Flask Iris Classifier API - Second Part
@app.route('/predict-species-proba', methods=['POST']) | |
def predict_species_proba(): | |
flower = {} | |
for feature in iris_classifier_features: | |
flower[feature] = [request.form[feature]] | |
flower = pd.DataFrame(flower) | |
probas = iris_classifier.predict_proba(flower[iris_classifier_features])[0, :].tolist() | |
species_proba = {} | |
for idx, species in enumerate(['setosa', 'versicolor', 'virginica']): | |
species_proba[species] = probas[idx] | |
return json.dumps(species_proba) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment