Created
June 19, 2023 07:50
-
-
Save Hermann-SW/eb39744899bf308365426ae64b0ff0c5 to your computer and use it in GitHub Desktop.
shows difference for "list of largest 5000 primes"
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/bin/bash | |
wget -O /tmp/all.txt https://t5k.org/primes/lists/all.txt 2> /dev/null | |
if [ ! -f t5k.org_primes_lists_all.txt ] | |
then | |
echo "initial download of largest primes list" | |
cp /tmp/all.txt t5k.org_primes_lists_all.txt | |
fi | |
if [ ! -f t5k.org_primes_lists_all.txt.old ] | |
then | |
cp t5k.org_primes_lists_all.txt t5k.org_primes_lists_all.txt.old | |
fi | |
diff t5k.org_primes_lists_all.txt /tmp/all.txt > /dev/null | |
if [ "$?" == "1" ] | |
then | |
echo "file downloaded is different" | |
mv t5k.org_primes_lists_all.txt t5k.org_primes_lists_all.txt.old | |
cp /tmp/all.txt t5k.org_primes_lists_all.txt | |
fi | |
diff <(cut -b7- t5k.org_primes_lists_all.txt.old) <(cut -b7- t5k.org_primes_lists_all.txt) --side-by-side -W 160 | egrep "(<|>|\|)" |
New run revealed interesting for me Proth prime with factor 123454321:
hermann@j4105:~$ grep 123454321 t5k.org_primes_lists_all.txt
3655a 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat
hermann@j4105:~$
hermann@j4105:~$ latest_new_primes
file downloaded is different
(Tue Jul 2 20:37:33 UTC 2024) | (Wed Jul 24 23:37:34 UTC 2024)
> 77*2^5422903+1 1632459 A2 2024
> Divides GF(5422902,12)
> 227*2^5213195+1 1569331 L5517 2024
> 149*2^5196375+1 1564267 L5174 2024
> 277*2^5185268+1 1560924 L5888 2024
> 22*905^437285-1 1292900 L5342 2024
> 8*558^447047+1 1227876 A28 2024
> 237260908^131072+1 1097758 L4201 2024 Generalized Fermat
> 237185928^131072+1 1097740 L5755 2024 Generalized Fermat
> 237108488^131072+1 1097722 L5639 2024 Generalized Fermat
> 236924362^131072+1 1097677 L5639 2024 Generalized Fermat
> 236602468^131072+1 1097600 L6038 2024 Generalized Fermat
> 236500052^131072+1 1097575 L5198 2024 Generalized Fermat
> 236417078^131072+1 1097555 L5588 2024 Generalized Fermat
> 236240868^131072+1 1097513 L6038 2024 Generalized Fermat
> 235947986^131072+1 1097442 L4201 2024 Generalized Fermat
> 235577802^131072+1 1097353 L5077 2024 Generalized Fermat
> 234661134^131072+1 1097131 L5416 2024 Generalized Fermat
> 233559012^131072+1 1096863 L5416 2024 Generalized Fermat
> 856*75^530221-1 994200 A11 2024
> 968*75^522276-1 979303 A11 2024
> 81030*91^440109-1 862197 A11 2024
> 223952*91^437353-1 856798 A11 2024
> 43814*91^433332-1 848920 A32 2024
> 123454321*2^2630208+1 791780 L6049 2024 Generalized Fermat
> (2^64-189)*10^764330+1 764350 p439 2024
> 153*2^2522271-1 759282 A27 2024
> 209*2^2510308-1 755681 A27 2024
> 77*2^2505854-1 754340 A27 2024
> 15592*67^405715+1 740871 A11 2024
> 391581*2^2284871-1 687821 A2 2024
> 391581*2^2217203-1 667451 A2 2024
> 629*2^2197736-1 661588 L5819 2024
> 25046*24^459407-1 634084 A11 2024
> 5103*2^1982741+1 596869 L5885 2024
> 9521*2^1982599+1 596826 L5937 2024
> 5965*2^1982156+1 596693 L5434 2024
> 5245*2^1981702+1 596556 L5517 2024
> 5125*2^1981624+1 596532 L5401 2024
> 2415*2^1981595+1 596523 L5517 2024
> 7263*2^1981101+1 596375 L6052 2024
> 5205*2^1981037+1 596356 L6041 2024
> 7941*2^1980816+1 596289 L6051 2024
> 4343*2^1980693+1 596252 L4944 2024
> 2703*2^1980598+1 596223 L5705 2024
> 6783*2^1980310+1 596137 L5923 2024
> 4921*2^1980284+1 596129 L5726 2024
> 7731*2^1980081+1 596068 L5937 2024
> 8375*2^1979745+1 595967 L6050 2024
> 3639*2^1979615+1 595928 L5916 2024
> 2833*2^1979470+1 595884 L5906 2024
> 2475*2^1979461+1 595881 L5985 2024
> 6703*2^1979266+1 595823 L4944 2024
> 2931*2^1979028+1 595751 L5517 2024
> 1393*2^1978890+1 595709 L5916 2024
> 7537*2^1978866+1 595702 L5888 2024
> 6881*2^1978589+1 595619 L5937 2024
> 8115*2^1978397+1 595561 L5189 2024
> 6015*2^1978343+1 595545 L5725 2024
> 5013*2^1978136+1 595482 L5937 2024
> 7987*2^1977924+1 595419 L5189 2024
> 7605*2^1977920+1 595418 L5197 2024
> 5903*2^1977297+1 595230 L6048 2024
> 3693*2^1977200+1 595201 L5596 2024
> 2265*2^1977133+1 595180 L5596 2024
4577*2^1972667+1 593836 L5727 2024 <
4693*2^1972574+1 593808 L6041 2024 <
6453*2^1972505+1 593787 L5958 2024 <
705*2^1972428+1 593763 L3043 2013 <
1533*2^1972136+1 593676 L5952 2024 <
2373*2^1972080+1 593659 L5896 2024 <
1347*2^1972022+1 593641 L5906 2024 <
5067*2^1972000+1 593635 L5727 2024 <
549*2^1971947-1 593618 L5516 2022 <
3015*2^1971942+1 593618 L5226 2024 <
1387*2^1971758+1 593562 L6012 2024 <
9851*2^1971743+1 593558 L6012 2024 <
74*894^201093+1 593496 L5410 2022 <
549*2^1971183+1 593388 L2840 2013 <
8621*2^1970975+1 593327 L5226 2024 <
2241*2^1970835+1 593284 L5226 2024 <
549721*12^549721-1 593255 L5765 2023 <
Generalized Woodall <
3689*2^1970679+1 593238 L5226 2024 <
3077*2^1970455+1 593170 L5888 2024 <
4197*2^1970430-1 593163 L1959 2016 <
9291*2^1970369+1 593145 L5541 2024 <
8645*2^1970137+1 593075 L5896 2024 <
1387*2^1970033-1 593043 L1828 2016 <
8855*2^1970027+1 593042 L6008 2024 <
8505*2^1969943+1 593016 L4944 2024 <
3933*2^1969900+1 593003 L5896 2024 <
2043*2^1969798+1 592972 L5888 2024 <
92163*2^1969778+1 592968 L5115 2022 <
5021*2^1969699+1 592943 L5192 2024 <
2297*2^1969671+1 592934 L5282 2024 <
7821*2^1969619+1 592919 L5434 2024 <
1616*277^242731-1 592869 L5410 2020 <
1983*2^1969404+1 592853 L5888 2024 <
84969*2^1969323+1 592831 L5115 2022 <
2067*2^1969155+1 592779 L5985 2024 <
3969*2^1969030+1 592741 L6012 2024 Generalized Fermat <
2965*2^1968968+1 592722 L5906 2024 <
6297*2^1968895+1 592701 L5952 2024 <
1693*396^228140+1 592642 L5410 2021 <
5233*2^1968626+1 592620 L5889 2024 <
5473*2^1968548+1 592596 L5923 2024 <
441*2^1968431+1 592560 L3035 2013 <
1485*2^1968400-1 592551 L1134 2014 <
7183*2^1968242+1 592504 L4944 2024 <
1159*2^1968190+1 592488 L3035 2013 <
9607*2^1968066+1 592451 L5192 2024 <
731*2^1968039+1 592442 L3682 2013 <
5147*2^1967995+1 592430 L6008 2024 <
833*2^1967841+1 592383 L3744 2013 <
989*2^1967819+1 592376 L3738 2013 <
3283*2^1967782+1 592365 L5189 2024 <
1035*2^1967708+1 592343 L3739 2013 <
148*789^204455+1 592325 L5410 2019 <
1309*2^1967613-1 592314 L1828 2016 <
7335*2^1967564+1 592300 L5888 2024 <
9305*2^1967441+1 592263 L5174 2024 <
449*2^1967140-1 592171 L5516 2022 <
7053*2^1966958+1 592118 L5906 2024 <
8293*2^1966876+1 592093 L5985 2024 <
611*2^1966866-1 592089 L2257 2023 <
4025*2^1966732-1 592049 L1959 2016 <
203*2^1966689+1 592035 L1408 2013 <
101594*151^271697-1 592027 L4001 2018 <
921*2^1966634-1 592019 L2257 2023 <
55*2^1669798+1 502662 L2518 2011 <
Divides GF(1669797,12) <
> (74968^17107-1)/74967 83390 p441 2024
> Generalized repunit
(1852^13477-1)/1851 44035 p170 2015 <
Generalized repunit <
> 4404139952163*2^67002+1 20183 p408 2024 Triplet (3)
> 4404139952163*2^67002-1 20183 p408 2024 Triplet (2)
> 4404139952163*2^67002-5 20183 E15 2024 Triplet (1), ECPP
14059969053*2^36672+1 11050 p364 2018 Triplet (3) <
14059969053*2^36672-1 11050 p364 2018 Triplet (2) <
14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP <
> Cedric, Srsieve, CRUS, PRST
> Batalov, PolySieve, CM
Emery, PSieve, Srsieve, PrimeGrid, LLR <
Karevik, PSieve, Srsieve, PrimeGrid, LLR <
Hayase, PSieve, Srsieve, PrimeGrid, LLR <
Schaible, PSieve, Srsieve, PrimeGrid, LLR <
Larsson1, PSieve, Srsieve, PrimeGrid, LLR <
Gournay, PSieve, Srsieve, PrimeGrid, LLR <
> Moreno1, LLR2, PSieve, Srsieve, PrimeGrid, LLR
Kim6, LLR2, PSieve, Srsieve, PrimeGrid, LLR <
Yakubchak, LLR2, PSieve, Srsieve, PrimeGrid, LLR <
> Gao, LLR2, PSieve, Srsieve, PrimeGrid, LLR
Hall, LLR2, PSieve, Srsieve, PrimeGrid, LLR <
Allivato, LLR2, PSieve, Srsieve, PrimeGrid, LLR <
> Bhat, LLR2, PSieve, Srsieve, PrimeGrid, LLR
> Chen4, LLR
> Krstić, LLR2, PSieve, Srsieve, PrimeGrid, LLR
> Wyn, LLR2, PSieve, Srsieve, PrimeGrid, LLR
> Luo, LLR2, PSieve, Srsieve, PrimeGrid, LLR
> Wu_T, CM, OpenPFGW
hermann@j4105:~$
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
List of 5000 largest primes:
https://t5k.org/primes/lists/all.txt
Sample script output: