Last active
March 24, 2018 18:18
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.optim as optim | |
from torch.autograd.variable import Variable | |
import torchvision.transforms as transforms | |
from torch.utils.data import DataLoader | |
from torchvision.datasets.cifar import CIFAR10 | |
from model import ResNet | |
from tqdm import tqdm | |
def main(): | |
batch_size = 32 | |
model = ResNet(pretrained=True, num_class=10) | |
print(model.parameters()) | |
weight_decay = 5e-4 | |
optimizer = optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=weight_decay) | |
criterion = nn.NLLLoss2d() | |
transform = transforms.Compose([transforms.ToTensor(), | |
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | |
train_data = CIFAR10(root='../datasets/', train=True, transform=transform, download=True) | |
test_data = CIFAR10(root='../datasets/', train=False, transform=transform, download=True) | |
train_loader = DataLoader(train_data, batch_size=32, shuffle=True, num_workers=4) | |
val_loader = DataLoader(test_data, batch_size=32, shuffle=False, num_workers=4) | |
pm = ProcessManage(model, criterion, optimizer) | |
pm.run(train_loader, val_loader) | |
class ProcessManage(object): | |
def __init__(self, model, criterion, optimizer): | |
self.model = model | |
self.criterion = criterion | |
self.min_val_loss=100 | |
self.optimizer = optimizer | |
def run(self, train_loader, val_loader): | |
for e in tqdm(range(1, 5 + 1)): | |
self.train(train_loader) | |
self.validation(val_loader, e) | |
def train(self, train_loader): | |
self.model.train() | |
for i, data in enumerate(train_loader): | |
inputs, label = data | |
inputs, label = Variable(inputs).cuda(), Variable(label).cuda() | |
output = self.model(inputs) | |
loss = self.criterion(output, label) | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
def validation(self, val_loader, epoch): | |
model.eval() | |
val_loss = 0 | |
correct = 0 | |
is_best = False | |
for i, data in enumerate(val_loader): | |
inputs, label = data | |
inputs, label = Variable(inputs, volatile=True).cuda(), Variable(label).cuda() | |
output = self.model(data) | |
val_loss += self.criterion(output, target, size_average=False).data[0] | |
pred = output.data.max(1, keepdim=True)[1] | |
correct += pred.eq(target.data.view_as(pred)).long().cpu().sum() | |
val_loss /= len(val_loader.dataset) | |
if val_loss < min_val_loss: | |
is_best = True | |
save_checkpoint( | |
{'epoch', epoch, | |
'state', self.model.state_dict | |
} | |
, is_best) | |
self.min_val_loss = val_loss | |
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
val_loss, correct, len(val_loader.dataset), | |
100. * correct / len(val_loader.dataset))) | |
def save_checkpoint(state, is_best, filename='results/checkpoint.pth.tar'): | |
torch.save(state, filename) | |
if is_best: | |
shutil.copyfile(filename, 'results/model_best.pth.tar') | |
if __name__ == '__main__': | |
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision.models.resnet import resnet50 | |
class ResNet(nn.Module): | |
def __init__(self, pretrained=False, num_class=10): | |
super().__init__() | |
resnet = resnet50(pretrained=pretrained) | |
self.layers = nn.Sequential(*list(resnet.children())[:-2]) | |
self.pool = nn.AvgPool2d(kernel_size=1) | |
self.fc = nn.Linear(in_features=2048, out_features=num_class) | |
if pretrained is not True: | |
for param in resnet.parameters(): | |
param.requires_grad = False | |
def forward(self, inputs, target=None): | |
h = self.layers(inputs) | |
h = self.pool(h) | |
out = h.view(h.size(0), -1) | |
out = self.fc(out) | |
return out |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment