Skip to content

Instantly share code, notes, and snippets.

@MathiasGruber
Last active July 15, 2019 19:42
Show Gist options
  • Save MathiasGruber/8debc802464a48efc8c22a2064e0bf78 to your computer and use it in GitHub Desktop.
Save MathiasGruber/8debc802464a48efc8c22a2064e0bf78 to your computer and use it in GitHub Desktop.
Convert image data to tf.records
# Copyright 2016 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Adapted from: https://github.com/kmonachopoulos/ImageNet-to-TFrecord
Converts image data to TFRecords file format with Example protos.
The raw data set is expected to reside in JPEG files located in the
following directory structure.
data_dir/classname1/filename1.JPEG
data_dir/classname2/filename2.JPEG
...
Example commands used to run this script:
=============================
python build_tfrecords.py -data_directory ./COCO/train/ -output_directory ./COCO/tf_records_train/ -data_shards 80 -num_threads 8
python build_tfrecords.py -data_directory ./COCO/val/ -output_directory ./COCO/tf_records_val/ -data_shards 80 -num_threads 8
python build_tfrecords.py -data_directory ./wikiart/wikiart/ -output_directory ./wikiart/tfrecords/ -data_shards 80 -num_threads 8
python build_tfrecords.py -data_directory ./ILSVRC/Data/CLS-LOC/train -output_directory ./ILSVRC/Data/CLS-LOC/tfrecords_train -data_shards 1024 -num_threads 8
python build_tfrecords.py -data_directory ./ILSVRC/Data/CLS-LOC/val -output_directory ./ILSVRC/Data/CLS-LOC/tfrecords_val -data_shards 1 -num_threads 8
python build_tfrecords.py -data_directory ./ILSVRC/Data/CLS-LOC/test -output_directory ./ILSVRC/Data/CLS-LOC/tfrecords_test -data_shards 1 -num_threads 8
Each record within the TFRecord file is a serialized Example proto.
The Example proto contains the following fields:
image/encoded: string containing JPEG encoded image in RGB colorspace
image/height: integer, image height in pixels
image/width: integer, image width in pixels
image/colorspace: string, specifying the colorspace, always 'RGB'
image/channels: integer, specifying the number of channels, always 3
image/format: string, specifying the format, always'JPEG'
image/filename: string containing the basename of the image file
e.g. 'n01440764_10026.JPEG' or 'ILSVRC2012_val_00000293.JPEG'
image/class/label: integer specifying the index in a classification layer.
The label ranges from [1, 1000] where 0 is not used.
image/class/synset: string specifying the unique ID of the label,
e.g. 'n01440764'
image/class/text: string specifying the human-readable version of the label
e.g. 'red fox, Vulpes vulpes'
Note that the length of xmin is identical to the length of xmax, ymin and ymax
for each example.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import os
from PIL import Image
import gc
import random
import sys
import threading
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
tf.app.flags.DEFINE_string('data_directory', None,
'Data directory')
tf.app.flags.DEFINE_string('output_directory', None,
'Output data directory')
tf.app.flags.DEFINE_integer('data_shards', 1024,
'Number of shards in training TFRecord files.')
tf.app.flags.DEFINE_integer('num_threads', 1,
'Number of threads to preprocess the images.')
FLAGS = tf.app.flags.FLAGS
def _int64_feature(value):
"""Wrapper for inserting int64 features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def _float_feature(value):
"""Wrapper for inserting float features into Example proto."""
if not isinstance(value, list):
value = [value]
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def _bytes_feature(value):
"""Wrapper for inserting bytes features into Example proto."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _convert_to_example(filename, image_buffer, label, synset, human, height, width):
"""Build an Example proto for an example.
Args:
filename: string, path to an image file, e.g., '/path/to/example.JPG'
image_buffer: string, JPEG encoding of RGB image
label: integer, identifier for the ground truth for the network
synset: string, unique WordNet ID specifying the label, e.g., 'n02323233'
human: string, human-readable label, e.g., 'red fox, Vulpes vulpes'
height: integer, image height in pixels
width: integer, image width in pixels
Returns:
Example proto
"""
colorspace = b'RGB'
channels = 3
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': _int64_feature(height),
'image/width': _int64_feature(width),
'image/colorspace': _bytes_feature(colorspace),
'image/channels': _int64_feature(channels),
'image/class/label': _int64_feature(label),
'image/class/synset': _bytes_feature(bytes(synset,'utf-8')),
'image/class/text': _bytes_feature(bytes(human,'utf-8')),
'image/format': _bytes_feature(image_format),
'image/filename': _bytes_feature(bytes(os.path.basename(filename),'utf-8')),
'image/encoded': _bytes_feature(image_buffer)}))
return example
class ImageCoder(object):
"""Helper class that provides TensorFlow image coding utilities."""
def __init__(self):
# Create a single Session to run all image coding calls.
self._sess = tf.Session()
# Initializes function that converts PNG to JPEG data.
self._png_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_png(self._png_data, channels=3)
self._png_to_jpeg = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that converts CMYK JPEG data to RGB JPEG data.
self._cmyk_data = tf.placeholder(dtype=tf.string)
image = tf.image.decode_jpeg(self._cmyk_data, channels=0)
self._cmyk_to_rgb = tf.image.encode_jpeg(image, format='rgb', quality=100)
# Initializes function that decodes RGB JPEG data.
self._decode_jpeg_data = tf.placeholder(dtype=tf.string)
self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3)
def png_to_jpeg(self, image_data):
return self._sess.run(self._png_to_jpeg,
feed_dict={self._png_data: image_data})
def cmyk_to_rgb(self, image_data):
return self._sess.run(self._cmyk_to_rgb,
feed_dict={self._cmyk_data: image_data})
def decode_jpeg(self, image_data):
image = self._sess.run(self._decode_jpeg,
feed_dict={self._decode_jpeg_data: image_data})
assert len(image.shape) == 3
assert image.shape[2] == 3
return image
def _process_image(filename, coder):
"""Process a single image file.
Args:
filename: string, path to an image file e.g., '/path/to/example.JPG'.
coder: instance of ImageCoder to provide TensorFlow image coding utils.
Returns:
image_buffer: string, JPEG encoding of RGB image.
height: integer, image height in pixels.
width: integer, image width in pixels.
"""
# Read the image file.
image_data = tf.gfile.GFile(filename, 'rb').read()
# Decode the RGB JPEG.
image = coder.decode_jpeg(image_data)
# Check that image converted to RGB
assert len(image.shape) == 3
height = image.shape[0]
width = image.shape[1]
assert image.shape[2] == 3
return image_data, height, width
def _process_image_files_batch(coder, thread_index, ranges, name, filenames,
synsets, labels, humans, num_shards):
"""Processes and saves list of images as TFRecord in 1 thread.
Args:
coder: instance of ImageCoder to provide TensorFlow image coding utils.
thread_index: integer, unique batch to run index is within [0, len(ranges)).
ranges: list of pairs of integers specifying ranges of each batches to
analyze in parallel.
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
synsets: list of strings; each string is a unique WordNet ID
labels: list of integer; each integer identifies the ground truth
humans: list of strings; each string is a human-readable label
num_shards: integer number of shards for this data set.
"""
# Each thread produces N shards where N = int(num_shards / num_threads).
# For instance, if num_shards = 128, and the num_threads = 2, then the first
# thread would produce shards [0, 64).
num_threads = len(ranges)
assert not num_shards % num_threads
num_shards_per_batch = int(num_shards / num_threads)
shard_ranges = np.linspace(ranges[thread_index][0],
ranges[thread_index][1],
num_shards_per_batch + 1).astype(int)
num_files_in_thread = ranges[thread_index][1] - ranges[thread_index][0]
counter = 0
for s in xrange(num_shards_per_batch):
# Generate a sharded version of the file name, e.g. 'train-00002-of-00010'
shard = thread_index * num_shards_per_batch + s
output_filename = '%s-%.5d-of-%.5d' % (name, shard, num_shards)
output_file = os.path.join(FLAGS.output_directory, output_filename)
writer = tf.python_io.TFRecordWriter(output_file)
shard_counter = 0
files_in_shard = np.arange(shard_ranges[s], shard_ranges[s + 1], dtype=int) # HERE
for i in files_in_shard:
filename = filenames[i]
label = labels[i]
synset = synsets[i]
human = humans[i]
try:
image_buffer, height, width = _process_image(filename, coder)
example = _convert_to_example(filename, image_buffer, label, synset, human, height, width)
writer.write(example.SerializeToString())
shard_counter += 1
counter += 1
if not counter % 1000:
print('%s [thread %d]: Processed %d of %d images in thread batch.' %
(datetime.now(), thread_index, counter, num_files_in_thread))
sys.stdout.flush()
except Exception as e:
print("Error: ", filename, e)
writer.close()
print('%s [thread %d]: Wrote %d images to %s' %
(datetime.now(), thread_index, shard_counter, output_file))
sys.stdout.flush()
shard_counter = 0
print('%s [thread %d]: Wrote %d images to %d shards.' %
(datetime.now(), thread_index, counter, num_files_in_thread))
sys.stdout.flush()
def _process_image_files(name, filenames, synsets, labels, num_shards):
"""Process and save list of images as TFRecord of Example protos.
Args:
name: string, unique identifier specifying the data set
filenames: list of strings; each string is a path to an image file
synsets: list of strings; each string is a unique WordNet ID
labels: list of integer; each integer identifies the ground truth
humans: list of strings; each string is a human-readable label
num_shards: integer number of shards for this data set.
"""
assert len(filenames) == len(synsets)
assert len(filenames) == len(labels)
humans = [str(h) for h in labels]
# Break all images into batches with a [ranges[i][0], ranges[i][1]].
spacing = np.linspace(0, len(filenames), FLAGS.num_threads + 1).astype(np.int)
ranges = []
threads = []
for i in xrange(len(spacing) - 1):
ranges.append([spacing[i], spacing[i+1]])
# Launch a thread for each batch.
print('Launching %d threads for spacings: %s' % (FLAGS.num_threads, ranges))
sys.stdout.flush()
# Create a mechanism for monitoring when all threads are finished.
coord = tf.train.Coordinator()
# Create a generic TensorFlow-based utility for converting all image codings.
coder = ImageCoder()
threads = []
for thread_index in xrange(len(ranges)):
args = (coder, thread_index, ranges, name, filenames,
synsets, labels, humans, num_shards)
t = threading.Thread(target=_process_image_files_batch, args=args)
t.start()
threads.append(t)
# Wait for all the threads to terminate.
coord.join(threads)
print('%s: Finished writing all %d images in data set.' %
(datetime.now(), len(filenames)))
sys.stdout.flush()
def _find_image_files(data_dir):
"""Build a list of all images files and labels in the data set.
Args:
data_dir: string, path to the root directory of images.
Assumes that the ImageNet data set resides in JPEG files located in
the following directory structure.
data_dir/n01440764/ILSVRC2012_val_00000293.JPEG
data_dir/n01440764/ILSVRC2012_val_00000543.JPEG
where 'n01440764' is the unique synset label associated with these images.
Returns:
filenames: list of strings; each string is a path to an image file.
synsets: list of strings; each string is a unique WordNet ID.
labels: list of integer; each integer identifies the ground truth.
"""
print('Determining list of input files and labels from %s.' % data_dir)
challenge_synsets = [ name for name in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, name)) ]
print("Identified categories: ", challenge_synsets)
labels = []
filenames = []
synsets = []
# Leave label index 0 empty as a background class.
label_index = 1
# Construct the list of JPEG files and labels.
for synset in challenge_synsets:
jpeg_file_path = '%s/%s/*.*' % (data_dir, synset)
matching_files = tf.gfile.Glob(jpeg_file_path)
labels.extend([label_index] * len(matching_files))
synsets.extend([synset] * len(matching_files))
filenames.extend(matching_files)
if not label_index % 100:
print('Finished finding files in %d of %d classes.' % (
label_index, len(challenge_synsets)))
label_index += 1
# Shuffle the ordering of all image files in order to guarantee
# random ordering of the images with respect to label in the
# saved TFRecord files. Make the randomization repeatable.
shuffled_index = range(len(filenames))
random.seed(12345)
random.shuffle(list(range(len(shuffled_index))))
filenames = [filenames[i] for i in shuffled_index]
synsets = [synsets[i] for i in shuffled_index]
labels = [labels[i] for i in shuffled_index]
print('Found %d files across %d labels inside %s.' %
(len(filenames), len(challenge_synsets), data_dir))
return filenames, synsets, labels
def _find_human_readable_labels(synsets, synset_to_human):
"""Build a list of human-readable labels.
Args:
synsets: list of strings; each string is a unique WordNet ID.
synset_to_human: dict of synset to human labels, e.g.,
'n02119022' --> 'red fox, Vulpes vulpes'
Returns:
List of human-readable strings corresponding to each synset.
"""
humans = []
for s in synsets:
assert s in synset_to_human, ('Failed to find: %s' % s)
humans.append(synset_to_human[s])
return humans
def _process_dataset(name, directory, num_shards):
"""Process a complete data set and save it as a TFRecord.
Args:
name: string, unique identifier specifying the data set.
directory: string, root path to the data set.
num_shards: integer number of shards for this data set.
synset_to_human: dict of synset to human labels, e.g.,
'n02119022' --> 'red fox, Vulpes vulpes'
"""
filenames, synsets, labels = _find_image_files(directory)
_process_image_files(name, filenames, synsets, labels, num_shards)
def _verify_images(datadir):
"""Verifies the integrity of all the images, and flags if some cannot be decoded"""
import os
import gc
from PIL import Image
import warnings
warnings.filterwarnings("error")
print(" -- Verifying file integrity --")
i = 0
for subdir, dirs, files in os.walk(rootdir):
for file in files:
i += 1
print("Total images: ", i)
n = 0
fucked = []
for subdir, dirs, files in os.walk(rootdir):
for file in files:
fn = os.path.join(subdir, file)
n += 1
try:
with Image.open(fn) as img:
img.verify()
gc.collect()
if n % 1000 == 0:
print('Progress: {} out of {}'.format(n, i))
except Exception as e:
print("Found issue with: ", fn, e)
fucked.append(fn)
for fuck in fucked:
if os.path.exists(fuck):
os.remove(fuck)
else:
print("already removed", fuck)
def main(unused_argv):
assert not FLAGS.data_shards % FLAGS.num_threads, (
'Please make the FLAGS.num_threads commensurate with FLAGS.train_shards')
print('Saving results to %s' % FLAGS.output_directory)
if(FLAGS.data_directory != None):
_process_dataset('shard', FLAGS.data_directory, FLAGS.data_shards)
if __name__ == '__main__':
tf.app.run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment