Created
May 10, 2018 18:35
-
-
Save Madhivarman/8f1be311b547051b230f3d8549fd5521 to your computer and use it in GitHub Desktop.
Using Reinforcement Learning - QTable Algorithm algorithms learns to make 5 within three attempts. Input number ranges from 1 to 12.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
import numpy as np | |
class Game: | |
def __init__(self): | |
self.reset() | |
def reset(self): | |
self.current_number = random.randrange(1,12) | |
if(self.current_number == 5): | |
self.reset() | |
self.turns = 0 | |
def has_won(self): | |
return self.current_number == 5 and self.turns >=3 | |
def has_lost(self): | |
return self.current_number != 5 and self.turns <= 3 | |
def is_active(self): | |
return not self.has_lost() and not self.has_won() | |
def play_rules(self, action): | |
if(self.turns >= 3): | |
raise Exception("Maximum Try has Reached... Lets play another game..!") | |
self.turns += 1 | |
self.current_number += int(action) | |
class AgentConfig: | |
def __init__(self): | |
self.nb_epoch = None | |
self.print_every_n_epoch = 1 | |
class TrainStats: | |
#initially all Traning status paramaters are zero | |
def __init__(self): | |
self.epoch = 0 | |
self.nb_wins = 0 | |
self.nb_lost = 0 | |
self.p_wins = 0 | |
self.p_losses = 0 | |
class Agent: | |
def __init__(self,number_epochs): | |
self.qtable = {} | |
self.epochs = number_epochs.nb_epoch #get number of epochs | |
self.randomness_rate = 0 | |
#print the result | |
def print_epoch_status(self,stats): | |
print("Epochs 1000 Wins:{win}% Loss:{loss}".format(win=stats.p_wins,loss=stats.p_losses)) | |
#initially fill qtable with zeros | |
def ensure_qtable_entry(self, state): | |
if state not in self.qtable: | |
self.qtable[state] = np.zeros(6) | |
# create random actions | |
def get_action(self,state): | |
if not self.should_go_random() and state in self.qtable: | |
return self.predict_action(state) | |
return self.get_random_action() | |
def should_go_random(self): | |
return np.random.rand() <= self.randomness_rate | |
def get_random_action(self): | |
return random.randrange(0,6) | |
def predict_action(self,state): | |
return np.argmax(self.qtable[state]) | |
# mapping actions (0,1,2,3,4,5) to answers (3,2,1,-3,-2,-1) | |
def action_to_answer(self,action): | |
return actionMap[action] | |
#train the agent | |
def train(self,state,action,reward, next_state,final): | |
self.ensure_qtable_entry(state) | |
self.ensure_qtable_entry(next_state) | |
if final: | |
q_value = reward | |
else: | |
next_state_actions = self.qtable[next_state] | |
next_state_max = np.amax(next_state_actions) | |
q_value = reward + self.config.discount_factor * next_state_max | |
self.qtable[state][action] = q_value | |
def get_reward(self): | |
if self.game.has_won(): | |
return 1 | |
elif self.game.has_lost(): | |
return -1 | |
else: | |
return -0.1 | |
def play_and_train(self): | |
stats = TrainStats() | |
for epoch in range(1, config.nb_epoch+1): | |
game.reset() #reset the game | |
stats.epoch = epoch | |
while(game.is_active()): | |
state = game.current_number | |
action = self.get_action() | |
human_readable_answer = self.action_to_answer(action) | |
game.play_rules(human_readable_answer) | |
reward = self.get_reward() | |
next_state = game.current_number | |
final = not game.is_active() | |
self.train(state,action,reward,next_state,final) | |
if(game.has_won()): | |
stats.nb_wins += 1 | |
if(game.has_lost()): | |
stats.nb_lost += 1 | |
stats.p_wins = 100 / epoch * stats.nb_wins | |
stats.p_losses = 100 / epoch * stats.nb_lost | |
if (epoch % config.print_every_n_epoch == 0): | |
self.print_epoch_status(stats) | |
#global declaration and main program starts from here | |
game = Game() | |
config = AgentConfig() | |
config.nb_epoch = 100 | |
agent = Agent(config) | |
agent.randomness_rate = 0 | |
agent.play_and_train() | |
#evaluate the trained model | |
config.nb_epoch = 1000 | |
agent.play_and_train() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment