Created
May 25, 2017 03:45
-
-
Save IcedDoggie/a677e16edbc94d3dd980028185e77c49 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def text_encoding(vocab_len, original_text, nt, nz,cap_length, batch_size): | |
# initialization of pytorch functions | |
# Word embedding here | |
text_embedding = nn.Embedding(batch_size * cap_length + 1, nt).cuda() | |
# RNN layers | |
rnn = nn.LSTM(cap_length + 1, 256, batch_size).cuda() | |
# FC layer | |
linear_layer = nn.Linear((cap_length + 1) * nt, nt).cuda() | |
leaky_relu = nn.LeakyReLU(0.1).cuda() | |
# pass to fully connected layer | |
original_text = Variable(original_text).cuda() | |
original_text = text_embedding(original_text) | |
# print(original_text) | |
original_text = original_text.float() | |
original_text = original_text.view(batch_size, nt, cap_length+1) | |
# print(original_text) | |
# original_text = original_text.view(args.batch_size, ) | |
# print(original_text) | |
out, hidden_state = rnn(original_text) # <------------memory explodes here | |
# print(out) | |
# original_text = original_text.view(batch_size, (cap_length + 1) * nt ) | |
# print(original_text) | |
output = linear_layer(original_text) | |
output = leaky_relu(output) | |
# print(output) | |
# noise concatenation | |
dim_a = len(output) | |
dim_b = len(output[0][:]) | |
dim_c = len(output[:][0][0]) | |
noise_z = torch.rand(dim_a, nz, dim_c) | |
noise_z = Variable(noise_z).cuda() | |
# print(noise_z) | |
output = torch.cat([output, noise_z], 1) | |
# print(output) | |
return output |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment