Created
February 21, 2020 16:49
-
-
Save JacHammer/b422d0e74400019817addf55cd72c6c3 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# modified from https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf | |
# 2020-02-21 | |
import os, argparse | |
import tensorflow as tf | |
# The original freeze_graph function | |
# from tensorflow.python.tools.freeze_graph import freeze_graph | |
dir = os.path.dirname(os.path.realpath(__file__)) | |
def freeze_graph(model_dir, output_node_names): | |
"""Extract the sub graph defined by the output nodes and convert | |
all its variables into constant | |
Args: | |
model_dir: the root folder containing the checkpoint state file | |
output_node_names: a string, containing all the output node's names, | |
comma separated | |
""" | |
if not tf.gfile.Exists(model_dir): | |
raise AssertionError( | |
"Export directory doesn't exists. Please specify an export " | |
"directory: %s" % model_dir) | |
if not output_node_names: | |
print("You need to supply the name of a node to --output_node_names.") | |
return -1 | |
# We retrieve our checkpoint fullpath | |
checkpoint = tf.train.get_checkpoint_state(model_dir) | |
input_checkpoint = checkpoint.model_checkpoint_path | |
# We precise the file fullname of our freezed graph | |
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1]) | |
output_graph = absolute_model_dir + "/frozen_model.pb" | |
# We clear devices to allow TensorFlow to control on which device it will load operations | |
clear_devices = True | |
# We start a session using a temporary fresh Graph | |
with tf.Session(graph=tf.Graph()) as sess: | |
# We import the meta graph in the current default Graph | |
saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices) | |
# We restore the weights | |
saver.restore(sess, input_checkpoint) | |
# We use a built-in TF helper to export variables to constants | |
output_graph_def = tf.graph_util.convert_variables_to_constants( | |
sess, # The session is used to retrieve the weights | |
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes | |
output_node_names.split(",") # The output node names are used to select the useful nodes | |
) | |
# Finally we serialize and dump the output graph to the filesystem | |
with tf.gfile.GFile(output_graph, "wb") as f: | |
f.write(output_graph_def.SerializeToString()) | |
print("%d ops in the final graph." % len(output_graph_def.node)) | |
return output_graph_def | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_dir", type=str, default="", help="Model folder to export") | |
parser.add_argument("--output_node_names", type=str, default="", | |
help="The name of the output nodes, comma separated.") | |
args = parser.parse_args() | |
freeze_graph(args.model_dir, args.output_node_names) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment