Created
May 13, 2016 07:47
-
-
Save Lanbig/4a9cd4df96dfbabf3b6c2a9e5823e58e to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
setwd("~/Dropbox/CSC529/Project") | |
require(caret) | |
require(ggplot2) | |
require(randomForest) | |
require(e1071) | |
require(pROC) | |
require("foreach") | |
require("doSNOW") | |
require(party) | |
myd = read.csv("Lung Cancer dataset/LIDC_Data_SEIDEL_01-05-2015.csv",header = T, sep = ',') | |
mycl = data.frame(matrix(NA, ncol = 1, nrow = nrow(myd)) ) | |
names(mycl)[1]<-paste("class") | |
for(i in 1:nrow(myd)) | |
{ | |
row <- myd[i,] | |
avg <- (row[5]+row[6]+row[7]+row[8])/4 | |
mycl[i,1] <- ifelse(avg >=4 , "Likely", "Inconclusive") | |
} | |
qplot(mycl$class, geom="bar",ylab = "count", main = "Class Distribution ", xlab = "Class", fill=as.factor(mycl$class)) | |
############################################################### | |
outcome = as.factor(mycl$class) | |
levels(outcome) = make.names(levels(outcome)) | |
################################## | |
set.seed(4567) | |
#trainIndex <- createDataPartition(outcome , p=0.66, list=FALSE) | |
#train_X <- myd[,9:72][ trainIndex,] | |
#train_Y <- as.data.frame(outcome)[trainIndex,] | |
#test_X <- myd[,9:72][-trainIndex,] | |
#test_Y <- as.data.frame(outcome)[-trainIndex,] | |
################################## | |
train_X = myd[,9:72] | |
train_Y = outcome | |
####################### SMOTE ####################################### | |
######## Balance the data set, comment this part if you don't want ######## | |
require(DMwR) | |
sdata = cbind(train_Y,train_X) | |
names(sdata)[1]<-paste("class") | |
Bal_data_train <- SMOTE(class ~ ., sdata, perc.over = 500,perc.under=110) | |
table(Bal_data_train$class) | |
qplot(Bal_data_train$class, geom="bar",ylab = "count", main = "Class Distribution ", xlab = "Class", fill=Bal_data_train$class ) | |
train_X = Bal_data_train[,2:65] | |
train_Y = as.factor(Bal_data_train[,1]) | |
################### Feature Extraction ############################## | |
####### Extract new feature, reduce feture dimention, ############ | |
####### comment this part if you don't want ##################### | |
require(clusterSim) | |
fdata = cbind(train_Y,train_X) | |
Norm_data_train = data.Normalization(fdata[2:65],type="n4",normalization="column"); | |
#Apply PCA | |
data_train.pca <- princomp(Norm_data_train, cor = TRUE, center = TRUE, scale. = TRUE) | |
plot(data_train.pca) | |
summary(data_train.pca) | |
train_X = data_train.pca$scores[,1:22] | |
train_Y = as.factor(Bal_data_train[,1]) | |
############################################################ | |
fitControl <- trainControl(method = "repeatedcv", | |
repeats = 10, | |
number = 10, | |
#summaryFunction = multiClassSummary, | |
summaryFunction = twoClassSummary, | |
savePredictions =T, | |
verboseIter = TRUE, | |
## Estimate class probabilities | |
classProbs = TRUE) | |
####################################################### | |
fit.rf = train(y = train_Y, x = train_X, method= "rf" , | |
tuneLength = 5, | |
metric="ROC", | |
trControl = fitControl) | |
plot(fit.rf) | |
fit.rf | |
pred <- predict(fit.rf, train_X) | |
xtab <- table(pred, train_Y) | |
confusionMatrix(fit.rf) | |
######################################################### | |
fit.ada = train(y = train_Y, x = train_X, method= "ada" , | |
metric="ROC", | |
trControl = fitControl) | |
plot(fit.ada) | |
fit.ada | |
trellis.par.set(caretTheme()) | |
plot(fit.ada, metric = "ROC", plotType = "level", | |
scales = list(x = list(rot = 90))) | |
############################################################ | |
fit.treeBag = train(y = train_Y, x = train_X, method= "treebag", | |
metric="ROC", | |
trControl = fitControl) | |
plot(fit.treeBag) | |
fit.treeBag | |
########################################################### | |
fit.LogitBoost = train(y = train_Y, x = train_X, method= "LogitBoost", | |
metric="ROC", | |
tuneLength = 8, | |
trControl = fitControl) | |
plot(fit.LogitBoost) | |
fit.LogitBoost | |
########################################################### | |
fit.AdaM1 = train(y = train_Y, x = train_X, method= "AdaBoost.M1", | |
metric="ROC", | |
trControl = fitControl) | |
plot(fit.AdaM1) | |
fit.AdaM1 | |
########################################################### | |
fit.gbm = train(y = train_Y, x = train_X, method= "gbm", | |
metric="ROC", | |
trControl = fitControl) | |
plot(fit.gbm) | |
fit.gbm | |
########################################################## | |
fit.bagLDA <- train(train_X, train_Y, | |
"bag", | |
B = 10, | |
trControl = fitControl, | |
bagControl = bagControl(fit = ldaBag$fit, | |
predict = ldaBag$pred, | |
aggregate = ldaBag$aggregate), | |
tuneGrid = data.frame(vars = c((1:10)*10 , ncol(train_X)))) | |
plot(fit.bagLDA) | |
fit.bagLDA | |
################Perf ####################################### | |
resamps <- resamples(list(RF = fit.rf, | |
BoostedTree = fit.ada, | |
BaggedCart = fit.treeBag, | |
LogitBoost= fit.LogitBoost, | |
BaggedLDA = fit.bagLDA, | |
GBM = fit.gbm | |
)) | |
resamps | |
summary(resamps) | |
bwplot(resamps, layout = c(5, 1)) | |
##################### Testing ######################## | |
pred <- predict(fit.rf, test_X) | |
xtab <- table(pred, test_Y) | |
confusionMatrix(xtab) | |
pred <- predict(fit.ada, test_X) | |
xtab <- table(pred, test_Y) | |
confusionMatrix(xtab) | |
pred <- predict(fit.treeBag, test_X) | |
xtab <- table(pred, test_Y) | |
confusionMatrix(xtab) | |
pred <- predict(fit.LogitBoost, test_X) | |
xtab <- table(pred, test_Y) | |
confusionMatrix(xtab) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment