Last active
December 7, 2023 05:03
-
-
Save KexinFeng/4876c6bfb27f40abffe4d5a92c02acff to your computer and use it in GitHub Desktop.
GPT2 model tracing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
model_name = 'gpt2-large' | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
# add the EOS token as PAD token to avoid warnings | |
model = GPT2LMHeadModel.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id, torchscript=True) | |
# %% model_inputs | |
output_attentions = False | |
output_hidden_states = False | |
model_inputs = {} | |
model_inputs['past_key_values'] = torch.load( | |
"../data/nested_tuple_" + model_name + ".pt") | |
past_seq = model_inputs['past_key_values'][0][0].shape[-2] | |
model_inputs['input_ids'] = torch.tensor([[404]]) | |
model_inputs['position_ids'] = torch.tensor([[past_seq]]) | |
# |attention_mask| = `len(past_key_values) + len(input_ids)` | |
model_inputs['attention_mask'] = torch.ones(past_seq + 1, dtype=torch.int64) | |
model_inputs['use_cache'] = True | |
model_inputs['token_type_ids'] = None | |
model_inputs['return_dict'] = False | |
model_inputs['output_attentions'] = False | |
model_inputs['output_hidden_states'] = False | |
# This is a testing of text generation | |
outputs = model(**model_inputs) | |
# %% Wrapper class of GPT2LMHeadModel | |
from typing import Tuple | |
class Tracable(torch.nn.Module): | |
def __init__(self, config: dict): | |
super().__init__() | |
self.model = GPT2LMHeadModel.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id, torchscript=True) | |
self.config = {'use_cache': config.get('use_cache', True), | |
'token_type_ids': config.get('token_type_ids', None), | |
'return_dict': config.get('return_dict', False), | |
'output_attentions': config.get('output_attentions', False), | |
'output_hidden_states': config.get('output_hidden_states', True)} | |
def forward(self, my_input_ids, position_ids, attention_mask, past_key_values): | |
return self.model(input_ids=my_input_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
past_key_values=past_key_values, | |
**self.config) # return_tensor = True | |
# %% create class | |
config = {} | |
tracable = Tracable(config) | |
input = (model_inputs['input_ids'], | |
model_inputs['position_ids'], | |
model_inputs['attention_mask'], | |
model_inputs['past_key_values']) | |
output = tracable(*input) | |
# %% trace | |
tracable.eval() | |
traced_model = torch.jit.trace(tracable, input) | |
torch.jit.save(traced_model, "../traced_GPT2_hidden.pt") | |
out1 = traced_model(*input) | |
# %% load back | |
loaded_model = torch.jit.load("../traced_GPT2_hidden.pt") | |
out2 = loaded_model(*input) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
model_name = 'gpt2-large' | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
# add the EOS token as PAD token to avoid warnings | |
model = GPT2LMHeadModel.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id, torchscript=True) | |
# %% model_inputs | |
output_attentions = False | |
output_hidden_states = False | |
model_inputs = {} | |
model_inputs['input_ids'] = torch.tensor([40, 2883, 6155, 351, 616, 13779, 3290]) | |
model_inputs['position_ids'] = torch.arange(7) | |
model_inputs['attention_mask'] = torch.ones(7, dtype=torch.int64) | |
model_inputs['past_key_values'] = None | |
model_inputs['use_cache'] = True | |
model_inputs['token_type_ids'] = None | |
model_inputs['return_dict'] = True | |
model_inputs['output_attentions'] = False | |
model_inputs['output_hidden_states'] = False | |
# This is a testing of text generation | |
outputs = model(**model_inputs) | |
# %% Wrapper class of GPT2LMHeadModel | |
from typing import Tuple | |
class Tracable(torch.nn.Module): | |
def __init__(self, config: dict): | |
super().__init__() | |
self.model = GPT2LMHeadModel.from_pretrained(model_name, pad_token_id=tokenizer.eos_token_id, torchscript=True) | |
self.config = {'use_cache': config.get('use_cache', True), | |
'token_type_ids': config.get('token_type_ids', None), | |
'return_dict': config.get('return_dict', False), | |
'output_attentions': config.get('output_attentions', False), | |
'output_hidden_states': config.get('output_hidden_states', True)} | |
def forward(self, my_input_ids, position_ids, attention_mask) -> Tuple: | |
return self.model(input_ids=my_input_ids, | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
past_key_values=None, | |
**self.config) # return_tensor = True | |
# %% create class | |
config = {} | |
tracable = Tracable(config) | |
# %% input | |
input = (torch.tensor([[40, 2883, 6155, 351, 616, 13779, 3290]]), | |
torch.arange(7)[None, :], | |
torch.ones(7, dtype=torch.int64)[None, :]) | |
output = tracable(*input) | |
# %% trace | |
tracable.eval() | |
traced_model = torch.jit.trace(tracable, input) | |
torch.jit.save(traced_model, "../traced_GPT2_init_hidden.pt") | |
out1 = traced_model(*input) | |
# %% load back | |
loaded_model = torch.jit.load("../traced_GPT2_init_hidden.pt") | |
out2 = loaded_model(*input) | |
# save the past_key_values for the model tracing with it | |
torch.save(out2[1], "../data/nested_tuple_gpt2-large.pt") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Update
trace_model_without_past_key_values.py , along with its output
traced_GPT2_init_hidden.pt
, is not actually needed; on the input withNone
past_key_values,traced_GPT2_hidden.pt
also works. The trick is to create a dummy past_key_values, and to left-append a 0 attention_mask. The position_id remains unchanged.See deepjavalibrary/djl#2637