Skip to content

Instantly share code, notes, and snippets.

@Mahedi-61
Last active February 21, 2024 17:01
Star You must be signed in to star a gist
Save Mahedi-61/2a2f1579d4271717d421065168ce6a73 to your computer and use it in GitHub Desktop.
Instructions for CUDA v11.8 and cuDNN 8.9.7 installation on Ubuntu 22.04 for PyTorch 2.1.2
#!/bin/bash
### steps ####
# Verify the system has a cuda-capable gpu
# Download and install the nvidia cuda toolkit and cudnn
# Setup environmental variables
# Verify the installation
###
### to verify your gpu is cuda enable check
lspci | grep -i nvidia
### If you have previous installation remove it first.
sudo apt-get purge nvidia*
sudo apt remove nvidia-*
sudo rm /etc/apt/sources.list.d/cuda*
sudo apt-get autoremove && sudo apt-get autoclean
sudo rm -rf /usr/local/cuda*
# system update
sudo apt-get update
sudo apt-get upgrade
# install other import packages
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
# first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
# install nvidia driver with dependencies
sudo apt install libnvidia-common-470
sudo apt install libnvidia-gl-470
sudo apt install nvidia-driver-470
# installing CUDA-11.8
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-keyring_1.0-1_all.deb
sudo dpkg -i cuda-keyring_1.0-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda
# setup your paths
echo 'export PATH=/usr/local/cuda-11.8/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
# install cuDNN v8.9.7
# First register here: https://developer.nvidia.com/developer-program/signup
CUDNN_TAR_FILE="cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz"
wget https://developer.nvidia.com/downloads/compute/cudnn/secure/8.9.7/local_installers/11.x/cudnn-linux-x86_64-8.9.7.29_cuda11-archive.tar.xz
tar -xvf ${CUDNN_TAR_FILE}
# copy the following files into the cuda toolkit directory.
sudo cp cudnn-*-archive/include/cudnn*.h /usr/local/cuda/include
$ sudo cp -P cudnn-*-archive/lib/libcudnn* /usr/local/cuda/lib64
$ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
# Finally, to verify the installation, check
nvidia-smi
nvcc -V
# install Pytorch (an open source machine learning framework)
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
@addy1997
Copy link

I am wondering whether these work for installing cuda 11.3 on ubuntu 22.04 also?

@saravananpsg
Copy link

Will it work for nvidia-server on ubuntu 20.04 server ?

install nvidia driver with dependencies

sudo apt install libnvidia-common-470-server
sudo apt install libnvidia-gl-470-server
sudo apt install nvidia-driver-470-server

@initialneil
Copy link

Will it work for nvidia-server on ubuntu 20.04 server ?

install nvidia driver with dependencies

sudo apt install libnvidia-common-470-server sudo apt install libnvidia-gl-470-server sudo apt install nvidia-driver-470-server

@saravananpsg It's works for server. I tested. I also changed 470 to 515 to support 3090.

@jackkolb
Copy link

jackkolb commented Jul 22, 2022

I also had to change the version from 470 to 515 for a 1070 TI.

sudo apt install libnvidia-common-515
sudo apt install libnvidia-gl-515
sudo apt install nvidia-driver-515

After installing, if nvidia-smi gives a kernel/client version mismatch error, reboot.

@mshajarrazip
Copy link

This helped A LOT! Thanks!

@Ahanio
Copy link

Ahanio commented Apr 27, 2023

Thank you! It was veeery helpful!

@lolo912
Copy link

lolo912 commented Jun 29, 2023

Thank you verry much you just forgotten a star character after cudnn here :
sudo cp -P cuda/include/cudnn*.h /usr/local/cuda-11.3/include

Verry important because else an error can be encountered while compiling for example pytorch "cudnn_version.h" not found.
Regards

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment