code, notes, and snippets.

@HarryR
Created February 15, 2011 17:59
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save HarryR/827921 to your computer and use it in GitHub Desktop.
Save HarryR/827921 to your computer and use it in GitHub Desktop.
Updated version of lazyload which isn't O(n) and handles reloading mid-page etc.
/*
* Lazy Load - jQuery plugin for lazy loading images
*
* Copyright (c) 2007-2009 Mika Tuupola
*
* Licensed under the MIT license:
* http://www.opensource.org/licenses/mit-license.php
*
* Project home:
* http://www.appelsiini.net/projects/lazyload
*
* Version: 1.5.0
*
* Simplicity Media Ltd [ cal.leeming at simplicitymedialtd.co.uk ]
* - Patched for performance related problems for pages with 200+ images.
* - Now uses static lookup table on position offsets, rather than re-eval'ing each item on scroll event
*
* Harry Roberts [ harry.roberts at midnight-labs.org ]
* - Now using RTree to store object positions which fixes a number of issues
*
*/
function time() {
d=new Date();
return d.getTime()/1024;
}
(function($) {
$.fn.lazyload = function(options) {
var settings = {
threshold : 0,
failurelimit : 0,
event : "scroll",
effect : "show",
container : window
};
if(options) {
$.extend(settings, options);
}
var rt = new RTree();
if ("scroll" == settings.event) {
$(settings.container).bind("scroll", function(event) {
var _left = $(window).scrollLeft();
var _top = $(window).scrollTop();
var rt_found = rt.search({x:_left, y:_top, w:$(window).width(), h:$(window).height()});
for( i in rt_found ) {
var o = $(rt_found[i]);
var off = o.offset();
rt.remove({x:off.left, y:off.top, w:o.width(), h:o.height()});
o.trigger('appear');
}
});
}
this.each(function() {
var self = this;
/* Save original only if it is not defined in HTML. */
if (undefined == $(self).attr("original")) {
$(self).attr("original", $(self).attr("src2"));
}
if ("scroll" != settings.event ||
undefined == $(self).attr("src") ||
settings.placeholder == $(self).attr("src") ||
($.abovethetop(self, settings) ||
$.leftofbegin(self, settings) ||
$.belowthefold(self, settings) ||
$.rightoffold(self, settings) )) {
if (settings.placeholder) {
$(self).attr("src", settings.placeholder);
} else {
$(self).removeAttr("src");
}
self.loaded = false;
} else {
self.loaded = true;
}
/* When appear is triggered load original image. */
$(self).one("appear", function() {
if (!this.loaded) {
$("<img />")
.bind("load", function() {
$(self)
.hide()
.attr("src", $(self).attr("original"))
[settings.effect](settings.effectspeed);
self.loaded = true;
})
.attr("src", $(self).attr("original"));
}
});
/* When wanted event is triggered load original image */
/* by triggering appear. */
if ("scroll" != settings.event) {
$(self).bind(settings.event, function(event) {
if (!self.loaded) {
$(self).trigger("appear");
}
});
}
});
/* This stores the lookup table for all preloadable items */
this.each(function() {
var off = $(this).offset();
rt.insert({x:off.left, y:off.top, w:$(this).width(), h:$(this).height()}, $(this));
});
/* Force initial check if images should appear. */
$(settings.container).trigger(settings.event);
return this;
};
/* Convenience methods in jQuery namespace. */
/* Use as $.belowthefold(element, {threshold : 100, container : window}) */
$.belowthefold = function(element, settings) {
if (settings.container === undefined || settings.container === window) {
var fold = $(window).height() + $(window).scrollTop();
} else {
var fold = $(settings.container).offset().top + $(settings.container).height();
}
return fold <= $(element).offset().top - settings.threshold;
};
$.rightoffold = function(element, settings) {
if (settings.container === undefined || settings.container === window) {
var fold = $(window).width() + $(window).scrollLeft();
} else {
var fold = $(settings.container).offset().left + $(settings.container).width();
}
return fold <= $(element).offset().left - settings.threshold;
};
$.abovethetop = function(element, settings) {
if (settings.container === undefined || settings.container === window) {
var fold = $(window).scrollTop();
} else {
var fold = $(settings.container).offset().top;
}
return fold >= $(element).offset().top + settings.threshold + $(element).height();
};
$.leftofbegin = function(element, settings) {
if (settings.container === undefined || settings.container === window) {
var fold = $(window).scrollLeft();
} else {
var fold = $(settings.container).offset().left;
}
return fold >= $(element).offset().left + settings.threshold + $(element).width();
};
/* Custom selectors for your convenience. */
/* Use as $("img:below-the-fold").something() */
$.extend($.expr[':'], {
"below-the-fold" : "$.belowthefold(a, {threshold : 0, container: window})",
"above-the-fold" : "!$.belowthefold(a, {threshold : 0, container: window})",
"right-of-fold" : "$.rightoffold(a, {threshold : 0, container: window})",
"left-of-fold" : "!$.rightoffold(a, {threshold : 0, container: window})"
});
})(jQuery);
/******************************************************************************
rtree.js - General-Purpose Non-Recursive Javascript R-Tree Library
Version 0.6.2, December 5st 2009
Copyright (c) 2009 Jon-Carlos Rivera
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Jon-Carlos Rivera - imbcmdth@hotmail.com
******************************************************************************/
/**
* RTree - A simple r-tree structure for great results.
* @constructor
*/
var RTree = function(width){
// Variables to control tree-dimensions
var _Min_Width = 3; // Minimum width of any node before a merge
var _Max_Width = 6; // Maximum width of any node before a split
if(!isNaN(width)){ _Min_Width = Math.floor(width/2.0); _Max_Width = width;}
// Start with an empty root-tree
var _T = {x:0, y:0, w:0, h:0, id:"root", nodes:[] };
var isArray = function(o) {
return Object.prototype.toString.call(o) === '[object Array]';
};
/* @function
* @description Function to generate unique strings for element IDs
* @param {String} n The prefix to use for the IDs generated.
* @return {String} A guarenteed unique ID.
*/
var _name_to_id = (function() {
// hide our idCache inside this closure
var idCache = {};
// return the api: our function that returns a unique string with incrementing number appended to given idPrefix
return function(idPrefix) {
var idVal = 0;
if(idPrefix in idCache) {
idVal = idCache[idPrefix]++;
} else {
idCache[idPrefix] = 0;
}
return idPrefix + "_" + idVal;
}
})();
// This is my special addition to the world of r-trees
// every other (simple) method I found produced crap trees
// this skews insertions to prefering squarer and emptier nodes
RTree.Rectangle.squarified_ratio = function(l, w, fill) {
// Area of new enlarged rectangle
var lperi = (l + w) / 2.0; // Average size of a side of the new rectangle
var larea = l * w; // Area of new rectangle
// return the ratio of the perimeter to the area - the closer to 1 we are,
// the more "square" a rectangle is. conversly, when approaching zero the
// more elongated a rectangle is
var lgeo = larea / (lperi*lperi);
return(larea * fill / lgeo);
};
/* find the best specific node(s) for object to be deleted from
* [ leaf node parent ] = _remove_subtree(rectangle, object, root)
* @private
*/
var _remove_subtree = function(rect, obj, root) {
var hit_stack = []; // Contains the elements that overlap
var count_stack = []; // Contains the elements that overlap
var ret_array = [];
var current_depth = 1;
if(!rect || !RTree.Rectangle.overlap_rectangle(rect, root))
return ret_array;
var ret_obj = {x:rect.x, y:rect.y, w:rect.w, h:rect.h, target:obj};
count_stack.push(root.nodes.length);
hit_stack.push(root);
do {
var tree = hit_stack.pop();
var i = count_stack.pop()-1;
if("target" in ret_obj) { // We are searching for a target
while(i >= 0) {
var ltree = tree.nodes[i];
if(RTree.Rectangle.overlap_rectangle(ret_obj, ltree)) {
if( (ret_obj.target && "leaf" in ltree && ltree.leaf === ret_obj.target)
||(!ret_obj.target && ("leaf" in ltree || RTree.Rectangle.contains_rectangle(ltree, ret_obj)))) { // A Match !!
// Yup we found a match...
// we can cancel search and start walking up the list
if("nodes" in ltree) {// If we are deleting a node not a leaf...
ret_array = _search_subtree(ltree, true, [], ltree);
tree.nodes.splice(i, 1);
} else {
ret_array = tree.nodes.splice(i, 1);
}
// Resize MBR down...
RTree.Rectangle.make_MBR(tree.nodes, tree);
delete ret_obj.target;
if(tree.nodes.length < _Min_Width) { // Underflow
ret_obj.nodes = _search_subtree(tree, true, [], tree);
}
break;
}/* else if("load" in ltree) { // A load
}*/ else if("nodes" in ltree) { // Not a Leaf
current_depth += 1;
count_stack.push(i);
hit_stack.push(tree);
tree = ltree;
i = ltree.nodes.length;
}
}
i -= 1;
}
} else if("nodes" in ret_obj) { // We are unsplitting
tree.nodes.splice(i+1, 1); // Remove unsplit node
// ret_obj.nodes contains a list of elements removed from the tree so far
if(tree.nodes.length > 0)
RTree.Rectangle.make_MBR(tree.nodes, tree);
for(var t = 0;t<ret_obj.nodes.length;t++)
_insert_subtree(ret_obj.nodes[t], tree);
ret_obj.nodes.length = 0;
if(hit_stack.length == 0 && tree.nodes.length <= 1) { // Underflow..on root!
ret_obj.nodes = _search_subtree(tree, true, ret_obj.nodes, tree);
tree.nodes.length = 0;
hit_stack.push(tree);
count_stack.push(1);
} else if(hit_stack.length > 0 && tree.nodes.length < _Min_Width) { // Underflow..AGAIN!
ret_obj.nodes = _search_subtree(tree, true, ret_obj.nodes, tree);
tree.nodes.length = 0;
}else {
delete ret_obj.nodes; // Just start resizing
}
} else { // we are just resizing
RTree.Rectangle.make_MBR(tree.nodes, tree);
}
current_depth -= 1;
}while(hit_stack.length > 0);
return(ret_array);
};
/* choose the best damn node for rectangle to be inserted into
* [ leaf node parent ] = _choose_leaf_subtree(rectangle, root to start search at)
* @private
*/
var _choose_leaf_subtree = function(rect, root) {
var best_choice_index = -1;
var best_choice_stack = [];
var best_choice_area;
var load_callback = function(local_tree, local_node){
return(function(data) {
local_tree._attach_data(local_node, data);
});
};
best_choice_stack.push(root);
var nodes = root.nodes;
do {
if(best_choice_index != -1) {
best_choice_stack.push(nodes[best_choice_index]);
nodes = nodes[best_choice_index].nodes;
best_choice_index = -1;
}
for(var i = nodes.length-1; i >= 0; i--) {
var ltree = nodes[i];
if("leaf" in ltree) {
// Bail out of everything and start inserting
best_choice_index = -1;
break;
} /*else if(ltree.load) {
throw( "Can't insert into partially loaded tree ... yet!");
//jQuery.getJSON(ltree.load, load_callback(this, ltree));
//delete ltree.load;
}*/
// Area of new enlarged rectangle
var old_lratio = RTree.Rectangle.squarified_ratio(ltree.w, ltree.h, ltree.nodes.length+1);
// Enlarge rectangle to fit new rectangle
var nw = Math.max(ltree.x+ltree.w, rect.x+rect.w) - Math.min(ltree.x, rect.x);
var nh = Math.max(ltree.y+ltree.h, rect.y+rect.h) - Math.min(ltree.y, rect.y);
// Area of new enlarged rectangle
var lratio = RTree.Rectangle.squarified_ratio(nw, nh, ltree.nodes.length+2);
if(best_choice_index < 0 || Math.abs(lratio - old_lratio) < best_choice_area) {
best_choice_area = Math.abs(lratio - old_lratio); best_choice_index = i;
}
}
}while(best_choice_index != -1);
return(best_choice_stack);
};
/* split a set of nodes into two roughly equally-filled nodes
* [ an array of two new arrays of nodes ] = linear_split(array of nodes)
* @private
*/
var _linear_split = function(nodes) {
var n = _pick_linear(nodes);
while(nodes.length > 0) {
_pick_next(nodes, n[0], n[1]);
}
return(n);
};
/* insert the best source rectangle into the best fitting parent node: a or b
* [] = pick_next(array of source nodes, target node array a, target node array b)
* @private
*/
var _pick_next = function(nodes, a, b) {
// Area of new enlarged rectangle
var area_a = RTree.Rectangle.squarified_ratio(a.w, a.h, a.nodes.length+1);
var area_b = RTree.Rectangle.squarified_ratio(b.w, b.h, b.nodes.length+1);
var high_area_delta;
var high_area_node;
var lowest_growth_group;
for(var i = nodes.length-1; i>=0;i--) {
var l = nodes[i];
var new_area_a = {};
new_area_a.x = Math.min(a.x, l.x); new_area_a.y = Math.min(a.y, l.y);
new_area_a.w = Math.max(a.x+a.w, l.x+l.w) - new_area_a.x; new_area_a.h = Math.max(a.y+a.h, l.y+l.h) - new_area_a.y;
var change_new_area_a = Math.abs(RTree.Rectangle.squarified_ratio(new_area_a.w, new_area_a.h, a.nodes.length+2) - area_a);
var new_area_b = {};
new_area_b.x = Math.min(b.x, l.x); new_area_b.y = Math.min(b.y, l.y);
new_area_b.w = Math.max(b.x+b.w, l.x+l.w) - new_area_b.x; new_area_b.h = Math.max(b.y+b.h, l.y+l.h) - new_area_b.y;
var change_new_area_b = Math.abs(RTree.Rectangle.squarified_ratio(new_area_b.w, new_area_b.h, b.nodes.length+2) - area_b);
if( !high_area_node || !high_area_delta || Math.abs( change_new_area_b - change_new_area_a ) < high_area_delta ) {
high_area_node = i;
high_area_delta = Math.abs(change_new_area_b-change_new_area_a);
lowest_growth_group = change_new_area_b < change_new_area_a ? b : a;
}
}
var temp_node = nodes.splice(high_area_node, 1)[0];
if(a.nodes.length + nodes.length + 1 <= _Min_Width) {
a.nodes.push(temp_node);
RTree.Rectangle.expand_rectangle(a, temp_node);
} else if(b.nodes.length + nodes.length + 1 <= _Min_Width) {
b.nodes.push(temp_node);
RTree.Rectangle.expand_rectangle(b, temp_node);
}
else {
lowest_growth_group.nodes.push(temp_node);
RTree.Rectangle.expand_rectangle(lowest_growth_group, temp_node);
}
};
/* pick the "best" two starter nodes to use as seeds using the "linear" criteria
* [ an array of two new arrays of nodes ] = pick_linear(array of source nodes)
* @private
*/
var _pick_linear = function(nodes) {
var lowest_high_x = nodes.length-1;
var highest_low_x = 0;
var lowest_high_y = nodes.length-1;
var highest_low_y = 0;
var t1, t2;
for(var i = nodes.length-2; i>=0;i--) {
var l = nodes[i];
if(l.x > nodes[highest_low_x].x ) highest_low_x = i;
else if(l.x+l.w < nodes[lowest_high_x].x+nodes[lowest_high_x].w) lowest_high_x = i;
if(l.y > nodes[highest_low_y].y ) highest_low_y = i;
else if(l.y+l.h < nodes[lowest_high_y].y+nodes[lowest_high_y].h) lowest_high_y = i;
}
var dx = Math.abs((nodes[lowest_high_x].x+nodes[lowest_high_x].w) - nodes[highest_low_x].x);
var dy = Math.abs((nodes[lowest_high_y].y+nodes[lowest_high_y].h) - nodes[highest_low_y].y);
if( dx > dy ) {
if(lowest_high_x > highest_low_x) {
t1 = nodes.splice(lowest_high_x, 1)[0];
t2 = nodes.splice(highest_low_x, 1)[0];
} else {
t2 = nodes.splice(highest_low_x, 1)[0];
t1 = nodes.splice(lowest_high_x, 1)[0];
}
} else {
if(lowest_high_y > highest_low_y) {
t1 = nodes.splice(lowest_high_y, 1)[0];
t2 = nodes.splice(highest_low_y, 1)[0];
} else {
t2 = nodes.splice(highest_low_y, 1)[0];
t1 = nodes.splice(lowest_high_y, 1)[0];
}
}
return([{x:t1.x, y:t1.y, w:t1.w, h:t1.h, nodes:[t1]},
{x:t2.x, y:t2.y, w:t2.w, h:t2.h, nodes:[t2]} ]);
};
var _attach_data = function(node, more_tree){
node.nodes = more_tree.nodes;
node.x = more_tree.x; node.y = more_tree.y;
node.w = more_tree.w; node.h = more_tree.h;
return(node);
};
/* non-recursive internal search function
* [ nodes | objects ] = _search_subtree(rectangle, [return node data], [array to fill], root to begin search at)
* @private
*/
var _search_subtree = function(rect, return_node, return_array, root) {
var hit_stack = []; // Contains the elements that overlap
if(!RTree.Rectangle.overlap_rectangle(rect, root))
return(return_array);
var load_callback = function(local_tree, local_node){
return(function(data) {
local_tree._attach_data(local_node, data);
});
};
hit_stack.push(root.nodes);
do {
var nodes = hit_stack.pop();
for(var i = nodes.length-1; i >= 0; i--) {
var ltree = nodes[i];
if(RTree.Rectangle.overlap_rectangle(rect, ltree)) {
if("nodes" in ltree) { // Not a Leaf
hit_stack.push(ltree.nodes);
} else if("leaf" in ltree) { // A Leaf !!
if(!return_node)
return_array.push(ltree.leaf);
else
return_array.push(ltree);
}/* else if("load" in ltree) { // We need to fetch a URL for some more tree data
jQuery.getJSON(ltree.load, load_callback(this, ltree));
delete ltree.load;
// i++; // Replay this entry
}*/
}
}
}while(hit_stack.length > 0);
return(return_array);
};
/* non-recursive internal insert function
* [] = _insert_subtree(rectangle, object to insert, root to begin insertion at)
* @private
*/
var _insert_subtree = function(node, root) {
var bc; // Best Current node
// Initial insertion is special because we resize the Tree and we don't
// care about any overflow (seriously, how can the first object overflow?)
if(root.nodes.length == 0) {
root.x = node.x; root.y = node.y;
root.w = node.w; root.h = node.h;
root.nodes.push(node);
return;
}
// Find the best fitting leaf node
// choose_leaf returns an array of all tree levels (including root)
// that were traversed while trying to find the leaf
var tree_stack = _choose_leaf_subtree(node, root);
var ret_obj = node;//{x:rect.x,y:rect.y,w:rect.w,h:rect.h, leaf:obj};
// Walk back up the tree resizing and inserting as needed
do {
//handle the case of an empty node (from a split)
if(bc && "nodes" in bc && bc.nodes.length == 0) {
var pbc = bc; // Past bc
bc = tree_stack.pop();
for(var t=0;t<bc.nodes.length;t++)
if(bc.nodes[t] === pbc || bc.nodes[t].nodes.length == 0) {
bc.nodes.splice(t, 1);
break;
}
} else {
bc = tree_stack.pop();
}
// If there is data attached to this ret_obj
if("leaf" in ret_obj || "nodes" in ret_obj || isArray(ret_obj)) {
// Do Insert
if(isArray(ret_obj)) {
for(var ai = 0; ai < ret_obj.length; ai++) {
RTree.Rectangle.expand_rectangle(bc, ret_obj[ai]);
}
bc.nodes = bc.nodes.concat(ret_obj);
} else {
RTree.Rectangle.expand_rectangle(bc, ret_obj);
bc.nodes.push(ret_obj); // Do Insert
}
if(bc.nodes.length <= _Max_Width) { // Start Resizeing Up the Tree
ret_obj = {x:bc.x,y:bc.y,w:bc.w,h:bc.h};
} else { // Otherwise Split this Node
// linear_split() returns an array containing two new nodes
// formed from the split of the previous node's overflow
var a = _linear_split(bc.nodes);
ret_obj = a;//[1];
if(tree_stack.length < 1) { // If are splitting the root..
bc.nodes.push(a[0]);
tree_stack.push(bc); // Reconsider the root element
ret_obj = a[1];
} /*else {
delete bc;
}*/
}
} else { // Otherwise Do Resize
//Just keep applying the new bounding rectangle to the parents..
RTree.Rectangle.expand_rectangle(bc, ret_obj);
ret_obj = {x:bc.x,y:bc.y,w:bc.w,h:bc.h};
}
} while(tree_stack.length > 0);
};
/* quick 'n' dirty function for plugins or manually drawing the tree
* [ tree ] = RTree.get_tree(): returns the raw tree data. useful for adding
* @public
* !! DEPRECATED !!
*/
this.get_tree = function() {
return _T;
};
/* quick 'n' dirty function for plugins or manually loading the tree
* [ tree ] = RTree.set_tree(sub-tree, where to attach): returns the raw tree data. useful for adding
* @public
* !! DEPRECATED !!
*/
this.set_tree = function(new_tree, where) {
if(!where)
where = _T;
return(_attach_data(where, new_tree));
};
/* non-recursive search function
* [ nodes | objects ] = RTree.search(rectangle, [return node data], [array to fill])
* @public
*/
this.search = function(rect, return_node, return_array) {
if(arguments.length < 1)
throw "Wrong number of arguments. RT.Search requires at least a bounding rectangle."
switch(arguments.length) {
case 1:
arguments[1] = false;// Add an "return node" flag - may be removed in future
case 2:
arguments[2] = []; // Add an empty array to contain results
case 3:
arguments[3] = _T; // Add root node to end of argument list
default:
arguments.length = 4;
}
return(_search_subtree.apply(this, arguments));
};
/* partially-recursive toJSON function
* [ string ] = RTree.toJSON([rectangle], [tree])
* @public
*/
this.toJSON = function(rect, tree) {
var hit_stack = []; // Contains the elements that overlap
var count_stack = []; // Contains the elements that overlap
var return_stack = {}; // Contains the elements that overlap
var max_depth = 3; // This triggers recursion and tree-splitting
var current_depth = 1;
var return_string = "";
if(rect && !RTree.Rectangle.overlap_rectangle(rect, _T))
return "";
if(!tree) {
count_stack.push(_T.nodes.length);
hit_stack.push(_T.nodes);
return_string += "var main_tree = {x:"+_T.x.toFixed()+",y:"+_T.y.toFixed()+",w:"+_T.w.toFixed()+",h:"+_T.h.toFixed()+",nodes:[";
} else {
max_depth += 4;
count_stack.push(tree.nodes.length);
hit_stack.push(tree.nodes);
return_string += "var main_tree = {x:"+tree.x.toFixed()+",y:"+tree.y.toFixed()+",w:"+tree.w.toFixed()+",h:"+tree.h.toFixed()+",nodes:[";
}
do {
var nodes = hit_stack.pop();
var i = count_stack.pop()-1;
if(i >= 0 && i < nodes.length-1)
return_string += ",";
while(i >= 0) {
var ltree = nodes[i];
if(!rect || RTree.Rectangle.overlap_rectangle(rect, ltree)) {
if(ltree.nodes) { // Not a Leaf
if(current_depth >= max_depth) {
var len = return_stack.length;
var nam = _name_to_id("saved_subtree");
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",load:'"+nam+".js'}";
return_stack[nam] = this.toJSON(rect, ltree);
if(i > 0)
return_string += ","
} else {
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",nodes:[";
current_depth += 1;
count_stack.push(i);
hit_stack.push(nodes);
nodes = ltree.nodes;
i = ltree.nodes.length;
}
} else if(ltree.leaf) { // A Leaf !!
var data = ltree.leaf.toJSON ? ltree.leaf.toJSON() : JSON.stringify(ltree.leaf);
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",leaf:" + data + "}";
if(i > 0)
return_string += ","
} else if(ltree.load) { // A load
return_string += "{x:"+ltree.x.toFixed()+",y:"+ltree.y.toFixed()+",w:"+ltree.w.toFixed()+",h:"+ltree.h.toFixed()+",load:'" + ltree.load + "'}";
if(i > 0)
return_string += ","
}
}
i -= 1;
}
if(i < 0) {
return_string += "]}"; current_depth -= 1;
}
}while(hit_stack.length > 0);
return_string+=";";
for(var my_key in return_stack) {
return_string += "\nvar " + my_key + " = function(){" + return_stack[my_key] + " return(main_tree);};";
}
return(return_string);
};
/* non-recursive function that deletes a specific
* [ number ] = RTree.remove(rectangle, obj)
*/
this.remove = function(rect, obj) {
if(arguments.length < 1)
throw "Wrong number of arguments. RT.remove requires at least a bounding rectangle."
switch(arguments.length) {
case 1:
arguments[1] = false; // obj == false for conditionals
case 2:
arguments[2] = _T; // Add root node to end of argument list
default:
arguments.length = 3;
}
if(arguments[1] === false) { // Do area-wide delete
var numberdeleted = 0;
var ret_array = [];
do {
numberdeleted=ret_array.length;
ret_array = ret_array.concat(_remove_subtree.apply(this, arguments));
}while( numberdeleted != ret_array.length);
return ret_array;
}
else { // Delete a specific item
return(_remove_subtree.apply(this, arguments));
}
};
/* non-recursive insert function
* [] = RTree.insert(rectangle, object to insert)
*/
this.insert = function(rect, obj) {
if(arguments.length < 2)
throw "Wrong number of arguments. RT.Insert requires at least a bounding rectangle and an object."
return(_insert_subtree({x:rect.x,y:rect.y,w:rect.w,h:rect.h,leaf:obj}, _T));
};
/* non-recursive delete function
* [deleted object] = RTree.remove(rectangle, [object to delete])
*/
//End of RTree
};
/* Rectangle - Generic rectangle object - Not yet used */
RTree.Rectangle = function(ix, iy, iw, ih) { // new Rectangle(bounds) or new Rectangle(x, y, w, h)
var x, x2, y, y2, w, h;
if(ix.x) {
x = ix.x; y = ix.y;
if(ix.w !== 0 && !ix.w && ix.x2){
w = ix.x2-ix.x; h = ix.y2-ix.y;
} else {
w = ix.w; h = ix.h;
}
x2 = x + w; y2 = y + h; // For extra fastitude
} else {
x = ix; y = iy; w = iw; h = ih;
x2 = x + w; y2 = y + h; // For extra fastitude
}
this.x1 = this.x = function(){return x;};
this.y1 = this.y = function(){return y;};
this.x2 = function(){return x2;};
this.y2 = function(){return y2;};
this.w = function(){return w;};
this.h = function(){return h;};
this.toJSON = function() {
return('{"x":'+x.toString()+', "y":'+y.toString()+', "w":'+w.toString()+', "h":'+h.toString()+'}');
};
this.overlap = function(a) {
return(this.x() < a.x2() && this.x2() > a.x() && this.y() < a.y2() && this.y2() > a.y());
};
this.expand = function(a) {
var nx = Math.min(this.x(), a.x());
var ny = Math.min(this.y(), a.y());
w = Math.max(this.x2(), a.x2()) - nx;
h = Math.max(this.y2(), a.y2()) - ny;
x = nx; y = ny;
return(this);
};
this.setRect = function(ix, iy, iw, ih) {
var x, x2, y, y2, w, h;
if(ix.x) {
x = ix.x; y = ix.y;
if(ix.w !== 0 && !ix.w && ix.x2) {
w = ix.x2-ix.x; h = ix.y2-ix.y;
} else {
w = ix.w; h = ix.h;
}
x2 = x + w; y2 = y + h; // For extra fastitude
} else {
x = ix; y = iy; w = iw; h = ih;
x2 = x + w; y2 = y + h; // For extra fastitude
}
};
//End of RTree.Rectangle
};
/* returns true if rectangle 1 overlaps rectangle 2
* [ boolean ] = overlap_rectangle(rectangle a, rectangle b)
* @static function
*/
RTree.Rectangle.overlap_rectangle = function(a, b) {
return(a.x < (b.x+b.w) && (a.x+a.w) > b.x && a.y < (b.y+b.h) && (a.y+a.h) > b.y);
};
/* returns true if rectangle a is contained in rectangle b
* [ boolean ] = contains_rectangle(rectangle a, rectangle b)
* @static function
*/
RTree.Rectangle.contains_rectangle = function(a, b) {
return((a.x+a.w) <= (b.x+b.w) && a.x >= b.x && (a.y+a.h) <= (b.y+b.h) && a.y >= b.y);
};
/* expands rectangle A to include rectangle B, rectangle B is untouched
* [ rectangle a ] = expand_rectangle(rectangle a, rectangle b)
* @static function
*/
RTree.Rectangle.expand_rectangle = function(a, b) {
var nx = Math.min(a.x, b.x);
var ny = Math.min(a.y, b.y);
a.w = Math.max(a.x+a.w, b.x+b.w) - nx;
a.h = Math.max(a.y+a.h, b.y+b.h) - ny;
a.x = nx; a.y = ny;
return(a);
};
/* generates a minimally bounding rectangle for all rectangles in
* array "nodes". If rect is set, it is modified into the MBR. Otherwise,
* a new rectangle is generated and returned.
* [ rectangle a ] = make_MBR(rectangle array nodes, rectangle rect)
* @static function
*/
RTree.Rectangle.make_MBR = function(nodes, rect) {
if(nodes.length < 1)
return({x:0, y:0, w:0, h:0});
//throw "make_MBR: nodes must contain at least one rectangle!";
if(!rect)
rect = {x:nodes[0].x, y:nodes[0].y, w:nodes[0].w, h:nodes[0].h};
else
rect.x = nodes[0].x; rect.y = nodes[0].y; rect.w = nodes[0].w; rect.h = nodes[0].h;
for(var i = nodes.length-1; i>0; i--)
RTree.Rectangle.expand_rectangle(rect, nodes[i]);
return(rect);
};
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment