Solving Parity-3 problem using 3-layer from scratch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# solving parity-3 problems using numpy only | |
from os import error | |
import numpy as np | |
import math | |
np.random.seed(1) | |
def relu(x): | |
return np.maximum(0, x) | |
def relu_deriv(x): | |
return 1. * (x > 0) | |
def sigmoid(x): | |
return 1.0 / (1 + np.exp(-x)) | |
def sigmoid_deriv(x): | |
return sigmoid(x) * (1 - sigmoid(x)) | |
def tanh(x): | |
return (np.exp(x)-np.exp(-x)) /(np.exp(x) + np.exp(-x)) | |
def tanh_deriv(x): | |
return 1 - (tanh(x))**2 | |
def calculate_loss(y_true, y_pred): | |
return np.mean((y_pred - y_true)**2) | |
def check_accuracy(y_true, y_pred): | |
return sum(y_true[i] == y_pred[i] for i in range(0, 8)) | |
def build_model(x, hidden_dim=3, output_dim=1): | |
model = {} | |
model["w1"] = np.random.randn(x.shape[1], hidden_dim) | |
model["b1"] = np.random.randn(1, hidden_dim) | |
model["w2"] = np.random.randn(hidden_dim, output_dim) | |
model["b2"] = np.random.randn(output_dim, 1) | |
return model | |
def forward(x, model): | |
# 2nd layer | |
w1 = model["w1"] | |
b1 = model["b1"] | |
z1 = x.dot(w1) + b1 | |
a1 = sigmoid(z1) | |
# 3rd layer | |
w2 = model["w2"] | |
b2 = model["b2"] | |
z2 = a1.dot(w2) + b2 | |
out = sigmoid(z2) | |
pred = [0.0 if (i[0] < 0.5) else 1.0 for i in out] | |
return z1, a1, z2, np.array(pred) | |
def train(model, x, y): | |
lr = 0.01 | |
total_iter = 5000000 | |
error_grad = 0 | |
losses = [] | |
for iter in range(total_iter): | |
z1, a1, z2, pred = forward(x, model) | |
error_grad = np.expand_dims((pred - y)/8, axis=1) | |
delta_2 = error_grad * sigmoid_deriv(z2) | |
dw2 = np.dot(a1.T, delta_2) | |
db2 = np.sum(delta_2, axis=0) | |
delta_1 = np.dot(delta_2, model["w2"].T) * sigmoid_deriv(a1) | |
dw1 = np.dot(x.T, delta_1) | |
db1 = np.sum(delta_1, axis=0) | |
model["w1"] -= lr * dw1 | |
model["b1"] -= lr * db1 | |
model["w2"] -= lr * dw2 | |
model["b2"] -= lr * db2 | |
if iter % 10000 == 0: | |
loss = calculate_loss(y, pred) | |
print(check_accuracy(y, pred)) | |
losses.append(loss) | |
print("Loss after %d iteration %f" % (iter, loss)) | |
return model, losses | |
def main(): | |
x = np.array([[1, 1, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1], | |
[0, 0, 0], [1, 0, 1], [0, 1, 1], [1, 1, 0]]) | |
y = [1, 1, 1, 1, 0, 0, 0, 0] | |
model = build_model(x) | |
model, losses = train(model, x, y) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Single layer neural network can solve this problem?