Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout, Conv2D, Reshape, TimeDistributed, Flatten, Conv1D,ConvLSTM2D, MaxPooling1D
from keras.layers.core import Dense, Activation, Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import tensorflow as tf
import matplotlib.pyplot as plt
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
def create_dataset(signal_data, look_back=1):
dataX, dataY = [], []
for i in range(len(signal_data) - look_back):
dataX.append(signal_data[i:(i + look_back), 0])
dataY.append(signal_data[i + look_back, 0])
return np.array(dataX), np.array(dataY)
look_back = 20
#kospi.csv is https://docs.google.com/spreadsheets/d/13qyMDbl9EsBPE6asoXkH_73Y4QVGzaiUXyir94nN3VE/edit?usp=sharing
df = pd.read_csv('kospi.csv')
signal_data = df.Close.values.astype('float32')
signal_data = signal_data.reshape(len(df), 1)
scaler = MinMaxScaler(feature_range=(0, 1))
signal_data = scaler.fit_transform(signal_data)
train_size = int(len(signal_data) * 0.80)
test_size = len(signal_data) - train_size - int(len(signal_data) * 0.05)
val_size = len(signal_data) - train_size - test_size
train = signal_data[0:train_size]
val = signal_data[train_size:train_size+val_size]
test = signal_data[train_size+val_size:len(signal_data)]
x_train, y_train = create_dataset(train, look_back)
x_val, y_val = create_dataset(val, look_back)
x_test, y_test = create_dataset(test, look_back)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
x_val = np.reshape(x_val, (x_val.shape[0], x_val.shape[1], 1))
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
model = Sequential()
model.add(LSTM(128, input_shape=(None, 1),return_sequences=True))
model.add(Dropout(0.3))
model.add(LSTM(128, input_shape=(None, 1)))
model.add(Dropout(0.3))
model.add(Dense(128))
model.add(Dropout(0.3))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['accuracy'])
model.summary()
hist = model.fit(x_train, y_train, epochs=20, batch_size=32, verbose=2, validation_data=(x_val, y_val))
trainScore = model.evaluate(x_train, y_train, verbose=0)
model.reset_states()
print('Train Score: ', trainScore)
valScore = model.evaluate(x_val, y_val, verbose=0)
model.reset_states()
print('Validataion Score: ', valScore)
testScore = model.evaluate(x_test, y_test, verbose=0)
model.reset_states()
print('Test Score: ', testScore)
p = model.predict(x_test)
print(mean_squared_error(y_test, p))
import matplotlib.pyplot as pplt
pplt.plot(y_test)
pplt.plot(p)
pplt.legend(['testY', 'p'], loc='upper right')
pplt.show()
#kospi.csv is https://docs.google.com/spreadsheets/d/13qyMDbl9EsBPE6asoXkH_73Y4QVGzaiUXyir94nN3VE/edit?usp=sharing
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment