Skip to content

Instantly share code, notes, and snippets.

@IdrisCytron
Created March 21, 2018 01:38
Show Gist options
  • Save IdrisCytron/f2923a7d276bbbced169c55192fd99f0 to your computer and use it in GitHub Desktop.
Save IdrisCytron/f2923a7d276bbbced169c55192fd99f0 to your computer and use it in GitHub Desktop.
/* Created by BrothEr yUnN
* Combination MakerUNO & LSS05 & Motor & Colour Sensor
* 7/3/2018 setup for Line Following Robot with Melody
*
* Connection wire motor to Motor Driver
* A = Black wire
* B = White wire
*
* Connection wire Colour Sensor to Arduino
* VCC = 5V
* GND = Ground
* S0 = pin 12
* S1 = pin 11
* S2 = pin 9
* S3 = pin 10
* OUT = pin 13
*/
/*************************************************
* Public Constants
*************************************************/
#define NOTE_B0 31
#define NOTE_C1 33
#define NOTE_CS1 35
#define NOTE_D1 37
#define NOTE_DS1 39
#define NOTE_E1 41
#define NOTE_F1 44
#define NOTE_FS1 46
#define NOTE_G1 49
#define NOTE_GS1 52
#define NOTE_A1 55
#define NOTE_AS1 58
#define NOTE_B1 62
#define NOTE_C2 65
#define NOTE_CS2 69
#define NOTE_D2 73
#define NOTE_DS2 78
#define NOTE_E2 82
#define NOTE_F2 87
#define NOTE_FS2 93
#define NOTE_G2 98
#define NOTE_GS2 104
#define NOTE_A2 110
#define NOTE_AS2 117
#define NOTE_B2 123
#define NOTE_C3 131
#define NOTE_CS3 139
#define NOTE_D3 147
#define NOTE_DS3 156
#define NOTE_E3 165
#define NOTE_F3 175
#define NOTE_FS3 185
#define NOTE_G3 196
#define NOTE_GS3 208
#define NOTE_A3 220
#define NOTE_AS3 233
#define NOTE_B3 247
#define NOTE_C4 262
#define NOTE_CS4 277
#define NOTE_D4 294
#define NOTE_DS4 311
#define NOTE_E4 330
#define NOTE_F4 349
#define NOTE_FS4 370
#define NOTE_G4 392
#define NOTE_GS4 415
#define NOTE_A4 440
#define NOTE_AS4 466
#define NOTE_B4 494
#define NOTE_C5 523
#define NOTE_CS5 554
#define NOTE_D5 587
#define NOTE_DS5 622
#define NOTE_E5 659
#define NOTE_F5 698
#define NOTE_FS5 740
#define NOTE_G5 784
#define NOTE_GS5 831
#define NOTE_A5 880
#define NOTE_AS5 932
#define NOTE_B5 988
#define NOTE_C6 1047
#define NOTE_CS6 1109
#define NOTE_D6 1175
#define NOTE_DS6 1245
#define NOTE_E6 1319
#define NOTE_F6 1397
#define NOTE_FS6 1480
#define NOTE_G6 1568
#define NOTE_GS6 1661
#define NOTE_A6 1760
#define NOTE_AS6 1865
#define NOTE_B6 1976
#define NOTE_C7 2093
#define NOTE_CS7 2217
#define NOTE_D7 2349
#define NOTE_DS7 2489
#define NOTE_E7 2637
#define NOTE_F7 2794
#define NOTE_FS7 2960
#define NOTE_G7 3136
#define NOTE_GS7 3322
#define NOTE_A7 3520
#define NOTE_AS7 3729
#define NOTE_B7 3951
#define NOTE_C8 4186
#define NOTE_CS8 4435
#define NOTE_D8 4699
#define NOTE_DS8 4978
#define CHOICE_RED (1 << 0)
#define CHOICE_GREEN (1 << 1)
#define CHOICE_BLUE (1 << 2)
#define CHOICE_YELLOW (1 << 3)
// Buzzer pin definitions
#define BUZZER1 8//4
#define S0 12
#define S1 11
#define S2 9
#define S3 10
#define sensorOut 13
// Stores frequency read by the photodiodes
int redFrequency = 0;
int greenFrequency = 0;
int blueFrequency = 0;
int redColor = 0;
int greenColor = 0;
int blueColor = 0;
//---------------------------------------------------------------------------//
//Assign Pins For Motor Driver (Fixed for this component)
int EN1 = 5; //Left Enable Motor
int DIR1= 4; //Left Direction Motor
int EN2 = 6; //Right Enable Motor
int DIR2= 7; //Right Direction Motor
int LeftSen = A1; //Left Sensor
int LeftMSen = A2; //Left Middle Sensor
int MidSen = A3; //Middle Sensor
int RightMSen = A4; //Right Middle Sensor
int RightSen = A5; //Right Sensor
int IR_Left = 0; //OUT1
int IR_MLeft = 0; //OUT2
int IR_Middle = 0; //OUT3
int IR_MRight = 0; //OUT4
int IR_Right = 0; //OUT5
//Motor Reading
int Motor_Left = 0;
int Motor_Right = 0;
void setup()
{
// Setting the outputs
pinMode(S0, OUTPUT);
pinMode(S1, OUTPUT);
pinMode(S2, OUTPUT);
pinMode(S3, OUTPUT);
pinMode(BUZZER1, OUTPUT);
// Setting the sensorOut as an input
pinMode(sensorOut, INPUT);
/*
* Frequency Scaling :
* Power Down : S0 = LOW , S1 = LOW
* 2% : S0 = LOW , S1 = HIGH
* 20% : S0 = HIGH , S1 = LOW
* 100% : S0 = HIGH , S1 = HIGH
* For the Arduino, it is common to use a frequency scaling of 20%.
*/
// Setting frequency scaling to 20%
digitalWrite(S0,HIGH);
digitalWrite(S1,LOW);
//Motor Driver Pin Setup
pinMode ( EN1, OUTPUT);
pinMode (DIR1, OUTPUT);
pinMode ( EN2, OUTPUT);
pinMode (DIR2, OUTPUT);
//For motor direction moving forward
digitalWrite(DIR1, 1);
digitalWrite(DIR2, 0);
//LSS05 Auto-Calibrating Line Sensor Pin Setup
pinMode(LeftSen, INPUT);
pinMode(LeftMSen, INPUT);
pinMode(MidSen, INPUT);
pinMode(RightMSen,INPUT);
pinMode(RightSen, INPUT);
Serial.begin(9600);
delay(10);
}
void readSensor ()
{
IR_Left = digitalRead(LeftSen); //OUT1
IR_MLeft = digitalRead(LeftMSen); //OUT2
IR_Middle = digitalRead(MidSen); //OUT3
IR_MRight = digitalRead(RightMSen); //OUT4
IR_Right = digitalRead(RightSen); //OUT5
Serial.print("SL = ");
Serial.print(IR_Left );
Serial.print("\t");
Serial.print("SML = ");
Serial.print(IR_MLeft);
Serial.print("\t");
Serial.print("SM = ");
Serial.print(IR_Middle);
Serial.print("\t");
Serial.print("SMR = ");
Serial.print(IR_MRight);
Serial.print("\t");
Serial.print("SR = ");
Serial.print(IR_Right);
Serial.println();
}
void ColourMelody ()
{
// Setting RED (R) filtered photodiodes to be read
digitalWrite(S2,LOW);
digitalWrite(S3,LOW);
// Reading the output frequency
redFrequency = pulseIn(sensorOut, LOW);
redColor = map(redFrequency, 35,130,255,0);
// Printing the RED (R) value
Serial.print("R = ");
//Serial.print(redFrequency); //To see the frequency of colour
Serial.print(redColor);
delay(50);
// Setting GREEN (G) filtered photodiodes to be read
digitalWrite(S2,HIGH);
digitalWrite(S3,HIGH);
// Reading the output frequency
greenFrequency = pulseIn(sensorOut, LOW);
greenColor = map(greenFrequency, 48, 140, 255, 0);
// Printing the GREEN (G) value
Serial.print(" G = ");
//Serial.print(greenFrequency); //To see the frequency of colour
Serial.print(greenColor);
delay(50);
// Setting BLUE (B) filtered photodiodes to be read
digitalWrite(S2,LOW);
digitalWrite(S3,HIGH);
// Reading the output frequency
blueFrequency = pulseIn(sensorOut, LOW);
blueColor = map(blueFrequency, 37, 110, 255, 0);
// Printing the BLUE (B) value
Serial.print(" B = ");
//Serial.println(blueFrequency); //To see the frequency of colour
Serial.print(blueColor);
delay(50);
if (redColor > greenColor && redColor > blueColor){
Serial.println(" - RED detected!");
toner(CHOICE_RED, 150);
}
if (greenColor > redColor && greenColor > blueColor){
Serial.println(" - GREEN detected!");
toner(CHOICE_GREEN, 150);
}
if (blueColor > redColor && blueColor > greenColor){
Serial.println(" - BLUE detected!");
toner(CHOICE_BLUE, 150);
}
}
void buzz_sound(int buzz_length_ms, int buzz_delay_us)
{
// Convert total play time from milliseconds to microseconds
long buzz_length_us = buzz_length_ms * (long)500;
// Loop until the remaining play time is less than a single buzz_delay_us
while (buzz_length_us > (buzz_delay_us * 2))
{
buzz_length_us -= buzz_delay_us * 2; //Decrease the remaining play time
// Toggle the buzzer
digitalWrite(BUZZER1, LOW);
delayMicroseconds(buzz_delay_us);
digitalWrite(BUZZER1, HIGH);
delayMicroseconds(buzz_delay_us);
}
}
/*
Light an LED and play tone
Red, upper left: 440Hz - 2.272ms - 1.136ms pulse
Green, upper right: 880Hz - 1.136ms - 0.568ms pulse
Blue, lower left: 587.33Hz - 1.702ms - 0.851ms pulse
Yellow, lower right: 784Hz - 1.276ms - 0.638ms pulse
*/
void toner(byte which, int buzz_length_ms)
{
//Play the sound
switch(which) {
case CHOICE_RED:
buzz_sound(buzz_length_ms, 1136);
break;
case CHOICE_GREEN:
buzz_sound(buzz_length_ms, 568);
break;
case CHOICE_BLUE:
buzz_sound(buzz_length_ms, 851);
break;
case CHOICE_YELLOW:
buzz_sound(buzz_length_ms, 638);
break;
}
}
void loop()
{
readSensor();
ColourMelody();
delay(1);
if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==0)&&(digitalRead(MidSen)==1)&&(digitalRead(RightMSen)==0)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 150); //PWM Speed Control
analogWrite(EN1, 150); //PWM Speed Control
}
else if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==0)&&(digitalRead(MidSen)==1)&&(digitalRead(RightMSen)==1)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 150); //PWM Speed Control
analogWrite(EN1, 140); //PWM Speed Control
}
else if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==0)&&(digitalRead(MidSen)==0)&&(digitalRead(RightMSen)==1)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 150); //PWM Speed Control
analogWrite(EN1, 90); //PWM Speed Control
}
else if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==0)&&(digitalRead(MidSen)==0)&&(digitalRead(RightMSen)==1)&&(digitalRead(RightSen)==1))
{
analogWrite(EN2, 150); //PWM Speed Control
analogWrite(EN1, 50); //PWM Speed Control
}
else if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==0)&&(digitalRead(MidSen)==0)&&(digitalRead(RightMSen)==0)&&(digitalRead(RightSen)==1))
{
analogWrite(EN2, 150); //PWM Speed Control
analogWrite(EN1, 0); //PWM Speed Control
}
else if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==1)&&(digitalRead(MidSen)==1)&&(digitalRead(RightMSen)==0)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 140); //PWM Speed Control
analogWrite(EN1, 150); //PWM Speed Control
}
else if((digitalRead(LeftSen)==0)&&(digitalRead(LeftMSen)==1)&&(digitalRead(MidSen)==0)&&(digitalRead(RightMSen)==0)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 90); //PWM Speed Control
analogWrite(EN1, 150); //PWM Speed Control
}
else if((digitalRead(LeftSen)==1)&&(digitalRead(LeftMSen)==1)&&(digitalRead(MidSen)==0)&&(digitalRead(RightMSen)==0)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 50); //PWM Speed Control
analogWrite(EN1, 150); //PWM Speed Control
}
else if((digitalRead(LeftSen)==1)&&(digitalRead(LeftMSen)==0)&&(digitalRead(MidSen)==0)&&(digitalRead(RightMSen)==0)&&(digitalRead(RightSen)==0))
{
analogWrite(EN2, 0); //PWM Speed Control
analogWrite(EN1, 150); //PWM Speed Control
}
else
{
analogWrite(EN2, 80); //PWM Speed Control
analogWrite(EN1, 80); //PWM Speed Control
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment