Skip to content

Instantly share code, notes, and snippets.

@KrabCode
Last active December 10, 2018 12:19
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 1 You must be signed in to fork a gist
  • Save KrabCode/17536a26f9cda15ab913a03a8d071538 to your computer and use it in GitHub Desktop.
Save KrabCode/17536a26f9cda15ab913a03a8d071538 to your computer and use it in GitHub Desktop.
Astral, Creative Coding Discord Weekly Challenge: Stars and Astral Bodies
import ch.bildspur.postfx.builder.PostFX;
import processing.core.PApplet;
import processing.core.PGraphics;
import processing.core.PShape;
import processing.core.PVector;
import processing.opengl.PShader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
@SuppressWarnings("Duplicates")
public class MainApp extends PApplet {
private SimplexNoise noiseGenerator;
private PostFX fx;
private PGraphics canvas;
private float bloomIntensity = 0;
private STAR_TYPE[] availableStarTypes = {STAR_TYPE.o, STAR_TYPE.b, STAR_TYPE.a, STAR_TYPE.f, STAR_TYPE.g, STAR_TYPE.k, STAR_TYPE.m};
private PShader sunFrag, texLight;
private float h, w;
private float t;
private HashMap<STAR_TYPE, PVector> starColors = new HashMap<STAR_TYPE, PVector>();
private Star sun;
private Frame smoothSphere;
private Frame bumpySphere;
private int totalFramesToAnimate = 300; //5 seconds @ 60 fps OR 10 seconds & 30 fps
private int captureStartFrame = 0;
private float sinTime = 0;
private float linearTime = 0;
public static void main(String[] args) {
PApplet.main("MainApp");
}
public void settings() {
size(800,800, P3D);
// fullScreen(P3D, 1);
smooth(8);
}
public void setup() {
canvas = createGraphics(width, height, P3D);
noiseGenerator = new SimplexNoise();
noStroke();
prepareShaders();
prepareShapes();
prepareStarColors();
regen();
}
private void prepareShaders() {
fx = new PostFX(this);
sunFrag = loadShader("sun.frag");
texLight = loadShader("pixlightx.frag", "pixlightx.vert");
}
private void prepareShapes() {
smoothSphere = createSphere( 200, 0.25f);
bumpySphere = createSphere( 50, 5.0f);
}
private Frame createSphere(float spokes, float zscl) {
float r = 100;
shader(texLight);
textureMode(NORMAL);
noStroke();
PGraphics frag = createGraphics(500,500, P2D);
PShape sphere = createShape();
sphere.rotateX(HALF_PI);
sphere.rotateZ(HALF_PI);
for (int x = 0; x <= spokes; x++) {
sphere.beginShape(TRIANGLE_STRIP);
sphere.texture(frag);
for (int y = 0; y <= spokes; y++) {
sphere.fill(map(y, 0, spokes, 0, 255));
float elev = (float) (noiseGenerator.noise(x, y) * zscl);
float elev1 = (float) (noiseGenerator.noise(x + 1, y) * zscl);
PVector v0 = getPointOnSphere(x, y, spokes, spokes, r + elev);
PVector v1 = getPointOnSphere(x + 1, y, spokes, spokes, r + elev1);
float u = map(x, 0, spokes, 0, 1);
float u1 = map(x + 1, 0, spokes, 0, 1);
float v = map(y, 0, spokes, 0, 1);
sphere.vertex(v0.x, v0.y, v0.z, u, v);
sphere.vertex(v1.x, v1.y, v1.z, u1, v);
}
sphere.endShape();
}
return new Frame(sphere, frag, 100);
}
private PVector getPointOnSphere(float x, float y, float xMax, float yMax, float r) {
float s = map(x, 0, xMax, 0, TWO_PI);
float t = map(y, 0, yMax, 0, PI);
float resultX = r * cos(s) * sin(t);
float resultY = r * sin(s) * sin(t);
float resultZ = r * cos(t);
return new PVector(resultX, resultY, resultZ);
}
private void xyz(float size) {
canvas.strokeWeight(3);
canvas.textSize(60);
canvas.stroke(255, 0, 0);
canvas.fill(255, 0, 0);
canvas.line(0, 0, 0, size, 0, 0);
canvas.text("x", size, 0, 0);
canvas.stroke(0, 255, 0);
canvas.fill(0, 255, 0);
canvas.line(0, 0, 0, 0, size, 0);
canvas.text("y", 0, size, 0);
canvas.stroke(0, 0, 255);
canvas.fill(0, 0, 255);
canvas.line(0, 0, 0, 0, 0, size);
canvas.text("z", 0, 0, size);
}
//https://bestdoubles.files.wordpress.com/2010/06/starcolors.jpg
//values are in rgb and taken directly from the image using MS Paint
private void prepareStarColors() {
starColors.put(STAR_TYPE.o, new PVector(154, 175, 255));
starColors.put(STAR_TYPE.b, new PVector(170, 191, 255));
starColors.put(STAR_TYPE.a, new PVector(202, 216, 255));
starColors.put(STAR_TYPE.f, new PVector(248, 247, 255));
starColors.put(STAR_TYPE.g, new PVector(255, 243, 234));
starColors.put(STAR_TYPE.k, new PVector(254, 210, 163));
starColors.put(STAR_TYPE.m, new PVector(255, 204, 115));
for (STAR_TYPE s : starColors.keySet()) {
starColors.get(s).div(255f);
}
}
public void keyReleased() {
if(key == 'r'){
captureStartFrame = frameCount;
}else{
regen();
}
}
public void mouseReleased(){
regen();
}
private void regen() {
STAR_TYPE type = availableStarTypes[floor(random(availableStarTypes.length))];
sun = new Star(type);
}
public void draw() {
background(0);
w = width; // shorter == better
h = height;
t = radians(frameCount / 6f);
if (frameCount > 1) {
canvas.background(0);
canvas.translate(w / 2, h / 2);
}
float baseIntensity = 6.759259f;
bloomIntensity = .2f * 20 * baseIntensity;
sun.draw();
println(frameCount);
linearTime = frameCount * TWO_PI / totalFramesToAnimate;
if(captureStartFrame != 0 && frameCount < captureStartFrame + totalFramesToAnimate){
saveFrame("/capture/#####.png");
}
}
private List<Body> addOrbitersRecursively(Body parent, int gen) {
int n = 0;
float orbiterRmodifier = 1;
switch (parent.bodyType) {
case inner:
n = floor(random(0, 2));
break;
case asteroid:
orbiterRmodifier = .5f;
break;
case gas:
n = floor(random(3, 8));
orbiterRmodifier = .2f;
break;
}
List<Body> result = new ArrayList<>();
for (int i = 0; i < n; i++) {
Body orbiter = new Body();
orbiter.r = parent.r * .05f + random(parent.d * .1f) * orbiterRmodifier;
orbiter.d = parent.d * .5f + random(parent.d * .1f);
switch (parent.bodyType) {
case inner:
orbiter.bodyType = BODY_TYPE.asteroid;
break;
case asteroid:
orbiter.bodyType = BODY_TYPE.asteroid;
break;
case gas:
orbiter.bodyType = BODY_TYPE.inner;
break;
}
if (++gen < orbiter.maxGens) {
result.addAll(addOrbitersRecursively(orbiter, gen));
}
result.add(orbiter);
}
return result;
}
private List<Body> generateMainPlanets(float sunMaxR) {
List<Body> planets = new ArrayList<>();
planets.addAll(generateInnerPlanets(sunMaxR / 2f, 350));
planets.addAll(generateAsteroidBelt(400, 500, 40, 300));
planets.addAll(generateGasGiants(500, 1000));
return planets;
}
private List<Body> generateInnerPlanets(float minD, float maxD) {
List<Body> planets = new ArrayList<>();
int innerPlanetCount = floor(random(3, 7));
float innerPlanetsStartD = minD * 2f;
float innerPlanetRunningD = innerPlanetsStartD;
float innerPlanetDstep = (maxD - innerPlanetsStartD) / innerPlanetCount;
float innerPlanetMinR = 10;
float innerPlanetMaxR = 20;
for (int i = 0; i < innerPlanetCount; i++) {
Body b = new Body();
b.bodyType = BODY_TYPE.inner;
b.orbitable = true;
b.d = innerPlanetRunningD += innerPlanetDstep;
b.r = random(innerPlanetMinR, innerPlanetMaxR);
planets.add(b);
}
return planets;
}
private List<Body> generateAsteroidBelt(float minD, float maxD, int minCount, int maxCount) {
List<Body> asteroids = new ArrayList<>();
int asteroidCount = floor(random(minCount, maxCount));
float asteroidMinR = 2;
float asteroidMaxR = 5;
for (int i = 0; i < asteroidCount; i++) {
Body b = new Body(random(HALF_PI));
b.bodyType = BODY_TYPE.asteroid;
b.orbitable = false;
b.maxGens = 1;
b.d = map(i, 0, asteroidCount, minD, maxD);
b.r = random(asteroidMinR, asteroidMaxR);
asteroids.add(b);
}
return asteroids;
}
private List<Body> generateGasGiants(float minD, float maxD) {
List<Body> planets = new ArrayList<>();
int giantCount = floor(random(2f, 7f));
float giantMinR = 30;
float giantMaxR = 50;
for (int i = 0; i < giantCount; i++) {
Body b = new Body();
b.bodyType = BODY_TYPE.gas;
b.orbitable = true;
b.d = map(i, 0, giantCount, minD, maxD);
b.r = random(giantMinR, giantMaxR);
b.ring = generateAsteroidBelt(b.r * 2, b.r * random(14f),
floor(random(20)), floor(random(150)));
planets.add(b);
}
return planets;
}
@SuppressWarnings({"SuspiciousNameCombination"})
private void updateShader(PShader s, PVector myColor, PVector nextColor, float flowModifierX, float flowModifierY, float r) {
s.set("u_resolution", r, r);
s.set("u_mouse", (float) mouseX, (float) mouseY);
s.set("u_time", radians(frameCount));
s.set("u_colorA", myColor.x, myColor.y, myColor.z);
s.set("u_colorB", nextColor.x, nextColor.y, nextColor.z);
s.set("u_x_flowmodifier", flowModifierX);
s.set("u_y_flowmodifier", flowModifierY); //variable flowModifierY passed as param x: suspicious but ok
}
private void updateFrame(Frame frame, boolean shader) {
frame.canvas.beginDraw();
frame.canvas.background(0);
if (!shader) {
frame.canvas.resetShader();
}
frame.canvas.rect(0, 0, frame.canvas.width, frame.canvas.height);
frame.canvas.endDraw();
texLight.set("texture", frame.canvas);
}
enum STAR_TYPE {
o, b, a, f, g, k, m
}
enum BODY_TYPE {
inner, asteroid, gas
}
class Frame {
float scl;
PShape shape;
PGraphics canvas;
Frame(PShape res, PGraphics canvas, float scl) {
this.canvas = canvas;
this.shape = res;
this.scl = scl;
}
}
class Body {
List<Body> ring;
PVector myColor;
PVector nextColor;
float r = 20;
float d = 500;
PVector flowModifier;
float startT, tMod;
float orbitalInclination = 0;
float orbitalInclinationOffset = 0;
float maxOrbInc = 0;
float typeSpdMod = 1;
int maxGens = 1;
boolean orbitable = true;
BODY_TYPE bodyType;
List<Body> orbiters = new ArrayList<Body>();
@SuppressWarnings("Duplicates")
Body() {
init();
}
Body(float maxOrbInc) {
this.maxOrbInc = maxOrbInc;
init();
}
void init() {
tMod = random(.5f, 2.f);
startT = random(TWO_PI);
maxOrbInc = random(HALF_PI / 32f, HALF_PI / 4f);
orbitalInclination = random(-maxOrbInc, maxOrbInc);
orbitalInclinationOffset = random(TWO_PI);
flowModifier = new PVector(random(-1, 1), random(-1, 1));
myColor = new PVector(random(255), random(255), random(255));
nextColor = new PVector(random(255), random(255), random(255));
}
void draw() {
draw(smoothSphere);
}
void draw(Frame f) {
canvas.pushMatrix();
canvas.rotateY(orbitalInclinationOffset);
canvas.rotateX(orbitalInclination);
canvas.rotateY(startT + t * typeSpdMod);
canvas.translate(d, 0);
canvas.rotateY(t * tMod);
canvas.fill(255);
canvas.scale(r / 100);
canvas.shape(f.shape);
canvas.resetShader();
if (ring != null) {
for (Body b : ring) {
b.draw();
}
}
canvas.popMatrix();
}
}
class Star extends Body {
private final float minR = 50;
private final float maxR = 100;
STAR_TYPE starType;
HashMap<BODY_TYPE, List<Body>> bodyGroups;
float darken;
Star(STAR_TYPE starType) {
this.starType = starType;
darken = random(.5f, 2.f);
r = random(minR, maxR);
d = 0;
List<Body> mainPlanets = generateMainPlanets(maxR);
for (Body b : mainPlanets) {
if (b.orbitable) {
switch (b.bodyType) {
case inner:
b.ring = addOrbitersRecursively(b, 0);
break;
case asteroid:
break;
case gas:
break;
}
}
}
orbiters.addAll(mainPlanets);
bodyGroups = new HashMap<>();
bodyGroups.put(BODY_TYPE.inner, new ArrayList<>());
bodyGroups.put(BODY_TYPE.asteroid, new ArrayList<>());
bodyGroups.put(BODY_TYPE.gas, new ArrayList<>());
for (Body b : orbiters) {
switch (b.bodyType) {
case inner:
bodyGroups.get(BODY_TYPE.inner).add(b);
break;
case asteroid:
bodyGroups.get(BODY_TYPE.asteroid).add(b);
break;
case gas:
bodyGroups.get(BODY_TYPE.gas).add(b);
break;
}
}
}
void draw() {
PVector rgb = starColors.get(starType);
updateShader(sunFrag, myColor, nextColor, 0, 0, 600);
canvas.beginDraw();
canvas.background(0);
Frame frame = smoothSphere;
frame.canvas.beginDraw();
frame.canvas.background(0);
frame.canvas.shader(sunFrag);
frame.canvas.rect(0, 0, frame.canvas.width, frame.canvas.height);
frame.canvas.endDraw();
canvas.beginDraw();
//glsl preview
// canvas.image(frame.canvas, 0, 0);
canvas.translate(w * .5f, h * .5f);
canvas.fill(0);
canvas.noLights();
canvas.scale(r / 100f);
myColor = starColors.get(starType);
nextColor = new PVector(myColor.x - darken, myColor.y - darken, myColor.z - darken);
canvas.shader(texLight);
canvas.shape(frame.shape);
canvas.resetShader();
for (BODY_TYPE key : bodyGroups.keySet()) {
canvas.pushMatrix();
canvas.pointLight(rgb.x * 255f, rgb.y * 255f, rgb.z * 255f, 0, 0, 0);
canvas.rotateX(-HALF_PI/5f);
for (Body b : bodyGroups.get(key)) {
if (b.bodyType.equals(BODY_TYPE.gas)) {
updateFrame(smoothSphere, false);
frame = smoothSphere;
} else if (key.equals(BODY_TYPE.inner)) {
updateFrame(bumpySphere, false);
canvas.fill(myColor.x, myColor.y, myColor.z);
frame = bumpySphere;
}
b.draw(frame);
}
canvas.popMatrix();
}
canvas.endDraw();
image(canvas, 0, 0);
fx.render(canvas).bloom(0, floor(bloomIntensity), bloomIntensity).compose();
}
}
}
#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif
uniform sampler2D texture;
varying vec4 vertColor;
varying vec4 vertTexCoord;
void main() {
gl_FragColor = texture2D(texture, vertTexCoord.st) * vertColor;
}
uniform mat4 transform;
uniform mat4 texMatrix;
attribute vec4 position;
attribute vec4 color;
attribute vec2 texCoord;
varying vec4 vertColor;
varying vec4 vertTexCoord;
void main() {
gl_Position = transform * position;
vertColor = color;
vertTexCoord = texMatrix * vec4(texCoord, 1.0, 1.0);
}
public class SimplexNoise { // Simplex noise in 2D, 3D and 4D
// Skewing and unskewing factors for 2, 3, and 4 dimensions
private final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
private final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
private final double F3 = 1.0 / 3.0;
private final double G3 = 1.0 / 6.0;
private final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
private final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
private Grad grad3[] = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)};
private Grad grad4[] = {new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1), new Grad(0, 1, -1, -1),
new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1), new Grad(0, -1, -1, -1),
new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1), new Grad(1, 0, -1, -1),
new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1), new Grad(-1, 0, -1, -1),
new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1), new Grad(1, -1, 0, -1),
new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1), new Grad(-1, -1, 0, -1),
new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0), new Grad(1, -1, -1, 0),
new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0), new Grad(-1, -1, -1, 0)};
private short p[] = {151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
// To remove the need for index wrapping, double the permutation table length
private short perm[] = new short[512];
private short permMod12[] = new short[512];
{
for (int i = 0; i < 512; i++) {
perm[i] = p[i & 255];
permMod12[i] = (short) (perm[i] % 12);
}
}
// This method is a *lot* faster than using (int)Math.floor(x)
private int fastfloor(double x) {
int xi = (int) x;
return x < xi ? xi - 1 : xi;
}
private double dot(Grad g, double x, double y) {
return g.x * x + g.y * y;
}
private double dot(Grad g, double x, double y, double z) {
return g.x * x + g.y * y + g.z * z;
}
private double dot(Grad g, double x, double y, double z, double w) {
return g.x * x + g.y * y + g.z * z + g.w * w;
}
// 2D simplex noise
public double noise(double xin, double yin) {
double n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
double s = (xin + yin) * F2; // Hairy factor for 2D
int i = fastfloor(xin + s);
int j = fastfloor(yin + s);
double t = (i + j) * G2;
double X0 = i - t; // Unskew the cell origin back to (x,y) space
double Y0 = j - t;
double x0 = xin - X0; // The x,y distances from the cell origin
double y0 = yin - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
i1 = 1;
j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {
i1 = 0;
j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
double y1 = y0 - j1 + G2;
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
double y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
int ii = i & 255;
int jj = j & 255;
int gi0 = permMod12[ii + perm[jj]];
int gi1 = permMod12[ii + i1 + perm[jj + j1]];
int gi2 = permMod12[ii + 1 + perm[jj + 1]];
// Calculate the contribution from the three corners
double t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 < 0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
double t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 < 0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 < 0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
}
// 3D simplex noise
public double noise(double xin, double yin, double zin) {
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
int i = fastfloor(xin + s);
int j = fastfloor(yin + s);
int k = fastfloor(zin + s);
double t = (i + j + k) * G3;
double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
double Y0 = j - t;
double Z0 = k - t;
double x0 = xin - X0; // The x,y,z distances from the cell origin
double y0 = yin - Y0;
double z0 = zin - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // X Y Z order
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} // X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
} else { // x0<y0
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} // Z Y X order
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} // Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
double y2 = y0 - j2 + 2.0 * G3;
double z2 = z0 - k2 + 2.0 * G3;
double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
double y3 = y0 - 1.0 + 3.0 * G3;
double z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = permMod12[ii + perm[jj + perm[kk]]];
int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
// Calculate the contribution from the four corners
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3);
}
// 4D simplex noise, better simplex rank ordering method 2012-03-09
public double noise(double x, double y, double z, double w) {
double n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
double s = (x + y + z + w) * F4; // Factor for 4D skewing
int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
int l = fastfloor(w + s);
double t = (i + j + k + l) * G4; // Factor for 4D unskewing
double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
double Y0 = j - t;
double Z0 = k - t;
double W0 = l - t;
double x0 = x - X0; // The x,y,z,w distances from the cell origin
double y0 = y - Y0;
double z0 = z - Z0;
double w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
int rankx = 0;
int ranky = 0;
int rankz = 0;
int rankw = 0;
if (x0 > y0) rankx++;
else ranky++;
if (x0 > z0) rankx++;
else rankz++;
if (x0 > w0) rankx++;
else rankw++;
if (y0 > z0) ranky++;
else rankz++;
if (y0 > w0) ranky++;
else rankw++;
if (z0 > w0) rankz++;
else rankw++;
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
double y1 = y0 - j1 + G4;
double z1 = z0 - k1 + G4;
double w1 = w0 - l1 + G4;
double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
double y2 = y0 - j2 + 2.0 * G4;
double z2 = z0 - k2 + 2.0 * G4;
double w2 = w0 - l2 + 2.0 * G4;
double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
double y3 = y0 - j3 + 3.0 * G4;
double z3 = z0 - k3 + 3.0 * G4;
double w3 = w0 - l3 + 3.0 * G4;
double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
double y4 = y0 - 1.0 + 4.0 * G4;
double z4 = z0 - 1.0 + 4.0 * G4;
double w4 = w0 - 1.0 + 4.0 * G4;
// Work out the hashed gradient indices of the five simplex corners
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int ll = l & 255;
int gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
int gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
int gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
int gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
int gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
// Calculate the contribution from the five corners
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0) n0 = 0.0;
else {
t0 *= t0;
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
}
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0) n1 = 0.0;
else {
t1 *= t1;
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
}
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0) n2 = 0.0;
else {
t2 *= t2;
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
}
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0) n3 = 0.0;
else {
t3 *= t3;
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
}
double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0) n4 = 0.0;
else {
t4 *= t4;
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}
// Inner class to speed upp gradient computations
// (array access is a lot slower than member access)
private class Grad {
double x, y, z, w;
Grad(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
Grad(double x, double y, double z, double w) {
this.x = x;
this.y = y;
this.z = z;
this.w = w;
}
}
}
#ifdef GL_ES
precision mediump float;
precision mediump int;
#endif
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform int u_type;
uniform vec3 u_colorA;
uniform vec3 u_colorB;
float map(float x, float a1, float a2, float b1, float b2){
return b1 + (b2-b1) * (x-a1) / (a2-a1);
}
vec3 rgb( in vec3 c ){
vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0), 6.0)-3.0)-1.0, 0.0, 1.0 );
rgb = rgb*rgb*(3.0-2.0*rgb); return c.z * mix(vec3(1.0), rgb, c.y);
}
vec3 random3(vec3 c) {
float j = 4096.0*sin(dot(c,vec3(17.0, 59.4, 15.0)));
vec3 r;
r.z = fract(512.0*j);
j *= .125;
r.x = fract(512.0*j);
j *= .125;
r.y = fract(512.0*j);
return r-0.5;
}
const float F3 = 0.3333333;
const float G3 = 0.1666667;
float snoise(vec3 p) {
vec3 s = floor(p + dot(p, vec3(F3)));
vec3 x = p - s + dot(s, vec3(G3));
vec3 e = step(vec3(0.0), x - x.yzx);
vec3 i1 = e*(1.0 - e.zxy);
vec3 i2 = 1.0 - e.zxy*(1.0 - e);
vec3 x1 = x - i1 + G3;
vec3 x2 = x - i2 + 2.0*G3;
vec3 x3 = x - 1.0 + 3.0*G3;
vec4 w, d;
w.x = dot(x, x);
w.y = dot(x1, x1);
w.z = dot(x2, x2);
w.w = dot(x3, x3);
w = max(0.6 - w, 0.0);
d.x = dot(random3(s), x);
d.y = dot(random3(s + i1), x1);
d.z = dot(random3(s + i2), x2);
d.w = dot(random3(s + 1.0), x3);
w *= w;
w *= w;
d *= w;
return dot(d, vec4(52.0));
}
void main() {
//krab code from now on
float t = u_time;
vec2 uv = gl_FragCoord.xy / u_resolution.xy;
vec2 c = vec2(.5,.5);
float scl =100.5;
float xn = scl*uv.x;
float yn = scl*uv.y;
float n = snoise(vec3(xn, yn, t*.8));
float pct = n;
gl_FragColor = vec4(mix(u_colorA, u_colorB, pct), 1.);
}
@KrabCode
Copy link
Author

KrabCode commented Dec 9, 2018

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment