Instantly share code, notes, and snippets.

What would you like to do?
TimeSeries convenience functions
import numpy as np
import matplotlib.pylab as plt
from scipy import stats
from collections import *
from itertools import *
# Convenience Class for Time Series
# Series Objects can be added and subtracted using infix operators.
# > X = Series([1,2,3])
# > X + 10 -> [11,12,13]
import collections
def IterMap(f, I):
for y in I: yield f(y)
def IterAdd(x, I):
return IterMap(lambda y: y+x, I)
def IterMul(x, I):
return IterMap(lambda y: x*y, I)
def IterIterAdd(I, J):
while True:
yield +
def IterIterMul(I, J):
while True:
yield *
class Series(collections.Iterator):
I = None
def __init__(self, I):
# convert list to iterator
self.I = iter(I)
def next(self): return
def __add__(self, x):
if isinstance(x, (int, long, float, complex)):
return Series(IterAdd(x, self))
elif isinstance(x, Series):
return Series(IterIterAdd(x, self))
else: raise TypeError()
def __mul__(self, x):
if isinstance(x, (int, long, float, complex)):
return Series(IterMul(x, self))
elif isinstance(x, Series):
return Series(IterIterMul(x, self))
else: raise TypeError()
def __sub__(self, x): return __add__(self, -x)
def __div__(self, x): return __mul__(self, 1./x)
__radd__ = __add__
__rsub__ = __sub__
__rmul__ = __mul__
def ToSeries(func):
def SeriesWrapper(*args,**kwargs):
return Series(func(*args,**kwargs))
return SeriesWrapper
def Sample(I,N=1000):
return np.array([ y for y in islice(I,N) ])
def Plot(I, *args, **kwargs):
N = kwargs.pop("N", 1000)
plt.plot(Sample(I,N),*args, **kwargs)
def Hist(I, *args, **kwargs):
N = kwargs.pop("N", 1000)
kwargs['bins'] = kwargs.get('bins', np.sqrt(N))
H = plt.hist(Sample(I,N), *args, **kwargs)
def FancyPlot(I, *args, **kwargs):
N = kwargs.pop("N", 1000)
y = Sample(I,N)
# rects [left, bottom, width, height]
rect_time = [0, 0, 0.9, 1]
rect_histy= [0.905,0, 0.095, 1]
# start with a rectangular Figure
plt.figure(1, figsize=(20,4))
axHisty = plt.axes(rect_histy)
axTime = plt.axes(rect_time)
# create plots
Plot(Series(y),N=N, *args, **kwargs)
axHisty.hist(y, orientation='horizontal', bins=np.sqrt(N))
# align y axis
if (max(y) == axTime.get_ylim()[1]):
axTime.set_ylim((axTime.get_ylim()[0], max(y) * 1.1))
axHisty.set_ylim( axTime.get_ylim() )
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment