Created
December 12, 2022 17:45
-
-
Save Jay-davisphem/80c9604ae2ac78b68ea4492252d87936 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''By David Oluwafemi(davisphem)''' | |
from typing import List, Callable | |
from math import log2, ceil | |
def get_n_max(a: float, b: float, tol: float) -> int: | |
'''get the number of iteration(number of times of bisecting)''' | |
return ceil(log2(abs(b - a) / tol)) | |
def bisect(f: Callable[[float], float], interval: List[float], tol: float, | |
n_max: int) -> float: | |
'''bisect given the number of iteration and tolerance''' | |
a, b = interval | |
if f(a) == 0: | |
return a | |
elif f(b) == 0: | |
return b | |
if a >= b: | |
raise Exception( | |
f"arg 'a' should be smaller than arg 'b', but {a} >= {b}") | |
if not ((f(a) < 0 and f(b) > 0) or (f(a) > 0 and f(b) < 0)): | |
raise Exception( | |
f'The function is not continuous on in interval [{a}, {b}]') | |
n = 0 | |
while n < n_max: | |
c = (a + b) / 2 | |
if f(c) == 0 or (b - a) / 2 < tol: | |
return c | |
n += 1 | |
if f(c) * f(a) < 0: | |
b = c | |
elif f(c) * f(a) > 0: | |
a = c | |
raise Exception('Method failed') | |
def bisection_method(f: Callable[[float], float], a: float, b: float, | |
tol: float) -> float: | |
'''bisect given the tolerance only''' | |
n_max = get_n_max(a, b, tol) | |
return bisect(f, [a, b], tol, n_max) | |
def main(): | |
'''test using given only tolerance''' | |
f = lambda x: x**3 - 3 * x + 1 | |
a, b = [0, 1] | |
tol = 1e-5 | |
print(bisection_method(f, a, b, tol)) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Numerical computations of non-linear equations using bisection method in 0(n) time complexity. It's accurate but not performant.