Created
April 28, 2022 10:31
-
-
Save MartinNowak/445074f87f26776c5b50430da085b775 to your computer and use it in GitHub Desktop.
FIR low-pass filter
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!python | |
from numpy import cos, sin, pi, absolute, arange | |
from scipy.signal import windows, kaiserord, lfilter, firwin, freqz | |
from pylab import figure, clf, plot, xlabel, ylabel, xlim, ylim, title, grid, axes, show | |
N = window_size_in_days = 20 | |
#------------------------------------------------ | |
# Create a signal for demonstration. | |
#------------------------------------------------ | |
sample_rate = 1.0 | |
nsamples = 400 | |
t = arange(nsamples) / sample_rate | |
x = cos(2*pi*0.5*t) + 0.2*sin(2*pi*2.5*t+0.1) + \ | |
0.2*sin(2*pi*15.3*t) + 0.1*sin(2*pi*16.7*t + 0.1) + \ | |
0.1*sin(2*pi*23.45*t+.8) | |
#------------------------------------------------ | |
# Create a FIR filter and apply it to x. | |
#------------------------------------------------ | |
# The Nyquist rate of the signal. | |
nyq_rate = sample_rate / 2.0 | |
# The cutoff frequency of the filter. | |
tau = 10 # days | |
cutoff_hz = sample_rate / tau | |
# Use firwin with a ~~Kaiser~~ window to create a lowpass FIR filter. | |
window = 'hamming' # default sharper low-pass | |
window = 'exponential' # closer to Croston's method with single-pole IIR low-pass | |
taps = firwin(numtaps=window_size_in_days, cutoff=cutoff_hz, window=window) | |
# Use lfilter to filter x with the FIR filter. | |
filtered_x = lfilter(taps, 1.0, x) | |
#------------------------------------------------ | |
# Plot the FIR filter coefficients. | |
#------------------------------------------------ | |
figure(1) | |
plot(taps, 'bo-', linewidth=2) | |
title('Filter Coefficients (%d taps)' % N) | |
grid(True) | |
#------------------------------------------------ | |
# Plot the magnitude response of the filter. | |
#------------------------------------------------ | |
figure(2) | |
clf() | |
w, h = freqz(taps, worN=8000) | |
plot((w/pi)*nyq_rate, absolute(h), linewidth=2) | |
xlabel('Frequency (Hz)') | |
ylabel('Gain') | |
title('Frequency Response') | |
ylim(-0.05, 1.05) | |
grid(True) | |
# Upper inset plot. | |
ax1 = axes([0.42, 0.6, .45, .25]) | |
plot((w/pi)*nyq_rate, absolute(h), linewidth=2) | |
xlim(0,8.0) | |
ylim(0.9985, 1.001) | |
grid(True) | |
# Lower inset plot | |
ax2 = axes([0.42, 0.25, .45, .25]) | |
plot((w/pi)*nyq_rate, absolute(h), linewidth=2) | |
xlim(12.0, 20.0) | |
ylim(0.0, 0.0025) | |
grid(True) | |
#------------------------------------------------ | |
# Plot the original and filtered signals. | |
#------------------------------------------------ | |
# The phase delay of the filtered signal. | |
delay = 0.5 * (N-1) / sample_rate | |
figure(3) | |
# Plot the original signal. | |
plot(t, x) | |
# Plot the filtered signal, shifted to compensate for the phase delay. | |
plot(t-delay, filtered_x, 'r-') | |
# Plot just the "good" part of the filtered signal. The first N-1 | |
# samples are "corrupted" by the initial conditions. | |
plot(t[N-1:]-delay, filtered_x[N-1:], 'g', linewidth=4) | |
xlabel('t') | |
grid(True) | |
show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment