View check_convex.py
# Authors: Mathieu Blondel, Vlad Niculae | |
# License: BSD 3 clause | |
import numpy as np | |
def _gen_pairs(gen, max_iter, max_inner, random_state, verbose): | |
rng = np.random.RandomState(random_state) | |
# if tuple, interpret as randn |
View focalloss.py
class FocalLoss(nn.Module): | |
def __init__(self, gamma=2): | |
super().__init__() | |
self.gamma = gamma | |
def forward(self, logit, target): | |
target = target.float() | |
max_val = (-logit).clamp(min=0) | |
loss = logit - logit * target + max_val + \ | |
((-max_val).exp() + (-logit - max_val).exp()).log() |
View model.py
def get_senet50(config): | |
model = se_resnext50_32x4d(pretrained='imagenet') | |
# print(model.last_linear) | |
# print(model.dropout) | |
model.layer0.conv1 = nn.Conv2d(config.channels, 64, 3, stride=2, padding=1, bias=False) | |
model.avg_pool = nn.AdaptiveAvgPool2d(1) | |
model.dropout = None | |
model.last_linear = nn.Sequential( | |
nn.BatchNorm1d(2048), | |
nn.Dropout(0.5), |
View gist:f58478d412e3f37b88dcd0521eb3abb8
def multi_weighted_logloss(y_ohe, y_p): | |
""" | |
@author olivier https://www.kaggle.com/ogrellier | |
multi logloss for PLAsTiCC challenge | |
""" | |
classes = [6, 15, 16, 42, 52, 53, 62, 64, 65, 67, 88, 90, 92, 95] | |
class_weight = {6: 1, 15: 2, 16: 1, 42: 1, 52: 1, 53: 1, 62: 1, 64: 2, 65: 1, 67: 1, 88: 1, 90: 1, 92: 1, 95: 1} | |
# Normalize rows and limit y_preds to 1e-15, 1-1e-15 | |
y_p = np.clip(a=y_p, a_min=1e-15, a_max=1-1e-15) | |
# Transform to log |
View linkedlist.py
class Node: | |
def __init__(self, val): | |
self.val = val | |
self.next = None | |
class MyLinkedList: | |
def __init__(self): | |
""" | |
Initialize your data structure here. |
View autoencoder.py
import tensorflow as tf | |
import numpy as np | |
import os | |
import zconfig | |
import utils | |
class DenoisingAutoencoder(object): | |
""" Implementation of Denoising Autoencoders using TensorFlow. |
View run.py
from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets | |
import numpy as np | |
import timeit | |
import tensorflow as tf | |
from pprint import pformat | |
mnist = read_data_sets("data", one_hot=False) | |
NUM_CLASS = 10 | |
STEP = 200 |
View histEq.m
% Author: Ji Yang | |
%% Description | |
% A simple implementation of histogram equalization. | |
% | |
%% Note | |
% Histogram equalization is a technique for adjusting image intensities | |
% to enhance contrast. | |
% |
View ruozhi.py
# Uses python3 | |
import sys | |
from collections import namedtuple | |
Segment = namedtuple('Segment', 'start end') | |
def optimal_points(segments): | |
points = [] | |
segments_by_end = sorted(segments, key=lambda x: x.end) |
View resume.py
#/usr/bin/env python | |
# coding=utf-8 | |
import random | |
import re | |
def color(messages): | |
color = '\x1B[%d;%dm' % (1,random.randint(30,37)) | |
return '%s %s\x1B[0m' % (color,messages) |
NewerOlder