Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
TimeSeries convenience functions
import numpy as np
import matplotlib.pylab as plt
from scipy import stats
from collections import *
from itertools import *
# Convenience Class for Time Series
# Series Objects can be added and subtracted using infix operators.
# > X = Series([1,2,3])
# > X + 10 -> [11,12,13]
import collections
def IterMap(f, I):
for y in I: yield f(y)
def IterAdd(x, I):
return IterMap(lambda y: y+x, I)
def IterMul(x, I):
return IterMap(lambda y: x*y, I)
def IterIterAdd(I, J):
while True:
yield +
def IterIterMul(I, J):
while True:
yield *
class Series(collections.Iterator):
I = None
def __init__(self, I):
# convert list to iterator
self.I = iter(I)
def next(self): return
def __add__(self, x):
if isinstance(x, (int, long, float, complex)):
return Series(IterAdd(x, self))
elif isinstance(x, Series):
return Series(IterIterAdd(x, self))
else: raise TypeError()
def __mul__(self, x):
if isinstance(x, (int, long, float, complex)):
return Series(IterMul(x, self))
elif isinstance(x, Series):
return Series(IterIterMul(x, self))
else: raise TypeError()
def __sub__(self, x): return __add__(self, -x)
def __div__(self, x): return __mul__(self, 1./x)
__radd__ = __add__
__rsub__ = __sub__
__rmul__ = __mul__
def ToSeries(func):
def SeriesWrapper(*args,**kwargs):
return Series(func(*args,**kwargs))
return SeriesWrapper
def Sample(I,N=1000):
return np.array([ y for y in islice(I,N) ])
def Plot(I, *args, **kwargs):
N = kwargs.pop("N", 1000)
plt.plot(Sample(I,N),*args, **kwargs)
def Hist(I, *args, **kwargs):
N = kwargs.pop("N", 1000)
kwargs['bins'] = kwargs.get('bins', np.sqrt(N))
H = plt.hist(Sample(I,N), *args, **kwargs)
def FancyPlot(I, *args, **kwargs):
N = kwargs.pop("N", 1000)
y = Sample(I,N)
# rects [left, bottom, width, height]
rect_time = [0, 0, 0.9, 1]
rect_histy= [0.905,0, 0.095, 1]
# start with a rectangular Figure
plt.figure(1, figsize=(20,4))
axHisty = plt.axes(rect_histy)
axTime = plt.axes(rect_time)
# create plots
Plot(Series(y),N=N, *args, **kwargs)
axHisty.hist(y, orientation='horizontal', bins=np.sqrt(N))
# align y axis
if (max(y) == axTime.get_ylim()[1]):
axTime.set_ylim((axTime.get_ylim()[0], max(y) * 1.1))
axHisty.set_ylim( axTime.get_ylim() )
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment