Skip to content

Instantly share code, notes, and snippets.

View Lswhiteh's full-sized avatar

Logan Whitehouse Lswhiteh

View GitHub Profile
import numpy as np
from keras import backend as K
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from sklearn.metrics import classification_report, confusion_matrix
#Start
train_data_path = 'F://data//Train'
@joelouismarino
joelouismarino / googlenet.py
Last active October 24, 2024 05:51
GoogLeNet in Keras
from __future__ import print_function
import imageio
from PIL import Image
import numpy as np
import keras
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, Concatenate, Reshape, Activation
from keras.models import Model
from keras.regularizers import l2
from keras.optimizers import SGD
@davfre
davfre / bamfilter_oneliners.md
Last active January 18, 2025 22:47
SAM and BAM filtering oneliners
@nathanhaigh
nathanhaigh / deinterleave_fastq.sh
Last active September 16, 2025 13:04
deinterleave FASTQ files
#!/bin/bash
# Usage: deinterleave_fastq.sh < interleaved.fastq f.fastq r.fastq [compress]
#
# Deinterleaves a FASTQ file of paired reads into two FASTQ
# files specified on the command line. Optionally GZip compresses the output
# FASTQ files using pigz if the 3rd command line argument is the word "compress"
#
# Can deinterleave 100 million paired reads (200 million total
# reads; a 43Gbyte file), in memory (/dev/shm), in 4m15s (255s)
#