Created
May 11, 2018 20:52
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
INFO:tensorflow:Calling model_fn. | |
ValueErrorTraceback (most recent call last) | |
<ipython-input-6-1882d5ed9c2a> in <module>() | |
9 input_fn=train_input_fn, | |
10 steps=20000, | |
---> 11 hooks=[logging_hook]) | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.pyc in train(self, input_fn, hooks, steps, max_steps, saving_listeners) | |
361 | |
362 saving_listeners = _check_listeners_type(saving_listeners) | |
--> 363 loss = self._train_model(input_fn, hooks, saving_listeners) | |
364 logging.info('Loss for final step: %s.', loss) | |
365 return self | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.pyc in _train_model(self, input_fn, hooks, saving_listeners) | |
841 return self._train_model_distributed(input_fn, hooks, saving_listeners) | |
842 else: | |
--> 843 return self._train_model_default(input_fn, hooks, saving_listeners) | |
844 | |
845 def _train_model_default(self, input_fn, hooks, saving_listeners): | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.pyc in _train_model_default(self, input_fn, hooks, saving_listeners) | |
854 worker_hooks.extend(input_hooks) | |
855 estimator_spec = self._call_model_fn( | |
--> 856 features, labels, model_fn_lib.ModeKeys.TRAIN, self.config) | |
857 return self._train_with_estimator_spec(estimator_spec, worker_hooks, | |
858 hooks, global_step_tensor, | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/estimator/estimator.pyc in _call_model_fn(self, features, labels, mode, config) | |
829 | |
830 logging.info('Calling model_fn.') | |
--> 831 model_fn_results = self._model_fn(features=features, **kwargs) | |
832 logging.info('Done calling model_fn.') | |
833 | |
<ipython-input-4-78df2dfbf323> in cnn_model_fn(features, labels, mode) | |
24 """Model function for CNN.""" | |
25 # Input Layer | |
---> 26 input_layer = tf.reshape(features["x"], [-1, 100, 100, 1]) | |
27 | |
28 # Convolutional Layer #1 | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_array_ops.pyc in reshape(tensor, shape, name) | |
6111 if _ctx is None or not _ctx._eager_context.is_eager: | |
6112 _, _, _op = _op_def_lib._apply_op_helper( | |
-> 6113 "Reshape", tensor=tensor, shape=shape, name=name) | |
6114 _result = _op.outputs[:] | |
6115 _inputs_flat = _op.inputs | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.pyc in _apply_op_helper(self, op_type_name, name, **keywords) | |
785 op = g.create_op(op_type_name, inputs, output_types, name=scope, | |
786 input_types=input_types, attrs=attr_protos, | |
--> 787 op_def=op_def) | |
788 return output_structure, op_def.is_stateful, op | |
789 | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.pyc in create_op(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_shapes, compute_device) | |
3390 input_types=input_types, | |
3391 original_op=self._default_original_op, | |
-> 3392 op_def=op_def) | |
3393 | |
3394 # Note: shapes are lazily computed with the C API enabled. | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.pyc in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def) | |
1732 op_def, inputs, node_def.attr) | |
1733 self._c_op = _create_c_op(self._graph, node_def, grouped_inputs, | |
-> 1734 control_input_ops) | |
1735 else: | |
1736 self._c_op = None | |
/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.pyc in _create_c_op(graph, node_def, inputs, control_inputs) | |
1568 except errors.InvalidArgumentError as e: | |
1569 # Convert to ValueError for backwards compatibility. | |
-> 1570 raise ValueError(str(e)) | |
1571 | |
1572 return c_op | |
ValueError: Dimension size must be evenly divisible by 10000 but is 100 for 'Reshape' (op: 'Reshape') with input shapes: [100], [4] and with input tensors computed as partial shapes: input[1] = [?,100,100,1]. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment