Last active
May 15, 2020 03:32
-
-
Save JustinaPetr/095817ced545c40154a8635282a35bde to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from rasa.nlu.components import Component | |
from rasa.nlu import utils | |
from rasa.nlu.model import Metadata | |
import nltk | |
from nltk.classify import NaiveBayesClassifier | |
import os | |
import typing | |
from typing import Any, Optional, Text, Dict | |
SENTIMENT_MODEL_FILE_NAME = "sentiment_classifier.pkl" | |
class SentimentAnalyzer(Component): | |
"""A custom sentiment analysis component""" | |
name = "sentiment" | |
provides = ["entities"] | |
requires = ["tokens"] | |
defaults = {} | |
language_list = ["en"] | |
print('initialised the class') | |
def __init__(self, component_config=None): | |
super(SentimentAnalyzer, self).__init__(component_config) | |
def train(self, training_data, cfg, **kwargs): | |
"""Load the sentiment polarity labels from the text | |
file, retrieve training tokens and after formatting | |
data train the classifier.""" | |
with open('labels.txt', 'r') as f: | |
labels = f.read().splitlines() | |
training_data = training_data.training_examples #list of Message objects | |
tokens = [list(map(lambda x: x.text, t.get('tokens'))) for t in training_data] | |
processed_tokens = [self.preprocessing(t) for t in tokens] | |
labeled_data = [(t, x) for t,x in zip(processed_tokens, labels)] | |
self.clf = NaiveBayesClassifier.train(labeled_data) | |
def convert_to_rasa(self, value, confidence): | |
"""Convert model output into the Rasa NLU compatible output format.""" | |
entity = {"value": value, | |
"confidence": confidence, | |
"entity": "sentiment", | |
"extractor": "sentiment_extractor"} | |
return entity | |
def preprocessing(self, tokens): | |
"""Create bag-of-words representation of the training examples.""" | |
return ({word: True for word in tokens}) | |
def process(self, message, **kwargs): | |
"""Retrieve the tokens of the new message, pass it to the classifier | |
and append prediction results to the message class.""" | |
if not self.clf: | |
# component is either not trained or didn't | |
# receive enough training data | |
entity = None | |
else: | |
tokens = [t.text for t in message.get("tokens")] | |
tb = self.preprocessing(tokens) | |
pred = self.clf.prob_classify(tb) | |
sentiment = pred.max() | |
confidence = pred.prob(sentiment) | |
entity = self.convert_to_rasa(sentiment, confidence) | |
message.set("entities", [entity], add_to_output=True) | |
def persist(self, file_name, model_dir): | |
"""Persist this model into the passed directory.""" | |
classifier_file = os.path.join(model_dir, SENTIMENT_MODEL_FILE_NAME) | |
utils.json_pickle(classifier_file, self) | |
return {"classifier_file": SENTIMENT_MODEL_FILE_NAME} | |
@classmethod | |
def load(cls, | |
meta: Dict[Text, Any], | |
model_dir=None, | |
model_metadata=None, | |
cached_component=None, | |
**kwargs): | |
file_name = meta.get("classifier_file") | |
classifier_file = os.path.join(model_dir, file_name) | |
return utils.json_unpickle(classifier_file) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Input: Hello stupid bot
Output: neg with confidence of 0.333...
Python: 3.6.4
rasa: 1.18
rasa-sdk: 1.1.1
I find after
train()
and beforepersist()
, the clf has been correctly trained.So the problem is the
utils.json_pickle
inpersist()
.I change it to
and the
load()
it works!