Created
February 26, 2024 07:22
Solution for challenge challengename
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from hashlib import md5 | |
from math import gcd | |
from pwn import * | |
import json | |
io = remote("localhost",int(1337)) | |
P = eval(io.recvline()[12: ]) | |
Enc = eval(io.recvline()[16: ]) | |
p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff | |
coll1 = "4dc968ff0ee35c209572d4777b721587d36fa7b21bdc56b74a3dc0783e7b9518afbfa200a8284bf36e8e4b55b35f427593d849676da0d1555d8360fb5f07fea2" | |
coll2 = "4dc968ff0ee35c209572d4777b721587d36fa7b21bdc56b74a3dc0783e7b9518afbfa202a8284bf36e8e4b55b35f427593d849676da0d1d55d8360fb5f07fea2" | |
io.sendlineafter(b"Message: ",b"a".hex().encode()) | |
io.sendlineafter(b"Nonce: ",(coll1 + "00" * 16).encode()) | |
t1 = json.loads(io.recvline()) | |
io.sendlineafter(b"Message: ",b"b".hex().encode()) | |
io.sendlineafter(b"Nonce: ",(coll2 + "00" * 16).encode()) | |
t2 = json.loads(io.recvline()) | |
def recover(p, x1, y1, x2, y2): | |
a = pow(x1 - x2, -1, p) * (pow(y1, 2, p) - pow(y2, 2, p) - (pow(x1, 3, p) - pow(x2, 3, p))) % p | |
b = (pow(y1, 2, p) - pow(x1, 3, p) - a * x1) % p | |
return int(a), int(b) | |
def solve_congruence(a, b, m): | |
g = gcd(a, m) | |
a //= g | |
b //= g | |
n = m // g | |
for i in range(g): | |
yield (pow(a, -1, n) * b + i * n) % m | |
def attack(n, m1, r1, s1, m2, r2, s2): | |
for k in solve_congruence(int(s1 - s2), int(m1 - m2), int(n)): | |
for x in solve_congruence(int(r1), int(k * s1 - m1), int(n)): | |
return int(k), int(x) | |
m1 = int(md5(bytes.fromhex(t1["msg"])).hexdigest(),16) | |
r1 = int(t1["r"],16) | |
s1 = int(t1["s"],16) | |
m2 = int(md5(bytes.fromhex(t2["msg"])).hexdigest(),16) | |
r2 = int(t2["r"],16) | |
s2 = int(t2["s"],16) | |
a,b = recover(p,P[0],P[1],Enc[0],Enc[1]) | |
print(a,b) | |
E = EllipticCurve(GF(p),[a,b]) | |
n = E.order() | |
P = E(P) | |
Enc = E(Enc) | |
print("--------------------------------------") | |
k,x = attack(n,m1,r1,s1,m2,r2,s2) | |
print(bytes.fromhex(hex((Enc * inverse_mod(x,n)).xy()[0])[2:]).decode()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment