Last active
October 4, 2020 05:29
-
-
Save HuangWeiKulish/bd2beeddb9fe3161d2f10297ad2ad2d5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def tokenizer(source, target): | |
""" | |
:param source: list of lists of strings | |
:param target: list of lists of strings | |
:return: tk_in, tk_out | |
""" | |
tk_in = tf.keras.preprocessing.text.Tokenizer(filters='') | |
tk_out = tf.keras.preprocessing.text.Tokenizer(filters='') | |
tk_in.fit_on_texts(source) | |
tk_out.fit_on_texts(target) | |
tk_out.fit_on_texts(['<start>', '<end>']) | |
return tk_in, tk_out | |
def preprocess(source, target, tk_in, tk_out): | |
""" | |
:param source: list of lists of strings | |
:param target: list of lists of strings | |
:param: tk_in: tf.keras.preprocessing.text.Tokenizer | |
:param: tk_out: tf.keras.preprocessing.text.Tokenizer | |
:return: x_en, x_de_in, x_de_out | |
""" | |
tar_in = ['<start> ' + tg for tg in target] | |
tar_out = [tg + ' <end>' for tg in target] | |
x_en = tf.keras.preprocessing.sequence.pad_sequences(tk_in.texts_to_sequences(source), padding='post') | |
x_de_in = tf.keras.preprocessing.sequence.pad_sequences(tk_out.texts_to_sequences(tar_in), padding='post') | |
x_de_out = tf.keras.preprocessing.sequence.pad_sequences(tk_out.texts_to_sequences(tar_out), padding='post') | |
return x_en, x_de_in, x_de_out | |
""" | |
source = ['I read books', 'I love you', 'sweet cake'] | |
target = ['Я читаю книги', 'Я люблю тебе', 'солодкий торт'] | |
tk_in, tk_out = tokenizer(source, target) | |
x_en, x_de_in, x_de_out = preprocess(source, target, tk_in, tk_out) | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment