Created
June 16, 2024 21:18
-
-
Save Jong-Sig/f45217ce77ce8ca2f96eeaddf920de63 to your computer and use it in GitHub Desktop.
Draw Network and Measure Centrality
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import os | |
import networkx as nx | |
from itertools import combinations, chain | |
""" | |
Process | |
1. Matrix drawing | |
1) Import venture-investor pair data | |
2) Draw a matrix | |
- venture as a group / investors as nodes of each group | |
Source | Target | Type | Weight | Time Interval (e.g., <[2000, 2002]>) | |
2. Investor identification | |
1) Import CVC investor dummy data | |
2) Save investor-dummy columns to export to Gephi | |
""" | |
df_pair = pd.read_csv('D:/venturexpert/raw_data/vc/SDC/round_entity_matcher/vx_round_matcher.csv') | |
df_cvc = pd.read_csv('D:/venturexpert/t-test/t-test.csv') | |
""" | |
1. Matrix drawing | |
""" | |
## Keep only necessary variables | |
df_pair = df_pair.loc[:, ['venture_name', 'investor_name', 'round_date']].copy() | |
## Keep only disclosed ventures | |
df_pair = df_pair.loc[df_pair['venture_name'] != 'Undisclosed Company'] | |
## Keep only disclosed investors | |
df_pair = df_pair.loc[(df_pair['investor_name'] != 'Undisclosed Firm') & | |
(df_pair['investor_name'] != 'Undisclosed European Investors') & | |
(df_pair['investor_name'] != 'Undisclosed Corporate Investor Jamaica')] | |
## Convert rounddate to year | |
df_pair['round_date'] = pd.DatetimeIndex(df_pair['round_date']).year | |
## Change column names | |
df_pair = df_pair.rename(columns = {'venture_name': 'group', 'investor_name': 'node'}) | |
## Convert to source node-target node matrix | |
df_list = df_pair.groupby(by = ['group', 'round_date'])['node'].apply(lambda x: list(x)).reset_index() | |
df_list['node'] = df_list['node'].apply(lambda x: list(combinations(x, 2))) | |
df_list = df_list.explode('node') | |
df_list['node'] = list(df_list['node']) | |
df_list = df_list.dropna().reset_index(drop = True) | |
df_st = pd.DataFrame(data = list(df_list['node']), columns = ['Source', 'Target']) | |
df_list = pd.merge(df_list, df_st, left_index = True, right_index= True) | |
df_list = df_list.drop(columns = ['group', 'node']) | |
## Convert round_Date format to time stampformat <[2000, 2002]> | |
df_list['time start'] = df_list['round_date'] | |
df_list['time end'] = df_list['time start'] + 2 | |
df_list = df_list.drop(columns = ['round_date']) | |
## Type: Undirected | |
df_list['Type'] = 'Undirected' | |
## Weight: number of duplicates | |
df_list['Weight'] = df_list.groupby(by = ['Source', 'Target', 'time start', 'time end']).transform('count') | |
## Remove duplicates | |
df_list = df_list.drop_duplicates().reset_index(drop = True) | |
df_list.to_csv('matrix.csv', index = False) | |
""" | |
2. Centrality | |
For three year span (t ~ t+2) | |
Latest: 2018-2020 | |
""" | |
# Set the range of t from 1980 to 2018 so that t+2 could be until 2020 | |
for i in range(1980, 2019): | |
# Get time frame that suits t ~ t+2 | |
df_t = df_list.loc[(df_list['time start'] >= i) & (df_list['time start'] <= i+2), :] | |
# Set network and draw the network | |
G = nx.Graph | |
G = nx.from_pandas_edgelist(df_t, 'Source', 'Target', ['Weight']) | |
# Get centralities | |
dict_deg = nx.degree_centrality(G) | |
dict_btw = nx.betweenness_centrality(G) | |
dict_egn = nx.eigenvector_centrality(G) | |
dict_clo = nx.closeness_centrality(G) | |
# Convert centralities to dataframe and reset index | |
df_t = pd.DataFrame({'degree': pd.Series(dict_deg), 'between': pd.Series(dict_btw), 'eigen': pd.Series(dict_egn), 'closeness': pd.Series(dict_clo)}) | |
df_t = df_t.reset_index() | |
# Convert column name, such as {centrality}_{year} | |
df_t.columns = [x + f'_{i}' if x != 'index' else x for x in df_t.columns] | |
# Merge database | |
if i == 1980: | |
df_all = df_t.copy() | |
else: | |
df_all = pd.merge(df_all, df_t, on = 'index', how = 'outer') | |
df_all.to_csv('centrality.csv', index = False) | |
""" | |
3. Match centrality with original dataset | |
""" | |
df_org = df_cvc.loc[:, ['investor_name', 'first_investment_date']].copy() | |
# iterate through all investors | |
for i in df_org.index: | |
# get each investor's row | |
df_unit = df_org.iloc[i, :] | |
# extract variables for the investor identified above | |
df_sub = df_all.loc[df_all['index'] == df_unit['investor_name']].copy() | |
# df_all has greater number of observations than df_unit due to different time frame | |
# pass if df_sub is empty | |
if df_sub.empty == True: | |
pass | |
else: | |
# convert column name to {centrality} + _ + {t} | |
df_sub.columns = [x.split('_')[0] + '_' + str(int(x.split('_')[1]) - df_unit['first_investment_date'])\ | |
if x != 'index' else x for x in df_sub.columns] | |
# concat dataframes | |
if i == 0: | |
df_con = df_sub.copy() | |
else: | |
df_con = pd.concat([df_con, df_sub]) | |
# filter and drop column names containing - (e.g., degree_-5) | |
df_con = df_con.loc[:, df_con.columns.drop(list(df_con.filter(regex = '-')))] | |
#reset index | |
df_con = df_con.drop_duplicates().reset_index(drop = True) | |
# Change column name: index to investor name | |
df_con = df_con.rename(columns = {'index': 'investor_name'}) | |
""" | |
merge dataframe | |
""" | |
df_cvc = pd.merge(df_cvc, df_con, on = 'investor_name', how = 'left') | |
df_cvc.to_csv('centrality.csv', index = False) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment