Last active
May 3, 2019 22:51
-
-
Save Koff/45c1a6ba4b2c28bd16d4d81db5f1c6d9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from abc import ABC | |
from typing import List | |
import torch.nn as nn | |
import torch.optim as optim | |
import torch.utils.data.dataset | |
from matplotlib import pyplot as plt | |
from sklearn.preprocessing import OneHotEncoder | |
torch.set_default_tensor_type('torch.DoubleTensor') | |
class NetworkArchitecture(nn.Module): | |
def __init__(self): | |
super(NetworkArchitecture, self).__init__() | |
self.fc1 = nn.Sequential( | |
nn.Linear(117, 256), | |
nn.ReLU(), | |
nn.Linear(256, 256), | |
nn.ReLU(), | |
nn.Linear(256, 2) | |
) | |
def forward(self, x): | |
return self.fc1(x) | |
class NeuralNetwork(nn.Module, ABC): | |
def __init__(self): | |
super(NeuralNetwork, self).__init__() | |
self.network_architecture: NetworkArchitecture = NetworkArchitecture() | |
self.criterion = nn.CrossEntropyLoss() | |
self.optimizer = optim.Adam(self.network_architecture.parameters(), lr=0.001) | |
self.loss: List = [] | |
def predict(self, inputs=None): | |
return self.network_architecture(inputs) | |
def fit(self, inputs=None, labels=None): | |
self.optimizer.zero_grad() | |
outputs = self.network_architecture(inputs) | |
labels = labels.view(1, -1) | |
labels = labels.to(torch.long) | |
outputs = outputs.view(1, -1) | |
loss = self.criterion(outputs, torch.max(labels, 1)[1]) | |
loss.backward() | |
self.loss.append(loss) | |
self.optimizer.step() | |
return loss | |
if __name__ == '__main__': | |
with open('data/mushroom.csv', 'r') as f: | |
trainset = f.read() | |
clean = [] | |
for record in trainset.split('\n'): | |
record_split = record.split(',') | |
clean.append([record_split[1:], [record_split[0]]]) | |
one_hot_encoder = OneHotEncoder(handle_unknown='ignore') | |
one_hot_encoder.fit([i[0] for i in clean]) | |
X = torch.from_numpy(one_hot_encoder.transform([i[0] for i in clean]).todense()) | |
one_hot_encoder.fit([i[1] for i in clean]) | |
y = torch.from_numpy(one_hot_encoder.transform([i[1] for i in clean]).todense()) | |
neural_network = NeuralNetwork() | |
for i in enumerate(X): | |
neural_network.fit(X[i[0]], y[i[0]]) | |
plt.plot(neural_network.loss) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment