-
-
Save Liam0205/6b0ea39503afcddb2c32b4554dd3c09b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\documentclass[9pt,oneside,openany]{ctexbook} | |
\usepackage{geometry} | |
\geometry{right=2.5em,top=2.5cm,bottom=1.5cm}%设置页面布局 | |
\setlength{\lineskip}{-0.5em} %设置行间距 | |
\usepackage{hlist} | |
%\usepackage{lipsum} | |
\usepackage{xcolor} | |
\usepackage{balance} | |
\usepackage{multicol} | |
\usepackage{amssymb}%打小黑格 | |
\usepackage{enumerate} | |
\usepackage{enumitem}%设置item环境 | |
\setlist[enumerate,1]{label=(\arabic*).,font=\textup, | |
leftmargin=1.2mm,labelsep=0.8mm,topsep=-3mm,itemsep=-0.8mm} | |
\setlist[enumerate,2]{label=(\alph*).,font=\textup, | |
leftmargin=8mm,labelsep=0.5mm,topsep=-2mm,itemsep=-1mm} | |
\setlist[itemize,1]{label=(\arabic*).,font=\textup, | |
leftmargin=1.2mm,labelsep=1.8mm,topsep=6mm,itemsep=2.8mm} | |
\usepackage[utf8]{inputenc} | |
\title{\textbf{\LARGE{数学专业英语期末翻译作业}}} %大括号里填写标题,textbf加粗 | |
\author{\textbf{学院:\underline{应用数学学院}}\\ %\\表示换行 | |
\textbf{班级:\underline{\ \ \, }}\\ %\表示空格,下quad同 | |
\textbf{姓名:\underline{\quad \ \quad \ }}\\ | |
\textbf{学号:\underline{\ \,}}\\ \\ | |
\textbf{翻译页码:P237-238} | |
}%end author | |
\date{\today} % 自动生成日期 | |
\usepackage{booktabs}%线条粗细 | |
\begin{document} | |
\par\addtolength{\leftskip}{100pt} | |
{\small | |
\noindent This formula is more complicated than it needs to be. If we combine $C=C_{1}-2C_{2}$, and $5C_{3}$ into a single arbitrary constant $C=C_{1}-2C_{2}+5C_{3}$, the formulas simplifies to | |
\noindent 这个公式比实际情况还要复杂。如果我们把$C=C_{1}-2C_{2}$,和 $5C_{3}$合并到一个任意常数的式子$C=C_{1}-2C_{2}+5C_{3}$,这个公式可以被简化成 | |
$$ y=\frac{x^3}{3}-x^2+5x+C$$ | |
and $still$ gives all the possible antiderivatives there are. For this reason, we recommend that you go right to the final form even if you elect to integrate term-by-term. Write | |
\noindent 并且依然给所有可能的不定积分。基于这个原因,我们推荐你直接看最后的形式,即使你需要逐项的整合。写 | |
$$\int(x^2-2x+5)dx=\int x^2dx-\int 2xdx+\int 5dx$$ | |
$$=\frac{x^3}{3}-x^2+5x+C.$$ | |
Find the simpliest antiderivative you can for each part and add the arbitary constant of integration at the end. | |
\noindent 为每个部分找出它最简形式的反导数,然后在最后取一个任意的正常数。} | |
$\hfill\color{red}{\blacksquare}$%打小黑格并右对齐 | |
\par | |
\addtolength{\leftskip}{-100pt} | |
\noindent\hspace*{-0.3em}\rule[-1pt]{17.85cm}{0.04em} | |
\hspace*{-0.2em}\colorbox[rgb]{0,0.28,0.56}{\textcolor{white}{\Large{\textbf{EXERCISES}}}} \ | |
\textcolor[rgb]{0.50,0.25,0.25}{\Large{\textbf{4.7}}} | |
\begin{multicols}{2} | |
\noindent{\color[rgb]{0,0.28,0.56}{\footnotesize\textbf{Finding Antiderivatives}}}\\ | |
{\color[rgb]{0,0.28,0.56}{\footnotesize\textbf{寻找反导数}}}\\ | |
{\scriptsize | |
In Exercises 1-16, find an antiderivative for each function. Do as many as you can mentally. Check your answer by differentiation.}\\ | |
{\scriptsize 在练习1-16中,为每个函数寻找一个不定积分。在你的能力范围内尽可能寻找。并且通过微分法验证你的答案。 | |
} | |
\begin{enumerate}[leftmargin=5mm] | |
\begin{multicols}{3} | |
{\footnotesize | |
\item [\bf1.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf2.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf3.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf4.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf5.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf6.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf7.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf8.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf9.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf10.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf11.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf12.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf13.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf14.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf15.]\textbf{a.} {\textbf{$y=2x$}} | |
\item [\bf16.]\textbf{a.} {\textbf{$y=2x$}} | |
%第二栏 | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
\item [\bf b.] {\textbf{$y=2x$}} | |
%第三栏 | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
\item [\bf c.] {\textbf{$y=2x$}} | |
} | |
\end{multicols} | |
\end{enumerate} | |
%\begin{hlist}3 | |
% \hitem text \hitem text \hitem text | |
% \hitem text \hitem text \hitem text | |
% \hitem text \hitem text \hitem text | |
% \hitem text \hitem text \hitem text | |
%\end{hlist} | |
\noindent{\color[rgb]{0,0.28,0.56}{\footnotesize\textbf{Finding Indefinite Integrals}}}\\ | |
{\color[rgb]{0,0.28,0.56}{\footnotesize\textbf{寻找反导数}}}\\ | |
{\scriptsize | |
In Exercises 17-56, find the most general antiderivative or indefinite integral. You may need to try a solution and then adjust your guess. Check your answers by differentiation.\\ | |
在练习17-56中,为每个函数寻找一个不定积分。在你的能力范围内尽可能寻找。并且通过微分法验证你的答案。} | |
\begin{itemize}[leftmargin=4.8mm] | |
\begin{multicols}{2} | |
\item [\bf17.]{\textbf{$\int (sin2x-csc^{2}x)dx$}} | |
\item [\bf19.]{\textbf{$\int \frac{1+cos4t}{2}dt$}} | |
\item [\bf21.]{\textbf{$\int 3x^{\sqrt{3}}dx$}} | |
\item [\bf23.]{\textbf{$\int (1+tan^{2}\theta )d\theta$}} | |
\item [\bf25.]{\textbf{$\int cot^{2}xdx$}} | |
\item [\bf27.]{\textbf{$\int cos\theta (tan\theta+sec \theta)d\theta$}} | |
\item [\bf29.]{\textbf{$\int (2cos2x-3sin3x)dx$}} | |
\item [\bf31.]{\textbf{$\int \frac{1-cos6t}{2}dt$}} | |
\item [\bf33.]{\textbf{$\int x^{\sqrt{2}-1}dx$}} | |
\item [\bf35.]{\textbf{$\int (2=tan^{2}\theta)d\theta$}} | |
\item [\bf37.]{\textbf{$\int (1-cot^{2}x)dx$}} | |
\item [\bf39.]{\textbf{$\int \frac{csc\theta}{csc\theta -sin\theta}$}} | |
\item [\bf41.]{\textbf{$\int (sin2x-csc^{2}x)dx$}} | |
\item [\bf43.]{\textbf{$\int (4secxtanx-2(secx)^2{2}dx$}} | |
\item [\bf18.]{\textbf{$\int 3x^{\sqrt{3}}dx$}} | |
\item [\bf20.]{\textbf{$\int (1+tan^{2}\theta )d\theta$}} | |
\item [\bf22.]{\textbf{$\int cot^{2}xdx$}} | |
\item [\bf24.]{\textbf{$\int cos\theta (tan\theta+sec \theta)d\theta$}} | |
\item [\bf26.]{\textbf{$\int (2cos2x-3sin3x)dx$}} | |
\item [\bf28.]{\textbf{$\int \frac{1-cos6t}{2}dt$}} | |
\item [\bf30.]{\textbf{$\int x^{\sqrt{2}-1}dx$}} | |
\item [\bf32.]{\textbf{$\int (2=tan^{2}\theta)d\theta$}} | |
\item [\bf34.]{\textbf{$\int (1-cot^{2}x)dx$}} | |
\item [\bf36.]{\textbf{$\int \frac{csc\theta}{csc\theta -sin\theta}$}} | |
\item [\bf38.]{\textbf{$\int (1-cot^{2}x)dx$}} | |
\item [\bf40.]{\textbf{$\int \frac{csc\theta}{csc\theta -sin\theta}$}} | |
\item [\bf42.]{\textbf{$\int \frac{csc\theta}{csc\theta -sin\theta}$}} | |
\end{multicols} | |
\end{itemize} | |
\end{multicols} | |
% \clearpage | |
\begin{multicols}{2} | |
\begin{enumerate}[leftmargin=4.8mm] | |
\item [\bf44.]\small{\textbf{$\int \frac{1}{2}(csc^{2}x-cscxcotx)dx$}}%上一页自动顺延下来的。 | |
\begin{multicols}{2} | |
{\balance | |
\item [\bf45.]\small{\textbf{$\int (sin2x-csc^{2}x)dx$}} | |
\item [\bf47.]\small{\textbf{$\int \frac{1+cos4t}{2}dt$}} | |
\item [\bf49.]\small{\textbf{$\int 3x^{\sqrt{3}}dx$}} | |
\item [\bf51.]\small{\textbf{$\int (1+tan^{2}\theta )d\theta$}} | |
\item [\bf53.]\small{\textbf{$\int cot^{2}xdx$}} | |
\item [\bf55.]\small{\textbf{$\int cos\theta (tan\theta+sec \theta)d\theta$}} | |
\item [\bf46.]\small{\textbf{$\int (2cos2x-3sin3x)dx$}} | |
\item [\bf48.]\small{\textbf{$\int \frac{1-cos6t}{2}dt$}} | |
\item [\bf50.]\small{\textbf{$\int x^{\sqrt{2}-1}dx$}} | |
\item [\bf52.]\small{\textbf{$\int (2=tan^{2}\theta)d\theta$}} | |
\item [\bf54.]\small{\textbf{$\int (1-cot^{2}x)dx$}} | |
\item [\bf56.]\small{\textbf{$\int \frac{csc\theta}{csc\theta -sin\theta}$}} | |
} | |
\end{multicols} | |
\end{enumerate} | |
\end{multicols} | |
\end{document} | |
\documentclass{article} | |
\usepackage[overload]{empheq} | |
\begin{document} | |
\begin{subequations} | |
\begin{empheq}[left = {\empheqlbrace}]{alignat = 2} | |
u_t - \Delta u &= 0 & \qquad & \text{in \(U_T\)}, \\ | |
u &= 0 & \qquad & \text{on \(\partial U\times [0, T]\)}, \\ | |
u &= g & \qquad & \text{on \(U\times \{t = 0\}\)}. | |
\end{empheq} | |
\end{subequations} | |
\end{document} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment