Skip to content

Instantly share code, notes, and snippets.

@HideakiImamura
Created November 2, 2023 03:11
Show Gist options
  • Save HideakiImamura/668d6f5703c58255e54ece03cd270f2f to your computer and use it in GitHub Desktop.
Save HideakiImamura/668d6f5703c58255e54ece03cd270f2f to your computer and use it in GitHub Desktop.
For reviews of optuna-dashboard
import logging
import os.path
import textwrap
from typing import Tuple
import optuna
from optuna.artifacts import FileSystemArtifactStore
from optuna.distributions import CategoricalDistribution
from optuna.distributions import FloatDistribution
from optuna_dashboard import ChoiceWidget
from optuna_dashboard import SliderWidget
from optuna_dashboard import TextInputWidget
from optuna_dashboard import ObjectiveUserAttrRef
from optuna_dashboard import register_objective_form_widgets
from optuna_dashboard import save_note
from optuna_dashboard._app import create_app
host = "0.0.0.0"
port = 8080
optuna.logging.set_verbosity(logging.CRITICAL)
def create_optuna_storage() -> optuna.storages.InMemoryStorage:
storage = optuna.storages.InMemoryStorage()
# Single-objective study
study = optuna.create_study(study_name="single-objective", storage=storage)
note = textwrap.dedent(
"""\
## Objective Function
$$
y = (x1 - 2)^{{2}} + (x2 -5)^{{2}}
$$
"""
)
save_note(study, note)
def objective_single(trial: optuna.Trial) -> float:
x1 = trial.suggest_float("x1", 0, 10)
x2 = trial.suggest_float("x2", 0, 10)
x3 = trial.suggest_categorical("x3", ["foo", "bar"])
note = textwrap.dedent(
f"""\
## Trial {trial._trial_id}
$$
y = (x1 - 2)^{{2}} + (x2 - 5)^{{2}} = ({x1} - 2)^{{2}} + ({x2} - 5)^{{2}}
$$
"""
)
save_note(trial, note)
return (x1 - 2) ** 2 + (x2 - 5) ** 2
study.optimize(objective_single, n_trials=100)
# Single-objective study
study = optuna.create_study(study_name="single-objective-user-attrs", storage=storage)
def objective_single_user_attr(trial: optuna.Trial) -> float:
x1 = trial.suggest_float("x1", 0, 10)
x2 = trial.suggest_float("x2", 0, 10)
if x1 < 5:
trial.set_user_attr("X", "foo")
else:
trial.set_user_attr("X", "bar")
trial.set_user_attr("Y", x1 + x2)
return (x1 - 2) ** 2 + (x2 - 5) ** 2
study.optimize(objective_single_user_attr, n_trials=100)
# Single objective study with 'inf', '-inf', or 'nan' value
study = optuna.create_study(study_name="single-inf", storage=storage)
def objective_single_inf(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -10, 10)
if trial.number % 3 == 0:
return float("inf")
elif trial.number % 3 == 1:
return float("-inf")
else:
return x**2
study.optimize(objective_single_inf, n_trials=50)
# Single objective pruned after reported 'inf', '-inf', or 'nan'
study = optuna.create_study(study_name="single-inf-report", storage=storage)
def objective_single_inf_report(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -10, 10)
if trial.number % 3 == 0:
trial.report(float("inf"), 1)
elif trial.number % 3 == 1:
trial.report(float("-inf"), 1)
else:
trial.report(float("nan"), 1)
if x > 0:
raise optuna.TrialPruned()
else:
return x**2
study.optimize(objective_single_inf_report, n_trials=50)
## Single objective with reported nan value
# study = optuna.create_study(study_name="single-nan-report", storage=storage)
# def objective_single_nan_report(trial: optuna.Trial) -> float:
# x1 = trial.suggest_float("x1", 0, 10)
# x2 = trial.suggest_float("x2", 0, 10)
# trial.report(0.5, step=0)
# trial.report(math.nan, step=1)
# return (x1 - 2) ** 2 + (x2 - 5) ** 2
# study.optimize(objective_single_nan_report, n_trials=100)
# Single-objective study with dynamic search space
study = optuna.create_study(
study_name="single-objective-dynamic", storage=storage, direction="maximize"
)
def objective_single_dynamic(trial: optuna.Trial) -> float:
category = trial.suggest_categorical("category", ["foo", "bar"])
if category == "foo":
return (trial.suggest_float("x1", 0, 10) - 2) ** 2
else:
return -((trial.suggest_float("x2", -10, 0) + 5) ** 2)
study.optimize(objective_single_dynamic, n_trials=50)
# Single-objective study with 1 parameter
study = optuna.create_study(
study_name="single-objective-1-param", storage=storage, direction="maximize"
)
def objective_single_with_1param(trial: optuna.Trial) -> float:
x1 = trial.suggest_float("x1", 0, 10)
return -((x1 - 2) ** 2)
study.optimize(objective_single_with_1param, n_trials=50)
# Single-objective study with 1 parameter
study = optuna.create_study(study_name="long-parameter-names", storage=storage)
def objective_long_parameter_names(trial: optuna.Trial) -> float:
x1 = trial.suggest_float(
"x1_long_parameter_names_long_long_long_long_long_long_long_long_long_long", 0, 10
)
x2 = trial.suggest_float(
"x2_long_parameter_names_long_long_long_long_long_long_long_long_long_long", 0, 10
)
return (x1 - 2) ** 2 + (x2 - 5) ** 2
study.optimize(objective_long_parameter_names, n_trials=50)
# Multi-objective study
study = optuna.create_study(
study_name="multi-objective",
storage=storage,
directions=["minimize", "minimize"],
)
study.set_metric_names(["v0", "v1"])
def objective_multi(trial: optuna.Trial) -> Tuple[float, float]:
x = trial.suggest_float("x", 0, 5)
y = trial.suggest_float("y", 0, 3)
v0 = 4 * x**2 + 4 * y**2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1
study.optimize(objective_multi, n_trials=50)
# Multi-objective study with dynamic search space
study = optuna.create_study(
study_name="multi-dynamic", storage=storage, directions=["minimize", "minimize"]
)
def objective_multi_dynamic(trial: optuna.Trial) -> Tuple[float, float]:
category = trial.suggest_categorical("category", ["foo", "bar"])
if category == "foo":
x = trial.suggest_float("x1", 0, 5)
y = trial.suggest_float("y1", 0, 3)
v0 = 4 * x**2 + 4 * y**2
v1 = (x - 5) ** 2 + (y - 5) ** 2
return v0, v1
else:
x = trial.suggest_float("x2", 0, 5)
y = trial.suggest_float("y2", 0, 3)
v0 = 2 * x**2 + 2 * y**2
v1 = (x - 2) ** 2 + (y - 3) ** 2
return v0, v1
study.optimize(objective_multi_dynamic, n_trials=50)
# Pruning with no intermediate values
study = optuna.create_study(study_name="binh-korn-function-with-constraints", storage=storage)
def objective_prune_with_no_trials(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -15, 30)
y = trial.suggest_float("y", -15, 30)
v = x**2 + y**2
if v > 100:
raise optuna.TrialPruned()
return v
study.optimize(objective_prune_with_no_trials, n_trials=100)
# With failed trials
study = optuna.create_study(study_name="failed trials", storage=storage)
def objective_sometimes_got_failed(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -15, 30)
y = trial.suggest_float("y", -15, 30)
v = x**2 + y**2
if v > 100:
raise ValueError("unexpected error")
return v
study.optimize(objective_sometimes_got_failed, n_trials=100, catch=(Exception,))
# No trials single-objective study
optuna.create_study(study_name="no trials single-objective study", storage=storage)
# study with waiting trials
study = optuna.create_study(study_name="waiting-trials", storage=storage)
study.enqueue_trial({"x": 0, "y": 10})
study.enqueue_trial({"x": 10, "y": 20})
# Study with Running Trials
study = optuna.create_study(
study_name="running-trials", storage=storage, directions=["minimize", "maximize"]
)
study.set_metric_names(["auc", "val_loss"])
study.enqueue_trial({"x": 10, "y": "Foo"})
study.ask({"x": FloatDistribution(0, 10), "y": CategoricalDistribution(["Foo", "Bar"])})
study.ask({"x": FloatDistribution(0, 10), "y": CategoricalDistribution(["Foo", "Bar"])})
# Single-objective study with constraints
def objective_constraints(trial: optuna.Trial) -> float:
x = trial.suggest_float("x", -15, 30)
y = trial.suggest_float("y", -15, 30)
v0 = 4 * x**2 + 4 * y**2
trial.set_user_attr("constraint", [1000 - v0, x - 10, y - 10])
return v0
def constraints(trial: optuna.Trial) -> list[float]:
return trial.user_attrs["constraint"]
study = optuna.create_study(
study_name="A single objective constraint optimization study",
storage=storage,
sampler=optuna.samplers.TPESampler(constraints_func=constraints),
)
study.optimize(objective_constraints, n_trials=100)
# Study with Running Trials
study = optuna.create_study(
study_name="objective-form-widgets",
storage=storage,
directions=["minimize", "minimize", "minimize", "minimize"],
)
study.set_metric_names(
["Slider Objective", "Good or Bad", "Text Input Objective", "Validation Loss"]
)
register_objective_form_widgets(
study,
widgets=[
SliderWidget(
min=0.0,
max=1.0,
step=0.1,
labels=[(0.0, "Better"), (0.5, "0.5"), (1.0, "Worse")],
description="Select a value.",
),
ChoiceWidget(
choices=["Good 👍", "Bad 👎"],
values=[-1, 1],
description="Choose Good 👍 or Bad 👎.",
),
TextInputWidget(
description="Enter the objective value via TextInput.",
),
ObjectiveUserAttrRef(
key="val_loss",
),
],
)
trial = study.ask(
{"x": FloatDistribution(0, 10), "y": CategoricalDistribution(["Foo", "Bar"])}
)
trial.set_user_attr("val_loss", 0.2)
study.ask({"x": FloatDistribution(0, 10), "y": CategoricalDistribution(["Foo", "Bar"])})
trial.set_user_attr("val_loss", 0.5)
# No trials multi-objective study
optuna.create_study(
study_name="no trials multi-objective study",
storage=storage,
directions=["minimize", "maximize"],
)
# Single-objective study with intermediate values
study = optuna.create_study(study_name="intermediate-values", storage=storage)
def objective_intermediate_values(trial: optuna.Trial) -> float:
trial.report(trial.number, step=0)
trial.report(trial.number + 1, step=1)
return 0.0
study.optimize(objective_intermediate_values, n_trials=10)
trial = study.ask({"x": FloatDistribution(0, 10), "y": CategoricalDistribution(["Foo", "Bar"])}) # To create a running trial
trial.report(trial.number, step=0)
trial.report(trial.number + 1, step=1)
# Single-objective study with intermediate values and constraints
def objective_intermediate_values_constraints(trial: optuna.Trial) -> float:
trial.set_user_attr("constraint", [trial.number % 2])
trial.report(trial.number, step=0)
trial.report(trial.number + 1, step=1)
return 0.0
def constraints(trial: optuna.Trial) -> list[float]:
return trial.user_attrs["constraint"]
study = optuna.create_study(
study_name="intermediate-values-constraints",
storage=storage,
sampler=optuna.samplers.NSGAIISampler(constraints_func=constraints),
)
study.optimize(objective_intermediate_values_constraints, n_trials=10)
trial = study.ask({"x": FloatDistribution(0, 10), "y": CategoricalDistribution(["Foo", "Bar"])}) # To create a running trial
trial.report(trial.number, step=0)
trial.report(trial.number + 1, step=1)
return storage
def main() -> None:
storage = create_optuna_storage()
base_path = os.path.join(os.path.dirname(__file__), "artifact")
if not os.path.exists(base_path):
os.mkdir(base_path)
artifact_store = FileSystemArtifactStore(base_path=base_path)
app = create_app(storage, artifact_store, debug=True)
app.run(host=host, port=port, reloader=True)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment