Skip to content

Instantly share code, notes, and snippets.

@MatteoRagni MatteoRagni/Trajectory.tex
Last active Jul 14, 2017

Embed
What would you like to do?
Trajectory in space
\documentclass[tikz]{standalone}
\usepackage{pgfplots}
\usepackage{amsmath}
\usepackage{tikz-3dplot}
\pgfplotsset{compat=1.14}
\tikzset{>=latex}
\begin{document}
% !TEX root = ../main.tex
\tdplotsetmaincoords{60}{100}
\begin{tikzpicture}[scale=1.5,tdplot_main_coords]
% DEFINITIONS
% figOmegaRotation : Value for the Omega angle
\pgfmathsetmacro{\figOmega}{33}
% figIRotation : value for inclination of the orbital plane
\pgfmathsetmacro{\figIRotation}{30}
% \figAEll : minimum value for ellipse
\pgfmathsetmacro{\figAEll}{2.5}
% \figBEll : minimum value for ellipse
\pgfmathsetmacro{\figBEll}{3}
% figYOrigin : focus of the ellipse with 2.5 and 3
\pgfmathsetmacro{\figYOrigin}{sqrt(\figBEll^2 - \figAEll^2)}
% sqrt(b^2 - a^2)
% COMMANDS
% \positionOnEl{\storing}{\quadrant}{\x}
% Saves into \storing the position \y on the ellipse
% specified by \figAEll and \figBEll. \quadrant should help
% in defining the quadrant (must be +1 or -1)
\newcommand{\positionXOnEl}[3]{%
\pgfmathsetmacro{#1}%
{\figYOrigin+#2*%
\figBEll*((1-#3^2/\figAEll^2)^2)^(0.25)}}
\newcommand{\positionYOnEl}[3]{%
\pgfmathsetmacro{#1}%
{#2*((\figBEll^2-\figYOrigin^2+2*\figYOrigin*#3-#3^2)^2)^(0.25)*(\figAEll/\figBEll)}}
\positionYOnEl{\ellPositY}{-1}{\figBEll}
\positionYOnEl{\ellPositYY}{1}{0}
\pgfmathsetmacro{\xstartV}{cos(atan(\figBEll/\ellPositY))*0.5}
\pgfmathsetmacro{\ystartV}{sin(atan(\figBEll/\ellPositY))*0.5}
% Origin Position for the drawing
\coordinate (O) at (0, 0, 0);
% REFERENCE FRAME
% x axis
\draw[tdplot_main_coords, very thin]
(-4.5, 0, 0) -- (-0.5, 0, 0);
% y axis
\draw[tdplot_main_coords, very thin]
(0, -2.1, 0) -- (0, -0.5, 0);
\draw[tdplot_main_coords, ->, very thin]
(0, 0.5, 0) -- (0, 5, 0)
node [anchor=west] {$y$};
% EQUATORIAL PLANE
\draw[tdplot_main_coords, very thin,gray]
(4, 4.7, 0) -- (4, -2, 0) --
node[anchor=south, rotate=54] {\footnotesize equatorial plane}
(-4,-2, 0) -- (-4, 4.7, 0) -- (4, 4.7, 0);
% Equatorial plane Ellipses
\draw[tdplot_main_coords, very thin, dashed, gray!50]
(0, \figYOrigin, 0) ellipse ({\figAEll} and {\figBEll});
% Rotazione sulla linea dei nodi
\tdplotsetrotatedcoords{0}{0}{\figOmega}
% Ellipses in equatorial plane
\draw[tdplot_rotated_coords, fill, color=gray!40, opacity=0.1]
(0, \figYOrigin, 0) ellipse ({\figAEll} and {\figBEll});
\draw[tdplot_rotated_coords, very thin, dashed]
(0, \figYOrigin, 0) ellipse ({\figAEll} and {\figBEll});
% reference on rotated ellipse
\draw[tdplot_rotated_coords, very thin]
(0, -2.1, 0) -- (0, -0.5, 0);
\draw[tdplot_rotated_coords, ->, very thin]
(0, 0.5, 0) -- (0, 5, 0)
node [anchor=west] {$y'$};
\shade[tdplot_rotated_coords, ball color = green!40, opacity = 0.8]
(0, 0, 0) circle (0.5cm);
% Rotation on ascension
\tdplotsetrotatedcoords{90+\figOmega}{-\figIRotation}{-90}
% Orbit ellipse
\draw[tdplot_rotated_coords, fill, color=gray!40, opacity=0.3]
(0, \figYOrigin, 0) ellipse ({\figAEll} and {\figBEll});
\draw[tdplot_rotated_coords, very thin]
(0, \figYOrigin, 0) ellipse ({\figAEll} and {\figBEll});
% Part of trajectory
\draw[tdplot_rotated_coords, very thick]
(\ellPositYY, 0, 0)
arc (-33.5:154:{\figAEll} and {\figBEll});
% Line of Nodes
\draw[tdplot_rotated_coords]
(0.5, 0, 0) -- (4, 0, 0)
node [anchor=north west,fill=white] {\footnotesize line of nodes};
% Line of apsis
\draw[tdplot_rotated_coords, ->, very thin]
(0, 0.5, 0) -- (0, 5, 0)
node[anchor=south west] {\footnotesize line of apsis};
% V vector (solved through ellipse equation)
\draw[tdplot_rotated_coords,->,thick]
(-\xstartV, -\ystartV, 0) -- (\ellPositY, \figBEll, 0);
\shade[tdplot_rotated_coords,ball color = green]
(\ellPositY, \figBEll, 0) circle (0.05cm)
node[anchor=south east, color=green!40!black!50] {\footnotesize debris};
% Planet
% Equatorial circle in
\draw[tdplot_rotated_coords, very thin]
(0, 0, 0) circle (0.5);
\draw[tdplot_main_coords, very thin, gray]
(0, 0, 0) circle (0.5);
% x axis in original reference frame
% redesegn for z-buffer
\draw[tdplot_main_coords, ->, very thin]
(0.75, 0, 0) -- (4.5, 0, 0)
node [anchor=north] {$x$};
% z axis
\draw[tdplot_main_coords, ->, very thin]
(0, 0, 0.5) -- (0, 0, 2)
node[anchor=south] {$z$};
% OMEGA
\tdplotdrawarc[tdplot_main_coords, color=red, ->]
{(0,0,0)}{2.5}{0}{\figOmega}{anchor=north}{$\Omega$}
% omega
\tdplotdrawarc[tdplot_rotated_coords, color=red, ->]
{(0,0,0)}{1.8}{0}{90}{anchor=west}{$\omega$}
\tdplotdrawarc[tdplot_rotated_coords, color=red, ->]
{(0,0,0)}{1.8}{90}{126.8}{anchor=south}{$v$}
% n vector
\draw[tdplot_rotated_coords, ->, color=red, pos=0.8]
(0.5, 0, 0) -- node [anchor=north east, pos=0.6] {$n$} (\ellPositYY, 0, 0);
\draw[tdplot_rotated_coords, ->, color=red]
(0, 0.5, 0) -- node [anchor=south east, pos=0.85] {$e$}
(0, 3 + \figYOrigin, 0);
% piano per i
\shade[tdplot_rotated_coords,ball color = blue]
(0, \figYOrigin + \figBEll, 0) circle (0.05cm)
node[anchor=west, color=blue] {\footnotesize apoapsis};
\shade[tdplot_rotated_coords,ball color = red] (\ellPositYY, 0, 0) circle
(0.05cm) node[anchor=west, color=red] {\footnotesize ascending node};
\draw[tdplot_rotated_coords] (0,0,0) circle (0.5);
\tdplotsetrotatedcoords{\figOmega}{90}{0}
% i angle
\tdplotdrawarc[tdplot_rotated_coords, color=red, ->]
{(0, 0, 0)}{\figYOrigin+\figBEll}{90}{118}{anchor=west}{$i$}
% Orbital Plane Label
\node[tdplot_main_coords,rotate=33.5,anchor=east,color=gray]
at (-4.8,-0.3,0) {\footnotesize orbital plane};
% Planet
\end{tikzpicture}
\end{document}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.