-
-
Save KristofferC/a7e9df0c94e9212604d5d1601c3e7c19 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# This file is a part of JuliaFEM. | |
# License is MIT: see https://github.com/JuliaFEM/Materials.jl/blob/master/LICENSE | |
using Tensors | |
import Parameters | |
Parameters.@with_kw struct IdealPlasticMaterialParameters{dim} | |
# Material parameters | |
E :: Float64 | |
ν :: Float64 | |
σy :: Float64 | |
λ ::Float64 = E*ν / ((1+ν) * (1 - 2ν)) | |
μ ::Float64 = E / (2(1+ν)) | |
end | |
mutable struct IdealPlasticMaterialState{dim, M} | |
# Internal variables | |
σ :: SymmetricTensor{2, dim, Float64, M} | |
ϵp :: SymmetricTensor{2, dim, Float64, M} | |
end | |
function IdealPlasticMaterialState{dim}() where {dim} | |
ϵp = zero(SymmetricTensor{2, dim}) | |
σ = zero(SymmetricTensor{2, dim}) | |
return IdealPlasticMaterialState(ϵp, σ) | |
end | |
# Could cache This | |
function compute_elastic_stiffness(mp::IdealPlasticMaterialParameters{dim}) where {dim} | |
δ(i,j) = i == j ? 1.0 : 0.0 | |
g(i,j,k,l) = mp.λ*δ(i,j)*δ(k,l) + mp.μ*(δ(i,k)*δ(j,l) + δ(i,l)*δ(j,k)) | |
return SymmetricTensor{4, dim}(g) | |
end | |
# Returns incremental stress and consistent tangent stiffness | |
function integrate_material(mp::IdealPlasticMaterialParameters{dim}, ms::IdealPlasticMaterialState{dim}, | |
Δϵ::SymmetricTensor{2, dim}, Δt::Number) where {dim} | |
D = compute_elastic_stiffness(mp) | |
Δσ_tr = D ⊡ Δϵ | |
σ_tr = ms.σ + Δσ_tr | |
σ_tr_dev = dev(σ_tr) | |
σ_tr_v = √(3/2) * norm(σ_tr_dev) | |
if σ_tr_v <= mp.σy | |
return Δσ_tr, D | |
else | |
n = 3/2 * σ_tr_dev/σ_tr_v | |
Δλ = 1/(3*mp.μ)*(σ_tr_v - mp.σy) | |
Δϵ_p = Δλ * n | |
Δσ = D ⊡ (Δϵ - Δϵ_p) | |
Dn = (D ⊡ n) | |
tangent_stiffness = Dn ⊗ Dn / (n ⊡ Dn) | |
return Δσ, tangent_stiffness | |
end | |
end | |
function bench_ideal_plastic() | |
mp = IdealPlasticMaterialParameters{3}(E=200e9, ν=0.3, σy = 100e6) | |
ms = IdealPlasticMaterialState{3}() | |
Δt = 0.25 | |
Δϵ = 0.25 * 1e-5 * diagm(SymmetricTensor{2, 3}, [-0.3, -0.3, 1.0]) | |
σ_devs = Float64[] | |
for i in 1:1000 | |
Δσ, D = integrate_material(mp, ms, Δϵ, Δt) | |
ms.σ += Δσ | |
push!(σ_devs, norm(dev(ms.σ))) | |
end | |
return σ_devs | |
end | |
using BenchmarkTools | |
@btime bench_ideal_plastic() | |
s = bench_ideal_plastic() | |
#= | |
using UnicodePlots | |
lineplot(s) | |
┌────────────────────────────────────────┐ | |
90000000 │⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⠀⠀⠀⠀⢰⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒⠒│ | |
│⠀⠀⠀⠀⠀⠀⠀⡎⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⠀⠀⠀⣸⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⠀⠀⢀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⠀⠀⡼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⠀⢠⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⠀⢰⠁⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⢀⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⠀⡸⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⢠⠇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⠀⡞⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
│⢰⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
0 │⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀│ | |
└────────────────────────────────────────┘ | |
0 1000 | |
=# |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment