Skip to content

Instantly share code, notes, and snippets.

@Hermann-SW
Last active July 28, 2024 22:02
Show Gist options
  • Save Hermann-SW/99d151a273d290ee0d843c79b2da26a8 to your computer and use it in GitHub Desktop.
Save Hermann-SW/99d151a273d290ee0d843c79b2da26a8 to your computer and use it in GitHub Desktop.
Boost make_"connected / biconnected_planar / maximal_planar"+straight_line_drawing demos made create graphviz graph with fixed coordinates
//=======================================================================
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/*
f=straight_line_graphviz
g++ -O3 -Wall -pedantic -Wextra $f.cpp -o $f
cpplint --filter=-legal/copyright,-build/namespaces $f.cpp
cppcheck --enable=all --suppress=missingIncludeSystem $f.cpp --check-config
*/
//=======================================================================
#include <cassert>
#include <cstring>
#include <iostream>
#include <fstream>
#include <vector>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/ref.hpp>
#include <boost/graph/make_connected.hpp>
#include <boost/graph/make_biconnected_planar.hpp>
#include <boost/graph/make_maximal_planar.hpp>
#include <boost/graph/planar_face_traversal.hpp>
#include <boost/graph/boyer_myrvold_planar_test.hpp>
#include <boost/graph/planar_canonical_ordering.hpp>
#include <boost/graph/is_straight_line_drawing.hpp>
#include <boost/graph/chrobak_payne_drawing.hpp>
// This example shows how to start with a connected planar graph
// and add edges to make the graph maximal planar (triangulated.)
// Any maximal planar simple graph on n vertices has 3n - 6 edges and
// 2n - 4 faces, a consequence of Euler's formula.
using namespace boost;
// a class to hold the coordinates of the straight line embedding
struct coord_t {
std::size_t x;
std::size_t y;
};
int main(int argc, char** argv) {
typedef adjacency_list< vecS, vecS, undirectedS,
property< vertex_index_t, int >, property< edge_index_t, int > >
graph;
int n, m, dbg;
char line[200];
assert((argc >> 1) == 1);
std::ifstream in(argv[1]);
assert(in);
dbg = (argc == 3);
in >> line;
in >> line;
in >> line;
in >> n;
graph g(n+1);
for (int i=1; i <= n; ++i) {
in >> line;
}
in >> m;
for (int i=1; i <= m; ++i) {
int s, t, v;
in >> s >> t >> v;
add_edge(s, t, g);
}
int edge_count_input = num_edges(g);
make_connected(g);
// Initialize the interior edge index
property_map< graph, edge_index_t >::type e_index = get(edge_index, g);
graph_traits< graph >::edges_size_type edge_count = 0;
graph_traits< graph >::edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
put(e_index, *ei, edge_count++);
// Test for planarity; compute the planar embedding as a side-effect
typedef std::vector< graph_traits< graph >::edge_descriptor > vec_t;
std::vector< vec_t > embedding2(num_vertices(g));
assert(boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = &embedding2[0]));
make_biconnected_planar(g, &embedding2[0]);
// Re-initialize the edge index, since we just added a few edges
edge_count = 0;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
put(e_index, *ei, edge_count++);
// Test for planarity again; compute the planar embedding as a side-effect
assert(boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = &embedding2[0]));
make_maximal_planar(g, &embedding2[0]);
// Re-initialize the edge index, since we just added a few edges
edge_count = 0;
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei)
put(e_index, *ei, edge_count++);
// Test for planarity one final time; compute the planar embedding as a
// side-effect
assert(boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = &embedding2[0]));
typedef std::vector< std::vector< graph_traits< graph >::edge_descriptor > >
embedding_storage_t;
typedef boost::iterator_property_map< embedding_storage_t::iterator,
property_map< graph, vertex_index_t >::type >
embedding_t;
// Create the planar embedding
embedding_storage_t embedding_storage(num_vertices(g));
embedding_t embedding(embedding_storage.begin(), get(vertex_index, g));
assert(boyer_myrvold_planarity_test(boyer_myrvold_params::graph = g,
boyer_myrvold_params::embedding = embedding));
// Find a canonical ordering
std::vector< graph_traits< graph >::vertex_descriptor > ordering;
planar_canonical_ordering(g, embedding, std::back_inserter(ordering));
// Set up a property map to hold the mapping from vertices to coord_t's
typedef std::vector< coord_t > straight_line_drawing_storage_t;
typedef boost::iterator_property_map<
straight_line_drawing_storage_t::iterator,
property_map< graph, vertex_index_t >::type >
straight_line_drawing_t;
straight_line_drawing_storage_t straight_line_drawing_storage(
num_vertices(g));
straight_line_drawing_t straight_line_drawing(
straight_line_drawing_storage.begin(), get(vertex_index, g));
// Compute the straight line drawing
chrobak_payne_straight_line_drawing(
g, embedding, ordering.begin(), ordering.end(), straight_line_drawing);
// Verify that the drawing is actually a plane drawing
assert(is_straight_line_drawing(g, straight_line_drawing));
std::cout << "graph {" << std::endl;
std::cout << " layout=neato" << std::endl;
std::cout << " node [shape=none]" << std::endl;
// get the property map for vertex indices
typedef property_map<graph, vertex_index_t>::type IndexMap;
IndexMap index = get(vertex_index, g);
graph_traits< graph >::vertex_iterator vi, vi_end;
for (boost::tie(vi, vi_end) = vertices(g); vi != vi_end; ++vi) {
if (index[*vi] == 0) continue;
coord_t coord(get(straight_line_drawing, *vi));
std::cout << " " << *vi << " [pos=\"" << coord.x << "," << coord.y
<< "!\"";
if (dbg)
std::cout << " label=\"" << *vi - 1 <<"\"";
std::cout << "]" << std::endl;
}
for (boost::tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
if (index[source(*ei, g)] == 0) continue;
if (index[target(*ei, g)] == 0) continue;
std::cout << " " << index[source(*ei, g)]
<< "--" << index[target(*ei, g)]
<< "[style=" << (edge_count_input-- > 0 ? "bold" : "dotted")
<< "]" << std::endl;
}
std::cout << "}" << std::endl;
return 0;
}
@Hermann-SW
Copy link
Author

Hermann-SW commented Mar 15, 2024

Revision 4 replaces fixed input graph code with simple code to read graph in LEDA format.
In addtion original input graph edges are drawn in bold.
Edges added by make_"connected / biconnected_planar / maximal_planar" are drawn dotted.

Here bash echo creates small LEDA graph:

pi@raspberrypi5:~ $ GraphvizFiddle.py chromium-browser <(./straight_line_graphviz <(echo -e "LEDA.GRAPH\nunsigned\nint\n4\n0\n0\n0\n0\n2\n1 2 0\n3 4 0"))
pi@raspberrypi5:~ $ 

This shows up in GraphvizFiddle — LEDA input graph nodes 1..n get renamed to 0..n-1:
BGL straight_line_graphviz 2

@Hermann-SW
Copy link
Author

Hermann-SW commented Mar 15, 2024

Revision 4 cpplint clean (again).

Revision 5 graph with n+1 vertices, LEDA vertices 1..n keep same, vertex 0 and its edges are just not drawn.

With same command as in previous comment this shows up in GraphvizFiddle:
BGL straight_line_graphviz 2b

pi@raspberrypi5:~ $ echo -e "LEDA.GRAPH\nunsigned\nint\n4\n0\n0\n0\n0\n2\n1 2 0\n3 4 0"
LEDA.GRAPH
unsigned
int
4
0
0
0
0
2
1 2 0
3 4 0
pi@raspberrypi5:~ $ 

@Hermann-SW
Copy link
Author

Hermann-SW commented Mar 15, 2024

Using 30yo code that can generate maximal planar random graphs as well as other types, in this 2yo repo:
https://github.com/Hermann-SW/randomgraph

pi@raspberrypi5:~ $ randomgraph
[3] Format: randomgraph n [-t type] [-o file.[u/bit/bit8/a]] [-s seed] [-no] [-r edges] [-n]( type in {cubic,cubic_Halin,maximal_planar,dual_of_cubic_Halin} ) 
pi@raspberrypi5:~ $ 

This creates random maximal planar graph on 8 vertices (with 3*8-6=18 edges) and removes 12 edges randomly, as straight_line_graphviz input:

pi@raspberrypi5:~ $ GraphvizFiddle.py chromium-browser <(./straight_line_graphviz <(randomgraph 8 -o - -r 12 -s 123456))

-------------------------------------
malloc: 19   malloc-free: 0
pi@raspberrypi5:~ $ 

(GraphvizFiddle share link for opening in browser)
BGL straight_line_graphviz 3

@Hermann-SW
Copy link
Author

Hermann-SW commented Mar 15, 2024

This creates random cubic Halin graph on 8 vertices, as straight_line_graphviz input, with random seed 123456:

pi@raspberrypi5:~ $ GraphvizFiddle.py chromium-browser <(./straight_line_graphviz <(randomgraph 8 -o - -t cubic_Halin -s 123456))

-------------------------------------
malloc: 23   malloc-free: 0
pi@raspberrypi5:~ $ 

(GraphvizFiddle share link)
BGL straight_line_graphviz 4

@Hermann-SW
Copy link
Author

Hermann-SW commented Mar 15, 2024

I was curious where vertex 0 (that was not drawn) was placed in the temporary maximal planar graph of previous comment.
So I commented out the 3 continue statements temporarily just to see:
(GraphvizFiddle share link for opening in browser)
x

@Hermann-SW
Copy link
Author

Hermann-SW commented Apr 28, 2024

Associated forum thread:
https://forums.raspberrypi.com/viewtopic.php?t=367391

C60 fullerene was drawn as example graph:
https://forums.raspberrypi.com/viewtopic.php?t=367391#p2204504
BGL C60 planar_straight_line_drawing
It is also called "football fullerene", consists of 20 hexagons and 12 pentagons.

Here is C60 spherical embedding you most likely know:
Football_Pallo_valmiina-cropped

@Hermann-SW
Copy link
Author

The randomgraph application described before allows to output random maximal planar graphs.
Even more, it creates random maximal planar combinatorial embeddings.
When "-o" output file has a ".a" suffix, the combinatorial embedding is in the written adjacency lists:

hermann@7600x:~$ NOSTAT=1 randomgraph 8 -o x.a -s 123456 && cat x.a 
[[1,7,3,5,2,4],[0,4,2,3,6,7],[0,5,3,1,4],[0,7,6,1,2,5],[2,1,0],[3,2,0],[3,7,1],[6,3,0,1]]
hermann@7600x:~$ 

But the vertices in this representation are 0-based and not 1-based as in LEDA graph format.

New "dbg" option for straight_line_drawing.cpp allows to reduce the graphviz vertex labels by 1 to match the adjacency list output for easy visual inspection of the embedding ordering at any given vertex. For example for vertex 3 its adjacency list [0,7,6,1,2,5] can be verified easily when displayed with GraphvizFiddle.py, as ordered counterclockwise traversal of the edges at vertex 3:
image

@Hermann-SW
Copy link
Author

Hermann-SW commented Jul 28, 2024

I learned about and used CGAL library (Computational Geometry ALgorithms Library) recently.

I started with code from this gist and then made it write an .off output file, with z=0 for all points from the computed planar straight line drawing:
https://github.com/Hermann-SW/random_maximal_planar_embedding/tree/main/boost#random_maximal_planar_embedding

Then I used CGAL draw_polyhedron.cpp example to draw planar graph straight line drawing in window:

$ NOSTAT= randomgraph 10 -o 10.u
$ ./straight_line_drawing 10.u > 10.off 2>err
$ draw_polyhedron 10.off 
Using OpenGL context 4.6 GL
$ 

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment