Created
November 11, 2015 20:40
-
-
Save MartinThoma/f37150d0c521f598b08a to your computer and use it in GitHub Desktop.
Get MNIST data for TensorFlow example
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Functions for downloading and reading MNIST data.""" | |
from __future__ import print_function | |
import gzip | |
import os | |
import urllib | |
import numpy | |
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' | |
def maybe_download(filename, work_directory): | |
"""Download the data from Yann's website, unless it's already here.""" | |
if not os.path.exists(work_directory): | |
os.mkdir(work_directory) | |
filepath = os.path.join(work_directory, filename) | |
if not os.path.exists(filepath): | |
filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath) | |
statinfo = os.stat(filepath) | |
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') | |
return filepath | |
def _read32(bytestream): | |
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | |
return numpy.frombuffer(bytestream.read(4), dtype=dt) | |
def extract_images(filename): | |
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2051: | |
raise ValueError( | |
'Invalid magic number %d in MNIST image file: %s' % | |
(magic, filename)) | |
num_images = _read32(bytestream) | |
rows = _read32(bytestream) | |
cols = _read32(bytestream) | |
buf = bytestream.read(rows * cols * num_images) | |
data = numpy.frombuffer(buf, dtype=numpy.uint8) | |
data = data.reshape(num_images, rows, cols, 1) | |
return data | |
def dense_to_one_hot(labels_dense, num_classes=10): | |
"""Convert class labels from scalars to one-hot vectors.""" | |
num_labels = labels_dense.shape[0] | |
index_offset = numpy.arange(num_labels) * num_classes | |
labels_one_hot = numpy.zeros((num_labels, num_classes)) | |
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | |
return labels_one_hot | |
def extract_labels(filename, one_hot=False): | |
"""Extract the labels into a 1D uint8 numpy array [index].""" | |
print('Extracting', filename) | |
with gzip.open(filename) as bytestream: | |
magic = _read32(bytestream) | |
if magic != 2049: | |
raise ValueError( | |
'Invalid magic number %d in MNIST label file: %s' % | |
(magic, filename)) | |
num_items = _read32(bytestream) | |
buf = bytestream.read(num_items) | |
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | |
if one_hot: | |
return dense_to_one_hot(labels) | |
return labels | |
class DataSet(object): | |
def __init__(self, images, labels, fake_data=False): | |
if fake_data: | |
self._num_examples = 10000 | |
else: | |
assert images.shape[0] == labels.shape[0], ( | |
"images.shape: %s labels.shape: %s" % (images.shape, | |
labels.shape)) | |
self._num_examples = images.shape[0] | |
# Convert shape from [num examples, rows, columns, depth] | |
# to [num examples, rows*columns] (assuming depth == 1) | |
assert images.shape[3] == 1 | |
images = images.reshape(images.shape[0], | |
images.shape[1] * images.shape[2]) | |
# Convert from [0, 255] -> [0.0, 1.0]. | |
images = images.astype(numpy.float32) | |
images = numpy.multiply(images, 1.0 / 255.0) | |
self._images = images | |
self._labels = labels | |
self._epochs_completed = 0 | |
self._index_in_epoch = 0 | |
@property | |
def images(self): | |
return self._images | |
@property | |
def labels(self): | |
return self._labels | |
@property | |
def num_examples(self): | |
return self._num_examples | |
@property | |
def epochs_completed(self): | |
return self._epochs_completed | |
def next_batch(self, batch_size, fake_data=False): | |
"""Return the next `batch_size` examples from this data set.""" | |
if fake_data: | |
fake_image = [1.0 for _ in xrange(784)] | |
fake_label = 0 | |
return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)] | |
start = self._index_in_epoch | |
self._index_in_epoch += batch_size | |
if self._index_in_epoch > self._num_examples: | |
# Finished epoch | |
self._epochs_completed += 1 | |
# Shuffle the data | |
perm = numpy.arange(self._num_examples) | |
numpy.random.shuffle(perm) | |
self._images = self._images[perm] | |
self._labels = self._labels[perm] | |
# Start next epoch | |
start = 0 | |
self._index_in_epoch = batch_size | |
assert batch_size <= self._num_examples | |
end = self._index_in_epoch | |
return self._images[start:end], self._labels[start:end] | |
def read_data_sets(train_dir, fake_data=False, one_hot=False): | |
class DataSets(object): | |
pass | |
data_sets = DataSets() | |
if fake_data: | |
data_sets.train = DataSet([], [], fake_data=True) | |
data_sets.validation = DataSet([], [], fake_data=True) | |
data_sets.test = DataSet([], [], fake_data=True) | |
return data_sets | |
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' | |
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' | |
TEST_IMAGES = 't10k-images-idx3-ubyte.gz' | |
TEST_LABELS = 't10k-labels-idx1-ubyte.gz' | |
VALIDATION_SIZE = 5000 | |
local_file = maybe_download(TRAIN_IMAGES, train_dir) | |
train_images = extract_images(local_file) | |
local_file = maybe_download(TRAIN_LABELS, train_dir) | |
train_labels = extract_labels(local_file, one_hot=one_hot) | |
local_file = maybe_download(TEST_IMAGES, train_dir) | |
test_images = extract_images(local_file) | |
local_file = maybe_download(TEST_LABELS, train_dir) | |
test_labels = extract_labels(local_file, one_hot=one_hot) | |
validation_images = train_images[:VALIDATION_SIZE] | |
validation_labels = train_labels[:VALIDATION_SIZE] | |
train_images = train_images[VALIDATION_SIZE:] | |
train_labels = train_labels[VALIDATION_SIZE:] | |
data_sets.train = DataSet(train_images, train_labels) | |
data_sets.validation = DataSet(validation_images, validation_labels) | |
data_sets.test = DataSet(test_images, test_labels) | |
return data_sets |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment