This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import shutil | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
train_images = np.reshape(mnist.train.images, (-1, 28, 28, 1)) | |
train_labels = mnist.train.labels | |
test_images = np.reshape(mnist.test.images, (-1, 28, 28, 1)) | |
test_labels = mnist.test.labels | |
graph = tf.Graph() | |
with graph.as_default(): | |
input = tf.placeholder(tf.float32, shape=(None, 28, 28, 1)) | |
labels = tf.placeholder(tf.float32, shape=(None, 10)) | |
layer1_weights = tf.get_variable("layer1_weights", [3, 3, 1, 64], initializer=tf.contrib.layers.variance_scaling_initializer()) | |
layer1_bias = tf.Variable(tf.zeros([64])) | |
layer1_conv = tf.nn.conv2d(input, filter=layer1_weights, strides=[1,1,1,1], padding='SAME') | |
layer1_out = tf.nn.relu(layer1_conv + layer1_bias) | |
layer2_weights = tf.get_variable("layer2_weights", [3, 3, 64, 64], initializer=tf.contrib.layers.variance_scaling_initializer()) | |
layer2_bias = tf.Variable(tf.zeros([64])) | |
layer2_conv = tf.nn.conv2d(layer1_out, filter=layer2_weights, strides=[1,1,1,1], padding='SAME') | |
layer2_out = tf.nn.relu(layer2_conv + layer2_bias) | |
pool1 = tf.nn.max_pool(layer2_out, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') | |
layer3_weights = tf.get_variable("layer3_weights", [3, 3, 64, 128], initializer=tf.contrib.layers.variance_scaling_initializer()) | |
layer3_bias = tf.Variable(tf.zeros([128])) | |
layer3_conv = tf.nn.conv2d(pool1, filter=layer3_weights, strides=[1,1,1,1], padding='SAME') | |
layer3_out = tf.nn.relu(layer3_conv + layer3_bias) | |
layer4_weights = tf.get_variable("layer4_weights", [3, 3, 128, 128], initializer=tf.contrib.layers.variance_scaling_initializer()) | |
layer4_bias = tf.Variable(tf.zeros([128])) | |
layer4_conv = tf.nn.conv2d(layer3_out, filter=layer4_weights, strides=[1,1,1,1], padding='SAME') | |
layer4_out = tf.nn.relu(layer4_conv + layer4_bias) | |
pool2 = tf.nn.max_pool(layer4_out, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') | |
shape = pool2.shape.as_list() | |
fc = shape[1] * shape[2] * shape[3] | |
reshape = tf.reshape(pool2, [-1, fc]) | |
fully_connected_weights = tf.get_variable("fully_connected_weights", [fc, 10], initializer=tf.contrib.layers.xavier_initializer()) | |
fully_connected_bias = tf.Variable(tf.zeros([10])) | |
logits = tf.matmul(reshape, fully_connected_weights) + fully_connected_bias | |
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels)) | |
learning_rate = 0.001 | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) | |
#Add a few nodes to calculate accuracy and optionally retrieve predictions | |
predictions = tf.nn.softmax(logits) | |
correct_prediction = tf.equal(tf.argmax(labels, 1), tf.argmax(predictions, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
with tf.Session(graph=graph) as session: | |
tf.global_variables_initializer().run() | |
num_steps = 5000 | |
batch_size = 100 | |
for step in range(num_steps): | |
offset = (step * batch_size) % (train_labels.shape[0] - batch_size) | |
batch_images = train_images[offset:(offset + batch_size), :] | |
batch_labels = train_labels[offset:(offset + batch_size), :] | |
feed_dict = {input: batch_images, labels: batch_labels} | |
_, c, acc = session.run([optimizer, cost, accuracy], feed_dict=feed_dict) | |
if step % 100 == 0: | |
print("Cost: ", c) | |
print("Accuracy: ", acc * 100.0, "%") | |
#Test | |
num_test_batches = int(len(test_images) / 100) | |
total_accuracy = 0 | |
total_cost = 0 | |
for step in range(num_test_batches): | |
offset = (step * batch_size) % (train_labels.shape[0] - batch_size) | |
batch_images = test_images[offset:(offset + batch_size)] | |
batch_labels = test_labels[offset:(offset + batch_size)] | |
feed_dict = {input: batch_images, labels: batch_labels} | |
c, acc = session.run([cost, accuracy], feed_dict=feed_dict) | |
total_cost = total_cost + c | |
total_accuracy = total_accuracy + acc | |
print("Test Cost: ", total_cost / num_test_batches) | |
print("Test accuracy: ", total_accuracy * 100.0 / num_test_batches, "%") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment