Skip to content

Instantly share code, notes, and snippets.

@MatthiasPortzel
Created December 20, 2017 21:43
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save MatthiasPortzel/ac8dcbe55f5df5180382098bc6dbd84c to your computer and use it in GitHub Desktop.
Save MatthiasPortzel/ac8dcbe55f5df5180382098bc6dbd84c to your computer and use it in GitHub Desktop.
<!DOCTYPE html>
<!-- Taken from https://khanacademy.org/cs/i/5157014494511104, from pamela, from DillingerLee -->
<html>
<head>
<title>Processing.JS inside Webpages: Template</title>
</head>
<body>
<p align="center">
<!--This draws the Canvas on the webpage -->
<canvas id="mycanvas"></canvas>
</p>
</body>
<!-- Run all the JavaScript stuff -->
<!-- Include the processing.js library -->
<script src="processing.js"></script>
<script>
var sketchProc = function(processingInstance) {
with (processingInstance) {
size(400, 400);
frameRate(30);
// Program Code Goes Here
fill(255, 255, 0);
ellipse(200, 200, 200, 200);
noFill();
stroke(0, 0, 0);
strokeWeight(2);
arc(200, 200, 150, 100, 0, PI);
fill(0, 0, 0);
ellipse(250, 200, 10, 10);
ellipse(153, 200, 10, 10);
}};
// Get the canvas that Processing-js will use
var canvas = document.getElementById("mycanvas");
// Pass the function sketchProc (defined in myCode.js) to Processing's constructor.
var processingInstance = new Processing(canvas, sketchProc);
</script>
</html>
// From https://github.com/Khan/processing-js/blob/66bec3a3ae88262fcb8e420f7fa581b46f91a052/processing.js
(function(window, document, Math, undef) {
var nop = function(){};
var debug = (function() {
if ("console" in window) {
return function(msg) {
window.console.log('Processing.js: ' + msg);
};
}
return nop();
}());
var ajax = function(url) {
var xhr = new XMLHttpRequest();
xhr.open("GET", url, false);
if (xhr.overrideMimeType) {
xhr.overrideMimeType("text/plain");
}
xhr.setRequestHeader("If-Modified-Since", "Fri, 01 Jan 1960 00:00:00 GMT");
xhr.send(null);
// failed request?
if (xhr.status !== 200 && xhr.status !== 0) { throw ("XMLHttpRequest failed, status code " + xhr.status); }
return xhr.responseText;
};
var isDOMPresent = ("document" in this) && !("fake" in this.document);
// document.head polyfill for the benefit of Firefox 3.6
document.head = document.head || document.getElementsByTagName('head')[0];
// Typed Arrays: fallback to WebGL arrays or Native JS arrays if unavailable
function setupTypedArray(name, fallback) {
// Check if TypedArray exists, and use if so.
if (name in window) {
return window[name];
}
// Check if WebGLArray exists
if (typeof window[fallback] === "function") {
return window[fallback];
}
// Use Native JS array
return function(obj) {
if (obj instanceof Array) {
return obj;
}
if (typeof obj === "number") {
var arr = [];
arr.length = obj;
return arr;
}
};
}
var Float32Array = setupTypedArray("Float32Array", "WebGLFloatArray"),
Int32Array = setupTypedArray("Int32Array", "WebGLIntArray"),
Uint16Array = setupTypedArray("Uint16Array", "WebGLUnsignedShortArray"),
Uint8Array = setupTypedArray("Uint8Array", "WebGLUnsignedByteArray");
/* Browsers fixes end */
/**
* NOTE: in releases we replace symbolic PConstants.* names with their values.
* Using PConstants.* in code below is fine. See tools/rewrite-pconstants.js.
*/
var PConstants = {
// NOTE(jeresig): Disable some constants as they were confusing users.
//X: 0,
//Y: 1,
//Z: 2,
//R: 3,
//G: 4,
//B: 5,
//A: 6,
//U: 7,
//V: 8,
NX: 9,
NY: 10,
NZ: 11,
EDGE: 12,
// Stroke
SR: 13,
SG: 14,
SB: 15,
SA: 16,
SW: 17,
// Transformations (2D and 3D)
TX: 18,
TY: 19,
TZ: 20,
VX: 21,
VY: 22,
VZ: 23,
VW: 24,
// Material properties
AR: 25,
AG: 26,
AB: 27,
DR: 3,
DG: 4,
DB: 5,
DA: 6,
SPR: 28,
SPG: 29,
SPB: 30,
SHINE: 31,
ER: 32,
EG: 33,
EB: 34,
BEEN_LIT: 35,
VERTEX_FIELD_COUNT: 36,
// Renderers
P2D: 1,
JAVA2D: 1,
WEBGL: 2,
P3D: 2,
OPENGL: 2,
PDF: 0,
DXF: 0,
// Platform IDs
OTHER: 0,
WINDOWS: 1,
MAXOSX: 2,
LINUX: 3,
EPSILON: 0.0001,
MAX_FLOAT: 3.4028235e+38,
MIN_FLOAT: -3.4028235e+38,
MAX_INT: 2147483647,
MIN_INT: -2147483648,
PI: Math.PI,
TWO_PI: 2 * Math.PI,
HALF_PI: Math.PI / 2,
THIRD_PI: Math.PI / 3,
QUARTER_PI: Math.PI / 4,
TAU: 2 * Math.PI,
DEG_TO_RAD: Math.PI / 180,
RAD_TO_DEG: 180 / Math.PI,
WHITESPACE: " \t\n\r\f\u00A0",
// Color modes
RGB: 1,
ARGB: 2,
HSB: 3,
ALPHA: 4,
CMYK: 5,
// Image file types
TIFF: 0,
TARGA: 1,
JPEG: 2,
GIF: 3,
// Filter/convert types
BLUR: 11,
GRAY: 12,
INVERT: 13,
OPAQUE: 14,
POSTERIZE: 15,
THRESHOLD: 16,
ERODE: 17,
DILATE: 18,
// Blend modes
REPLACE: 0,
BLEND: 1 << 0,
ADD: 1 << 1,
SUBTRACT: 1 << 2,
LIGHTEST: 1 << 3,
DARKEST: 1 << 4,
DIFFERENCE: 1 << 5,
EXCLUSION: 1 << 6,
MULTIPLY: 1 << 7,
SCREEN: 1 << 8,
OVERLAY: 1 << 9,
HARD_LIGHT: 1 << 10,
SOFT_LIGHT: 1 << 11,
DODGE: 1 << 12,
BURN: 1 << 13,
// Color component bit masks
ALPHA_MASK: 0xff000000,
RED_MASK: 0x00ff0000,
GREEN_MASK: 0x0000ff00,
BLUE_MASK: 0x000000ff,
// Projection matrices
CUSTOM: 0,
ORTHOGRAPHIC: 2,
PERSPECTIVE: 3,
// Shapes
POINT: 2,
POINTS: 2,
LINE: 4,
LINES: 4,
TRIANGLE: 8,
TRIANGLES: 9,
TRIANGLE_STRIP: 10,
TRIANGLE_FAN: 11,
QUAD: 16,
QUADS: 16,
QUAD_STRIP: 17,
POLYGON: 20,
PATH: 21,
RECT: 30,
ELLIPSE: 31,
ARC: 32,
SPHERE: 40,
BOX: 41,
GROUP: 0,
PRIMITIVE: 1,
//PATH: 21, // shared with Shape PATH
GEOMETRY: 3,
// Shape Vertex
VERTEX: 0,
BEZIER_VERTEX: 1,
CURVE_VERTEX: 2,
BREAK: 3,
CLOSESHAPE: 4,
// Shape closing modes
OPEN: 1,
CLOSE: 2,
// Shape drawing modes
CORNER: 0, // Draw mode convention to use (x, y) to (width, height)
CORNERS: 1, // Draw mode convention to use (x1, y1) to (x2, y2) coordinates
RADIUS: 2, // Draw mode from the center, and using the radius
CENTER_RADIUS: 2, // Deprecated! Use RADIUS instead
CENTER: 3, // Draw from the center, using second pair of values as the diameter
DIAMETER: 3, // Synonym for the CENTER constant. Draw from the center
CENTER_DIAMETER: 3, // Deprecated! Use DIAMETER instead
// Text vertical alignment modes
BASELINE: 0, // Default vertical alignment for text placement
TOP: 101, // Align text to the top
BOTTOM: 102, // Align text from the bottom, using the baseline
// UV Texture coordinate modes
NORMAL: 1,
NORMALIZED: 1,
IMAGE: 2,
// Text placement modes
MODEL: 4,
SHAPE: 5,
// Stroke modes
SQUARE: 'butt',
ROUND: 'round',
PROJECT: 'square',
MITER: 'miter',
BEVEL: 'bevel',
// Lighting modes
AMBIENT: 0,
DIRECTIONAL: 1,
//POINT: 2, Shared with Shape constant
SPOT: 3,
// Key constants
// Both key and keyCode will be equal to these values
BACKSPACE: 8,
TAB: 9,
ENTER: 10,
RETURN: 13,
ESC: 27,
DELETE: 127,
CODED: 0xffff,
// p.key will be CODED and p.keyCode will be this value
SHIFT: 16,
CONTROL: 17,
ALT: 18,
CAPSLK: 20,
PGUP: 33,
PGDN: 34,
END: 35,
HOME: 36,
LEFT: 37,
UP: 38,
RIGHT: 39,
DOWN: 40,
F1: 112,
F2: 113,
F3: 114,
F4: 115,
F5: 116,
F6: 117,
F7: 118,
F8: 119,
F9: 120,
F10: 121,
F11: 122,
F12: 123,
NUMLK: 144,
META: 157,
INSERT: 155,
// Cursor types
ARROW: 'default',
CROSS: 'crosshair',
HAND: 'pointer',
MOVE: 'move',
TEXT: 'text',
WAIT: 'wait',
NOCURSOR: "url(''), auto",
// Hints
DISABLE_OPENGL_2X_SMOOTH: 1,
ENABLE_OPENGL_2X_SMOOTH: -1,
ENABLE_OPENGL_4X_SMOOTH: 2,
ENABLE_NATIVE_FONTS: 3,
DISABLE_DEPTH_TEST: 4,
ENABLE_DEPTH_TEST: -4,
ENABLE_DEPTH_SORT: 5,
DISABLE_DEPTH_SORT: -5,
DISABLE_OPENGL_ERROR_REPORT: 6,
ENABLE_OPENGL_ERROR_REPORT: -6,
ENABLE_ACCURATE_TEXTURES: 7,
DISABLE_ACCURATE_TEXTURES: -7,
HINT_COUNT: 10,
// PJS defined constants
SINCOS_LENGTH: 720, // every half degree
PRECISIONB: 15, // fixed point precision is limited to 15 bits!!
PRECISIONF: 1 << 15,
PREC_MAXVAL: (1 << 15) - 1,
PREC_ALPHA_SHIFT: 24 - 15,
PREC_RED_SHIFT: 16 - 15,
NORMAL_MODE_AUTO: 0,
NORMAL_MODE_SHAPE: 1,
NORMAL_MODE_VERTEX: 2,
MAX_LIGHTS: 8
};
/**
* Returns Java hashCode() result for the object. If the object has the "hashCode" function,
* it preforms the call of this function. Otherwise it uses/creates the "$id" property,
* which is used as the hashCode.
*
* @param {Object} obj The object.
* @returns {int} The object's hash code.
*/
function virtHashCode(obj) {
if (typeof(obj) === "string") {
var hash = 0;
for (var i = 0; i < obj.length; ++i) {
hash = (hash * 31 + obj.charCodeAt(i)) & 0xFFFFFFFF;
}
return hash;
}
if (typeof(obj) !== "object") {
return obj & 0xFFFFFFFF;
}
if (obj.hashCode instanceof Function) {
return obj.hashCode();
}
if (obj.$id === undef) {
obj.$id = ((Math.floor(Math.random() * 0x10000) - 0x8000) << 16) | Math.floor(Math.random() * 0x10000);
}
return obj.$id;
}
/**
* Returns Java equals() result for two objects. If the first object
* has the "equals" function, it preforms the call of this function.
* Otherwise the method uses the JavaScript === operator.
*
* @param {Object} obj The first object.
* @param {Object} other The second object.
*
* @returns {boolean} true if the objects are equal.
*/
function virtEquals(obj, other) {
if (obj === null || other === null) {
return (obj === null) && (other === null);
}
if (typeof (obj) === "string") {
return obj === other;
}
if (typeof(obj) !== "object") {
return obj === other;
}
if (obj.equals instanceof Function) {
return obj.equals(other);
}
return obj === other;
}
/**
* A ObjectIterator is an iterator wrapper for objects. If passed object contains
* the iterator method, the object instance will be replaced by the result returned by
* this method call. If passed object is an array, the ObjectIterator instance iterates
* through its items.
*
* @param {Object} obj The object to be iterated.
*/
var ObjectIterator = function(obj) {
if (obj.iterator instanceof Function) {
return obj.iterator();
}
if (obj instanceof Array) {
// iterate through array items
var index = -1;
this.hasNext = function() {
return ++index < obj.length;
};
this.next = function() {
return obj[index];
};
} else {
throw "Unable to iterate: " + obj;
}
};
/**
* An ArrayList stores a variable number of objects.
*
* @param {int} initialCapacity optional defines the initial capacity of the list, it's empty by default
*
* @returns {ArrayList} new ArrayList object
*/
var ArrayList = (function() {
function Iterator(array) {
var index = 0;
this.hasNext = function() {
return index < array.length;
};
this.next = function() {
return array[index++];
};
this.remove = function() {
array.splice(index, 1);
};
}
function ArrayList() {
var array;
if (arguments.length === 0) {
array = [];
} else if (arguments.length > 0 && typeof arguments[0] !== 'number') {
array = arguments[0].toArray();
} else {
array = [];
array.length = 0 | arguments[0];
}
/**
* @member ArrayList
* ArrayList.get() Returns the element at the specified position in this list.
*
* @param {int} i index of element to return
*
* @returns {Object} the element at the specified position in this list.
*/
this.get = function(i) {
return array[i];
};
/**
* @member ArrayList
* ArrayList.contains() Returns true if this list contains the specified element.
*
* @param {Object} item element whose presence in this List is to be tested.
*
* @returns {boolean} true if the specified element is present; false otherwise.
*/
this.contains = function(item) {
return this.indexOf(item)>-1;
};
/**
* @member ArrayList
* ArrayList.indexOf() Returns the position this element takes in the list, or -1 if the element is not found.
*
* @param {Object} item element whose position in this List is to be tested.
*
* @returns {int} the list position that the first match for this element holds in the list, or -1 if it is not in the list.
*/
this.indexOf = function(item) {
for (var i = 0, len = array.length; i < len; ++i) {
if (virtEquals(item, array[i])) {
return i;
}
}
return -1;
};
/**
* @member ArrayList
* ArrayList.add() Adds the specified element to this list.
*
* @param {int} index optional index at which the specified element is to be inserted
* @param {Object} object element to be added to the list
*/
this.add = function() {
if (arguments.length === 1) {
array.push(arguments[0]); // for add(Object)
} else if (arguments.length === 2) {
var arg0 = arguments[0];
if (typeof arg0 === 'number') {
if (arg0 >= 0 && arg0 <= array.length) {
array.splice(arg0, 0, arguments[1]); // for add(i, Object)
} else {
throw(arg0 + " is not a valid index");
}
} else {
throw(typeof arg0 + " is not a number");
}
} else {
throw("Please use the proper number of parameters.");
}
};
/**
* @member ArrayList
* ArrayList.addAll(collection) appends all of the elements in the specified
* Collection to the end of this list, in the order that they are returned by
* the specified Collection's Iterator.
*
* When called as addAll(index, collection) the elements are inserted into
* this list at the position indicated by index.
*
* @param {index} Optional; specifies the position the colletion should be inserted at
* @param {collection} Any iterable object (ArrayList, HashMap.keySet(), etc.)
* @throws out of bounds error for negative index, or index greater than list size.
*/
this.addAll = function(arg1, arg2) {
// addAll(int, Collection)
var it;
if (typeof arg1 === "number") {
if (arg1 < 0 || arg1 > array.length) {
throw("Index out of bounds for addAll: " + arg1 + " greater or equal than " + array.length);
}
it = new ObjectIterator(arg2);
while (it.hasNext()) {
array.splice(arg1++, 0, it.next());
}
}
// addAll(Collection)
else {
it = new ObjectIterator(arg1);
while (it.hasNext()) {
array.push(it.next());
}
}
};
/**
* @member ArrayList
* ArrayList.set() Replaces the element at the specified position in this list with the specified element.
*
* @param {int} index index of element to replace
* @param {Object} object element to be stored at the specified position
*/
this.set = function() {
if (arguments.length === 2) {
var arg0 = arguments[0];
if (typeof arg0 === 'number') {
if (arg0 >= 0 && arg0 < array.length) {
array.splice(arg0, 1, arguments[1]);
} else {
throw(arg0 + " is not a valid index.");
}
} else {
throw(typeof arg0 + " is not a number");
}
} else {
throw("Please use the proper number of parameters.");
}
};
/**
* @member ArrayList
* ArrayList.size() Returns the number of elements in this list.
*
* @returns {int} the number of elements in this list
*/
this.size = function() {
return array.length;
};
/**
* @member ArrayList
* ArrayList.clear() Removes all of the elements from this list. The list will be empty after this call returns.
*/
this.clear = function() {
array.length = 0;
};
/**
* @member ArrayList
* ArrayList.remove() Removes an element either based on index, if the argument is a number, or
* by equality check, if the argument is an object.
*
* @param {int|Object} item either the index of the element to be removed, or the element itself.
*
* @returns {Object|boolean} If removal is by index, the element that was removed, or null if nothing was removed. If removal is by object, true if removal occurred, otherwise false.
*/
this.remove = function(item) {
if (typeof item === 'number') {
return array.splice(item, 1)[0];
}
item = this.indexOf(item);
if (item > -1) {
array.splice(item, 1);
return true;
}
return false;
};
/**
* @member ArrayList
* ArrayList.isEmpty() Tests if this list has no elements.
*
* @returns {boolean} true if this list has no elements; false otherwise
*/
this.isEmpty = function() {
return !array.length;
};
/**
* @member ArrayList
* ArrayList.clone() Returns a shallow copy of this ArrayList instance. (The elements themselves are not copied.)
*
* @returns {ArrayList} a clone of this ArrayList instance
*/
this.clone = function() {
return new ArrayList(this);
};
/**
* @member ArrayList
* ArrayList.toArray() Returns an array containing all of the elements in this list in the correct order.
*
* @returns {Object[]} Returns an array containing all of the elements in this list in the correct order
*/
this.toArray = function() {
return array.slice(0);
};
this.iterator = function() {
return new Iterator(array);
};
}
return ArrayList;
}());
/**
* A HashMap stores a collection of objects, each referenced by a key. This is similar to an Array, only
* instead of accessing elements with a numeric index, a String is used. (If you are familiar with
* associative arrays from other languages, this is the same idea.)
*
* @param {int} initialCapacity defines the initial capacity of the map, it's 16 by default
* @param {float} loadFactor the load factor for the map, the default is 0.75
* @param {Map} m gives the new HashMap the same mappings as this Map
*/
var HashMap = (function() {
/**
* @member HashMap
* A HashMap stores a collection of objects, each referenced by a key. This is similar to an Array, only
* instead of accessing elements with a numeric index, a String is used. (If you are familiar with
* associative arrays from other languages, this is the same idea.)
*
* @param {int} initialCapacity defines the initial capacity of the map, it's 16 by default
* @param {float} loadFactor the load factor for the map, the default is 0.75
* @param {Map} m gives the new HashMap the same mappings as this Map
*/
function HashMap() {
if (arguments.length === 1 && arguments[0] instanceof HashMap) {
return arguments[0].clone();
}
var initialCapacity = arguments.length > 0 ? arguments[0] : 16;
var loadFactor = arguments.length > 1 ? arguments[1] : 0.75;
var buckets = [];
buckets.length = initialCapacity;
var count = 0;
var hashMap = this;
function getBucketIndex(key) {
var index = virtHashCode(key) % buckets.length;
return index < 0 ? buckets.length + index : index;
}
function ensureLoad() {
if (count <= loadFactor * buckets.length) {
return;
}
var allEntries = [];
for (var i = 0; i < buckets.length; ++i) {
if (buckets[i] !== undef) {
allEntries = allEntries.concat(buckets[i]);
}
}
var newBucketsLength = buckets.length * 2;
buckets = [];
buckets.length = newBucketsLength;
for (var j = 0; j < allEntries.length; ++j) {
var index = getBucketIndex(allEntries[j].key);
var bucket = buckets[index];
if (bucket === undef) {
buckets[index] = bucket = [];
}
bucket.push(allEntries[j]);
}
}
function Iterator(conversion, removeItem) {
var bucketIndex = 0;
var itemIndex = -1;
var endOfBuckets = false;
function findNext() {
while (!endOfBuckets) {
++itemIndex;
if (bucketIndex >= buckets.length) {
endOfBuckets = true;
} else if (buckets[bucketIndex] === undef || itemIndex >= buckets[bucketIndex].length) {
itemIndex = -1;
++bucketIndex;
} else {
return;
}
}
}
/*
* @member Iterator
* Checks if the Iterator has more items
*/
this.hasNext = function() {
return !endOfBuckets;
};
/*
* @member Iterator
* Return the next Item
*/
this.next = function() {
var result = conversion(buckets[bucketIndex][itemIndex]);
findNext();
return result;
};
/*
* @member Iterator
* Remove the current item
*/
this.remove = function() {
removeItem(this.next());
--itemIndex;
};
findNext();
}
function Set(conversion, isIn, removeItem) {
this.clear = function() {
hashMap.clear();
};
this.contains = function(o) {
return isIn(o);
};
this.containsAll = function(o) {
var it = o.iterator();
while (it.hasNext()) {
if (!this.contains(it.next())) {
return false;
}
}
return true;
};
this.isEmpty = function() {
return hashMap.isEmpty();
};
this.iterator = function() {
return new Iterator(conversion, removeItem);
};
this.remove = function(o) {
if (this.contains(o)) {
removeItem(o);
return true;
}
return false;
};
this.removeAll = function(c) {
var it = c.iterator();
var changed = false;
while (it.hasNext()) {
var item = it.next();
if (this.contains(item)) {
removeItem(item);
changed = true;
}
}
return true;
};
this.retainAll = function(c) {
var it = this.iterator();
var toRemove = [];
while (it.hasNext()) {
var entry = it.next();
if (!c.contains(entry)) {
toRemove.push(entry);
}
}
for (var i = 0; i < toRemove.length; ++i) {
removeItem(toRemove[i]);
}
return toRemove.length > 0;
};
this.size = function() {
return hashMap.size();
};
this.toArray = function() {
var result = [];
var it = this.iterator();
while (it.hasNext()) {
result.push(it.next());
}
return result;
};
}
function Entry(pair) {
this._isIn = function(map) {
return map === hashMap && (pair.removed === undef);
};
this.equals = function(o) {
return virtEquals(pair.key, o.getKey());
};
this.getKey = function() {
return pair.key;
};
this.getValue = function() {
return pair.value;
};
this.hashCode = function(o) {
return virtHashCode(pair.key);
};
this.setValue = function(value) {
var old = pair.value;
pair.value = value;
return old;
};
}
this.clear = function() {
count = 0;
buckets = [];
buckets.length = initialCapacity;
};
this.clone = function() {
var map = new HashMap();
map.putAll(this);
return map;
};
this.containsKey = function(key) {
var index = getBucketIndex(key);
var bucket = buckets[index];
if (bucket === undef) {
return false;
}
for (var i = 0; i < bucket.length; ++i) {
if (virtEquals(bucket[i].key, key)) {
return true;
}
}
return false;
};
this.containsValue = function(value) {
for (var i = 0; i < buckets.length; ++i) {
var bucket = buckets[i];
if (bucket === undef) {
continue;
}
for (var j = 0; j < bucket.length; ++j) {
if (virtEquals(bucket[j].value, value)) {
return true;
}
}
}
return false;
};
this.entrySet = function() {
return new Set(
function(pair) {
return new Entry(pair);
},
function(pair) {
return (pair instanceof Entry) && pair._isIn(hashMap);
},
function(pair) {
return hashMap.remove(pair.getKey());
});
};
this.get = function(key) {
var index = getBucketIndex(key);
var bucket = buckets[index];
if (bucket === undef) {
return null;
}
for (var i = 0; i < bucket.length; ++i) {
if (virtEquals(bucket[i].key, key)) {
return bucket[i].value;
}
}
return null;
};
this.isEmpty = function() {
return count === 0;
};
this.keySet = function() {
return new Set(
// get key from pair
function(pair) {
return pair.key;
},
// is-in test
function(key) {
return hashMap.containsKey(key);
},
// remove from hashmap by key
function(key) {
return hashMap.remove(key);
}
);
};
this.values = function() {
return new Set(
// get value from pair
function(pair) {
return pair.value;
},
// is-in test
function(value) {
return hashMap.containsValue(value);
},
// remove from hashmap by value
function(value) {
return hashMap.removeByValue(value);
}
);
};
this.put = function(key, value) {
var index = getBucketIndex(key);
var bucket = buckets[index];
if (bucket === undef) {
++count;
buckets[index] = [{
key: key,
value: value
}];
ensureLoad();
return null;
}
for (var i = 0; i < bucket.length; ++i) {
if (virtEquals(bucket[i].key, key)) {
var previous = bucket[i].value;
bucket[i].value = value;
return previous;
}
}
++count;
bucket.push({
key: key,
value: value
});
ensureLoad();
return null;
};
this.putAll = function(m) {
var it = m.entrySet().iterator();
while (it.hasNext()) {
var entry = it.next();
this.put(entry.getKey(), entry.getValue());
}
};
this.remove = function(key) {
var index = getBucketIndex(key);
var bucket = buckets[index];
if (bucket === undef) {
return null;
}
for (var i = 0; i < bucket.length; ++i) {
if (virtEquals(bucket[i].key, key)) {
--count;
var previous = bucket[i].value;
bucket[i].removed = true;
if (bucket.length > 1) {
bucket.splice(i, 1);
} else {
buckets[index] = undef;
}
return previous;
}
}
return null;
};
this.removeByValue = function(value) {
var bucket, i, ilen, pair;
for (bucket in buckets) {
if (buckets.hasOwnProperty(bucket)) {
for (i = 0, ilen = buckets[bucket].length; i < ilen; i++) {
pair = buckets[bucket][i];
// removal on values is based on identity, not equality
if (pair.value === value) {
buckets[bucket].splice(i, 1);
return true;
}
}
}
}
return false;
};
this.size = function() {
return count;
};
}
return HashMap;
}());
// Building defaultScope. Changing of the prototype protects
// internal Processing code from the changes in defaultScope
function DefaultScope() {}
DefaultScope.prototype = PConstants;
var defaultScope = new DefaultScope();
defaultScope.ArrayList = ArrayList;
defaultScope.HashMap = HashMap;
defaultScope.ObjectIterator = ObjectIterator;
defaultScope.PConstants = PConstants;
//defaultScope.PImage = PImage; // TODO
//defaultScope.PShape = PShape; // TODO
//defaultScope.PShapeSVG = PShapeSVG; // TODO
////////////////////////////////////////////////////////////////////////////
// Class inheritance helper methods
////////////////////////////////////////////////////////////////////////////
defaultScope.defineProperty = function(obj, name, desc) {
if("defineProperty" in Object) {
Object.defineProperty(obj, name, desc);
} else {
if (desc.hasOwnProperty("get")) {
obj.__defineGetter__(name, desc.get);
}
if (desc.hasOwnProperty("set")) {
obj.__defineSetter__(name, desc.set);
}
}
};
function extendClass(subClass, baseClass) {
function extendGetterSetter(propertyName) {
defaultScope.defineProperty(subClass, propertyName, {
get: function() {
return baseClass[propertyName];
},
set: function(v) {
baseClass[propertyName]=v;
},
enumerable: true
});
}
var properties = [];
for (var propertyName in baseClass) {
if (typeof baseClass[propertyName] === 'function') {
// Overriding all non-overriden functions
if (!subClass.hasOwnProperty(propertyName)) {
subClass[propertyName] = baseClass[propertyName];
}
} else if(propertyName.charAt(0) !== "$" && !(propertyName in subClass)) {
// Delaying the properties extension due to the IE9 bug (see #918).
properties.push(propertyName);
}
}
while (properties.length > 0) {
extendGetterSetter(properties.shift());
}
}
defaultScope.extendClassChain = function(base) {
var path = [base];
for (var self = base.$upcast; self; self = self.$upcast) {
extendClass(self, base);
path.push(self);
base = self;
}
while (path.length > 0) {
path.pop().$self=base;
}
};
defaultScope.extendStaticMembers = function(derived, base) {
extendClass(derived, base);
};
defaultScope.extendInterfaceMembers = function(derived, base) {
extendClass(derived, base);
};
defaultScope.addMethod = function(object, name, fn, superAccessor) {
if (object[name]) {
var args = fn.length,
oldfn = object[name];
object[name] = function() {
if (arguments.length === args) {
return fn.apply(this, arguments);
}
return oldfn.apply(this, arguments);
};
} else {
object[name] = fn;
}
};
defaultScope.createJavaArray = function(type, bounds) {
var result = null;
if (typeof bounds[0] === 'number') {
var itemsCount = 0 | bounds[0];
if (bounds.length <= 1) {
result = [];
result.length = itemsCount;
for (var i = 0; i < itemsCount; ++i) {
result[i] = 0;
}
} else {
result = [];
var newBounds = bounds.slice(1);
for (var j = 0; j < itemsCount; ++j) {
result.push(defaultScope.createJavaArray(type, newBounds));
}
}
}
return result;
};
var colors = {
aliceblue: "#f0f8ff",
antiquewhite: "#faebd7",
aqua: "#00ffff",
aquamarine: "#7fffd4",
azure: "#f0ffff",
beige: "#f5f5dc",
bisque: "#ffe4c4",
black: "#000000",
blanchedalmond: "#ffebcd",
blue: "#0000ff",
blueviolet: "#8a2be2",
brown: "#a52a2a",
burlywood: "#deb887",
cadetblue: "#5f9ea0",
chartreuse: "#7fff00",
chocolate: "#d2691e",
coral: "#ff7f50",
cornflowerblue: "#6495ed",
cornsilk: "#fff8dc",
crimson: "#dc143c",
cyan: "#00ffff",
darkblue: "#00008b",
darkcyan: "#008b8b",
darkgoldenrod: "#b8860b",
darkgray: "#a9a9a9",
darkgreen: "#006400",
darkkhaki: "#bdb76b",
darkmagenta: "#8b008b",
darkolivegreen: "#556b2f",
darkorange: "#ff8c00",
darkorchid: "#9932cc",
darkred: "#8b0000",
darksalmon: "#e9967a",
darkseagreen: "#8fbc8f",
darkslateblue: "#483d8b",
darkslategray: "#2f4f4f",
darkturquoise: "#00ced1",
darkviolet: "#9400d3",
deeppink: "#ff1493",
deepskyblue: "#00bfff",
dimgray: "#696969",
dodgerblue: "#1e90ff",
firebrick: "#b22222",
floralwhite: "#fffaf0",
forestgreen: "#228b22",
fuchsia: "#ff00ff",
gainsboro: "#dcdcdc",
ghostwhite: "#f8f8ff",
gold: "#ffd700",
goldenrod: "#daa520",
gray: "#808080",
green: "#008000",
greenyellow: "#adff2f",
honeydew: "#f0fff0",
hotpink: "#ff69b4",
indianred: "#cd5c5c",
indigo: "#4b0082",
ivory: "#fffff0",
khaki: "#f0e68c",
lavender: "#e6e6fa",
lavenderblush: "#fff0f5",
lawngreen: "#7cfc00",
lemonchiffon: "#fffacd",
lightblue: "#add8e6",
lightcoral: "#f08080",
lightcyan: "#e0ffff",
lightgoldenrodyellow: "#fafad2",
lightgrey: "#d3d3d3",
lightgreen: "#90ee90",
lightpink: "#ffb6c1",
lightsalmon: "#ffa07a",
lightseagreen: "#20b2aa",
lightskyblue: "#87cefa",
lightslategray: "#778899",
lightsteelblue: "#b0c4de",
lightyellow: "#ffffe0",
lime: "#00ff00",
limegreen: "#32cd32",
linen: "#faf0e6",
magenta: "#ff00ff",
maroon: "#800000",
mediumaquamarine: "#66cdaa",
mediumblue: "#0000cd",
mediumorchid: "#ba55d3",
mediumpurple: "#9370d8",
mediumseagreen: "#3cb371",
mediumslateblue: "#7b68ee",
mediumspringgreen: "#00fa9a",
mediumturquoise: "#48d1cc",
mediumvioletred: "#c71585",
midnightblue: "#191970",
mintcream: "#f5fffa",
mistyrose: "#ffe4e1",
moccasin: "#ffe4b5",
navajowhite: "#ffdead",
navy: "#000080",
oldlace: "#fdf5e6",
olive: "#808000",
olivedrab: "#6b8e23",
orange: "#ffa500",
orangered: "#ff4500",
orchid: "#da70d6",
palegoldenrod: "#eee8aa",
palegreen: "#98fb98",
paleturquoise: "#afeeee",
palevioletred: "#d87093",
papayawhip: "#ffefd5",
peachpuff: "#ffdab9",
peru: "#cd853f",
pink: "#ffc0cb",
plum: "#dda0dd",
powderblue: "#b0e0e6",
purple: "#800080",
red: "#ff0000",
rosybrown: "#bc8f8f",
royalblue: "#4169e1",
saddlebrown: "#8b4513",
salmon: "#fa8072",
sandybrown: "#f4a460",
seagreen: "#2e8b57",
seashell: "#fff5ee",
sienna: "#a0522d",
silver: "#c0c0c0",
skyblue: "#87ceeb",
slateblue: "#6a5acd",
slategray: "#708090",
snow: "#fffafa",
springgreen: "#00ff7f",
steelblue: "#4682b4",
tan: "#d2b48c",
teal: "#008080",
thistle: "#d8bfd8",
tomato: "#ff6347",
turquoise: "#40e0d0",
violet: "#ee82ee",
wheat: "#f5deb3",
white: "#ffffff",
whitesmoke: "#f5f5f5",
yellow: "#ffff00",
yellowgreen: "#9acd32"
};
// Unsupported Processing File and I/O operations.
(function(Processing) {
var unsupportedP5 = ("open() createOutput() createInput() BufferedReader selectFolder() " +
"dataPath() createWriter() selectOutput() beginRecord() " +
"saveStream() endRecord() selectInput() saveBytes() createReader() " +
"beginRaw() endRaw() PrintWriter delay()").split(" "),
count = unsupportedP5.length,
prettyName,
p5Name;
function createUnsupportedFunc(n) {
return function() {
throw "Processing.js does not support " + n + ".";
};
}
while (count--) {
prettyName = unsupportedP5[count];
p5Name = prettyName.replace("()", "");
Processing[p5Name] = createUnsupportedFunc(prettyName);
}
}(defaultScope));
// screenWidth and screenHeight are shared by all instances.
// and return the width/height of the browser's viewport.
defaultScope.defineProperty(defaultScope, 'screenWidth',
{ get: function() { return window.innerWidth; } });
defaultScope.defineProperty(defaultScope, 'screenHeight',
{ get: function() { return window.innerHeight; } });
// Manage multiple Processing instances
var processingInstances = [];
var processingInstanceIds = {};
var removeInstance = function(id) {
processingInstances.splice(processingInstanceIds[id], 1);
delete processingInstanceIds[id];
};
var addInstance = function(processing) {
if (processing.externals.canvas.id === undef || !processing.externals.canvas.id.length) {
processing.externals.canvas.id = "__processing" + processingInstances.length;
}
processingInstanceIds[processing.externals.canvas.id] = processingInstances.length;
processingInstances.push(processing);
};
////////////////////////////////////////////////////////////////////////////
// LRUCache.JS START
////////////////////////////////////////////////////////////////////////////
/**
* This is a Least Recently Used Cache
*
* When the max size is reached, then the least recently used item is dropped.
*
* This is tracked by having a "use index", which is a number indicating how
* recently a given item was accessed. The closer the "use index" is to
* "mostRecent", the more recently is was used.
*
* When an item is accessed (via .get()) it's "use index" gets updated to be
* the new "most recent".
*/
function LRUCache(maxSize) {
this.maxSize = maxSize;
this.size = 0;
this.cache = {}; // key => val
this.useIndex = {}; // use index => key
this.useReverse = {}; // key => use index
// this will be incremented to 0 for the first item added, making
// leastRecent === mostRecent
this.mostRecent = -1;
this.leastRecent = 0;
}
/**
* Get a value from the cache, returning undefined for an unknown key
*/
LRUCache.prototype.get = function(key) {
key = key + '';
if (!this.cache[key]) {
return;
}
this._makeMostRecent(key);
return this.cache[key];
};
/**
* Set a value in the cache. If the max size is reached, the least recently
* used item will be popped off.
*/
LRUCache.prototype.set = function(key, val) {
key = key + '';
if (!this.cache[key]) {
this.size += 1;
}
this.cache[key] = val;
this._makeMostRecent(key);
if (this.size > this.maxSize) {
this._pop();
}
};
LRUCache.prototype._makeMostRecent = function (key) {
var current = this.useReverse[key];
if (current === this.mostRecent) {
return;
} else if (current) {
delete this.useIndex[current];
}
this.mostRecent += 1;
var newIndex = this.mostRecent;
this.useIndex[newIndex] = key;
this.useReverse[key] = newIndex;
}
LRUCache.prototype._pop = function () {
while (this.leastRecent < this.mostRecent) {
var oldKey = this.useIndex[this.leastRecent];
if (!oldKey) {
this.leastRecent += 1;
continue;
}
delete this.useIndex[this.leastRecent];
delete this.useReverse[oldKey];
delete this.cache[oldKey];
this.leastRecent += 1;
this.size -= 1;
return;
}
}
////////////////////////////////////////////////////////////////////////////
// PFONT.JS START
////////////////////////////////////////////////////////////////////////////
/**
* [internal function] computeFontMetrics() calculates various metrics for text
* placement. Currently this function computes the ascent, descent and leading
* (from "lead", used for vertical space) values for the currently active font.
*/
function computeFontMetrics(pfont) {
var emQuad = 250,
correctionFactor = pfont.size / emQuad,
canvas = document.createElement("canvas");
canvas.width = 2*emQuad;
canvas.height = 2*emQuad;
canvas.style.opacity = 0;
var cfmFont = pfont.getCSSDefinition(emQuad+"px", "normal"),
ctx = canvas.getContext("2d");
ctx.font = cfmFont;
pfont.context2d = ctx;
// Size the canvas using a string with common max-ascent and max-descent letters.
// Changing the canvas dimensions resets the context, so we must reset the font.
var protrusions = "dbflkhyjqpg";
canvas.width = ctx.measureText(protrusions).width;
ctx.font = cfmFont;
// for text lead values, we meaure a multiline text container.
var leadDiv = document.createElement("div");
leadDiv.style.position = "absolute";
leadDiv.style.opacity = 0;
leadDiv.style.fontFamily = '"' + pfont.name + '"';
leadDiv.style.fontSize = emQuad + "px";
leadDiv.innerHTML = protrusions + "<br/>" + protrusions;
document.body.appendChild(leadDiv);
var w = canvas.width,
h = canvas.height,
baseline = h/2;
// Set all canvas pixeldata values to 255, with all the content
// data being 0. This lets us scan for data[i] != 255.
ctx.fillStyle = "white";
ctx.fillRect(0, 0, w, h);
ctx.fillStyle = "black";
ctx.fillText(protrusions, 0, baseline);
var pixelData = ctx.getImageData(0, 0, w, h).data;
// canvas pixel data is w*4 by h*4, because R, G, B and A are separate,
// consecutive values in the array, rather than stored as 32 bit ints.
var i = 0,
w4 = w * 4,
len = pixelData.length;
// Finding the ascent uses a normal, forward scanline
while (++i < len && pixelData[i] === 255) {
nop();
}
var ascent = Math.round(i / w4);
// Finding the descent uses a reverse scanline
i = len - 1;
while (--i > 0 && pixelData[i] === 255) {
nop();
}
var descent = Math.round(i / w4);
// set font metrics
pfont.ascent = correctionFactor * (baseline - ascent);
pfont.descent = correctionFactor * (descent - baseline);
// Then we try to get the real value from the browser
if (document.defaultView.getComputedStyle) {
var leadDivHeight = document.defaultView.getComputedStyle(leadDiv,null).getPropertyValue("height");
leadDivHeight = correctionFactor * leadDivHeight.replace("px","");
if (leadDivHeight >= pfont.size * 2) {
pfont.leading = Math.round(leadDivHeight/2);
}
}
document.body.removeChild(leadDiv);
}
// Defines system (non-SVG) font.
function PFont(name, size) {
// according to the P5 API, new PFont() is legal (albeit completely useless)
if (name === undef) {
name = "";
}
this.name = name;
if (size === undef) {
size = 0;
}
this.size = size;
this.glyph = false;
this.ascent = 0;
this.descent = 0;
// For leading, the "safe" value uses the standard TEX ratio
this.leading = 1.2 * size;
// Note that an italic, bold font must used "... Bold Italic"
// in P5. "... Italic Bold" is treated as normal/normal.
var illegalIndicator = name.indexOf(" Italic Bold");
if (illegalIndicator !== -1) {
name = name.substring(0, illegalIndicator);
}
// determine font style
this.style = "normal";
var italicsIndicator = name.indexOf(" Italic");
if (italicsIndicator !== -1) {
name = name.substring(0, italicsIndicator);
this.style = "italic";
}
// determine font weight
this.weight = "normal";
var boldIndicator = name.indexOf(" Bold");
if (boldIndicator !== -1) {
name = name.substring(0, boldIndicator);
this.weight = "bold";
}
// determine font-family name
this.family = "sans-serif";
if (name !== undef) {
switch(name) {
case "sans-serif":
case "serif":
case "monospace":
case "fantasy":
case "cursive":
this.family = name;
break;
default:
this.family = '"' + name + '", sans-serif';
break;
}
}
// Calculate the ascent/descent/leading value based on
// how the browser renders this font.
this.context2d = null;
computeFontMetrics(this);
this.css = this.getCSSDefinition();
this.context2d.font = this.css;
}
/**
* This function generates the CSS "font" string for this PFont
*/
PFont.prototype.getCSSDefinition = function(fontSize, lineHeight) {
if(fontSize===undef) {
fontSize = this.size + "px";
}
if(lineHeight===undef) {
lineHeight = this.leading + "px";
}
// CSS "font" definition: font-style font-variant font-weight font-size/line-height font-family
var components = [this.style, "normal", this.weight, fontSize + "/" + lineHeight, this.family];
return components.join(" ");
};
/**
* We cannot rely on there being a 2d context available,
* because we support OPENGL sketches, and canvas3d has
* no "measureText" function in the API.
*/
PFont.prototype.measureTextWidth = function(string) {
return this.context2d.measureText(string).width;
};
/**
* Global "loaded fonts" list, internal to PFont
*/
PFont.PFontCache = new LRUCache(100);
/**
* This function acts as single access point for getting and caching
* fonts across all sketches handled by an instance of Processing.js
*/
PFont.get = function(fontName, fontSize) {
var cache = PFont.PFontCache;
var idx = fontName+"/"+fontSize;
var val = cache.get(idx);
if (!val) {
val = new PFont(fontName, fontSize);
cache.set(idx, val);
}
return val;
};
/**
* Lists all standard fonts. Due to browser limitations, this list is
* not the system font list, like in P5, but the CSS "genre" list.
*/
PFont.list = function() {
return ["sans-serif", "serif", "monospace", "fantasy", "cursive"];
};
/**
* Loading external fonts through @font-face rules is handled by PFont,
* to ensure fonts loaded in this way are globally available.
*/
PFont.preloading = {
// template element used to compare font sizes
template: {},
// indicates whether or not the reference tiny font has been loaded
initialized: false,
// load the reference tiny font via a css @font-face rule
initialize: function() {
var generateTinyFont = function() {
var encoded = "#E3KAI2wAgT1MvMg7Eo3VmNtYX7ABi3CxnbHlm" +
"7Abw3kaGVhZ7ACs3OGhoZWE7A53CRobXR47AY3" +
"AGbG9jYQ7G03Bm1heH7ABC3CBuYW1l7Ae3AgcG" +
"9zd7AI3AE#B3AQ2kgTY18PPPUACwAg3ALSRoo3" +
"#yld0xg32QAB77#E777773B#E3C#I#Q77773E#" +
"Q7777777772CMAIw7AB77732B#M#Q3wAB#g3B#" +
"E#E2BB//82BB////w#B7#gAEg3E77x2B32B#E#" +
"Q#MTcBAQ32gAe#M#QQJ#E32M#QQJ#I#g32Q77#";
var expand = function(input) {
return "AAAAAAAA".substr(~~input ? 7-input : 6);
};
return encoded.replace(/[#237]/g, expand);
};
var fontface = document.createElement("style");
fontface.setAttribute("type","text/css");
fontface.innerHTML = "@font-face {\n" +
' font-family: "PjsEmptyFont";' + "\n" +
" src: url('data:application/x-font-ttf;base64,"+generateTinyFont()+"')\n" +
" format('truetype');\n" +
"}";
document.head.appendChild(fontface);
// set up the template element
var element = document.createElement("span");
element.style.cssText = 'position: absolute; top: 0; left: 0; opacity: 0; font-family: "PjsEmptyFont", fantasy; pointer-events: none;';
element.innerHTML = "AAAAAAAA";
document.body.appendChild(element);
this.template = element;
this.initialized = true;
},
// Shorthand function to get the computed width for an element.
getElementWidth: function(element) {
return document.defaultView.getComputedStyle(element,"").getPropertyValue("width");
},
// time taken so far in attempting to load a font
timeAttempted: 0,
// returns false if no fonts are pending load, or true otherwise.
pending: function(intervallength) {
if (!this.initialized) {
this.initialize();
}
var element,
computedWidthFont,
computedWidthRef = this.getElementWidth(this.template);
for (var i = 0; i < this.fontList.length; i++) {
// compares size of text in pixels. if equal, custom font is not yet loaded
element = this.fontList[i];
computedWidthFont = this.getElementWidth(element);
if (this.timeAttempted < 4000 && computedWidthFont === computedWidthRef) {
this.timeAttempted += intervallength;
return true;
} else {
document.body.removeChild(element);
this.fontList.splice(i--, 1);
this.timeAttempted = 0;
}
}
// if there are no more fonts to load, pending is false
if (this.fontList.length === 0) {
return false;
}
// We should have already returned before getting here.
// But, if we do get here, length!=0 so fonts are pending.
return true;
},
// fontList contains elements to compare font sizes against a template
fontList: [],
// addedList contains the fontnames of all the fonts loaded via @font-face
addedList: {},
// adds a font to the font cache
// creates an element using the font, to start loading the font,
// and compare against a default font to see if the custom font is loaded
add: function(fontSrc) {
if (!this.initialized) {
this.initialize();
}
// fontSrc can be a string or a javascript object
// acceptable fonts are .ttf, .otf, and data uri
var fontName = (typeof fontSrc === 'object' ? fontSrc.fontFace : fontSrc),
fontUrl = (typeof fontSrc === 'object' ? fontSrc.url : fontSrc);
// check whether we already created the @font-face rule for this font
if (this.addedList[fontName]) {
return;
}
// if we didn't, create the @font-face rule
var style = document.createElement("style");
style.setAttribute("type","text/css");
style.innerHTML = "@font-face{\n font-family: '" + fontName + "';\n src: url('" + fontUrl + "');\n}\n";
document.head.appendChild(style);
this.addedList[fontName] = true;
// also create the element to load and compare the new font
var element = document.createElement("span");
element.style.cssText = "position: absolute; top: 0; left: 0; opacity: 0; pointer-events: none;";
element.style.fontFamily = '"' + fontName + '", "PjsEmptyFont", fantasy';
element.innerHTML = "AAAAAAAA";
document.body.appendChild(element);
this.fontList.push(element);
}
};
// add to the default scope
defaultScope.PFont = PFont;
////////////////////////////////////////////////////////////////////////////
// PFONT.JS END
////////////////////////////////////////////////////////////////////////////
var Processing = this.Processing = function(aCanvas, aCode) {
// Previously we allowed calling Processing as a func instead of ctor, but no longer.
if (!(this instanceof Processing)) {
throw("called Processing constructor as if it were a function: missing 'new'.");
}
var curElement,
pgraphicsMode = (aCanvas === undef && aCode === undef);
if (pgraphicsMode) {
curElement = document.createElement("canvas");
} else {
// We'll take a canvas element or a string for a canvas element's id
curElement = typeof aCanvas === "string" ? document.getElementById(aCanvas) : aCanvas;
}
if (!(curElement instanceof HTMLCanvasElement)) {
throw("called Processing constructor without passing canvas element reference or id.");
}
function unimplemented(s) {
Processing.debug('Unimplemented - ' + s);
}
// When something new is added to "p." it must also be added to the "names" array.
// The names array contains the names of everything that is inside "p."
var p = this;
// PJS specific (non-p5) methods and properties to externalize
p.externals = {
canvas: curElement,
context: undef,
sketch: undef
};
p.name = 'Processing.js Instance'; // Set Processing defaults / environment variables
p.use3DContext = false; // default '2d' canvas context
/**
* Confirms if a Processing program is "focused", meaning that it is
* active and will accept input from mouse or keyboard. This variable
* is "true" if it is focused and "false" if not. This variable is
* often used when you want to warn people they need to click on the
* browser before it will work.
*/
p.focused = false;
p.breakShape = false;
// Glyph path storage for textFonts
p.glyphTable = {};
// Global vars for tracking mouse position
p.pmouseX = 0;
p.pmouseY = 0;
p.mouseX = 0;
p.mouseY = 0;
p.mouseButton = 0;
p.mouseScroll = 0;
// Undefined event handlers to be replaced by user when needed
p.mouseClicked = undef;
p.mouseDragged = undef;
p.mouseMoved = undef;
p.mousePressed = undef;
p.mouseReleased = undef;
p.mouseScrolled = undef;
p.mouseOver = undef;
p.mouseOut = undef;
p.touchStart = undef;
p.touchEnd = undef;
p.touchMove = undef;
p.touchCancel = undef;
p.key = undef;
p.keyCode = undef;
p.keyPressed = nop; // needed to remove function checks
p.keyReleased = nop;
p.keyTyped = nop;
p.draw = undef;
p.setup = undef;
// Remapped vars
p.__mousePressed = false;
p.__keyPressed = false;
p.__frameRate = 60;
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
p.mouseIsPressed = false;
p.keyIsPressed = false;
// The current animation frame
p.frameCount = 0;
// The height/width of the canvas
p.width = 100;
p.height = 100;
// XXX(jeresig)
p.angleMode = "radians";
var PVector = p.PVector = (function() {
function PVector(x, y, z) {
this.x = x || 0;
this.y = y || 0;
this.z = z || 0;
}
PVector.fromAngle = function(angle, v) {
if (v === undef || v === null) {
v = new PVector();
}
// XXX(jeresig)
v.x = p.cos(angle);
v.y = p.sin(angle);
return v;
};
PVector.random2D = function(v) {
return PVector.fromAngle(Math.random() * 360, v);
};
PVector.random3D = function(v) {
var angle = Math.random() * 360;
var vz = Math.random() * 2 - 1;
var mult = Math.sqrt(1 - vz * vz);
// XXX(jeresig)
var vx = mult * p.cos(angle);
var vy = mult * p.sin(angle);
if (v === undef || v === null) {
v = new PVector(vx, vy, vz);
} else {
v.set(vx, vy, vz);
}
return v;
};
PVector.dist = function(v1, v2) {
return v1.dist(v2);
};
PVector.dot = function(v1, v2) {
return v1.dot(v2);
};
PVector.cross = function(v1, v2) {
return v1.cross(v2);
};
PVector.sub = function(v1, v2) {
return new PVector(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
};
PVector.angleBetween = function(v1, v2) {
// XXX(jeresig)
return p.acos(v1.dot(v2) / (v1.mag() * v2.mag()));
};
PVector.lerp = function(v1, v2, amt) {
// non-static lerp mutates object, but this version returns a new vector
var retval = new PVector(v1.x, v1.y, v1.z);
retval.lerp(v2, amt);
return retval;
};
// Common vector operations for PVector
PVector.prototype = {
set: function(v, y, z) {
if (arguments.length === 1) {
this.set(v.x || v[0] || 0,
v.y || v[1] || 0,
v.z || v[2] || 0);
} else {
this.x = v || 0;
this.y = y || 0;
this.z = z || 0;
}
},
get: function() {
return new PVector(this.x, this.y, this.z);
},
mag: function() {
var x = this.x,
y = this.y,
z = this.z;
return Math.sqrt(x * x + y * y + z * z);
},
magSq: function() {
var x = this.x,
y = this.y,
z = this.z;
return (x * x + y * y + z * z);
},
setMag: function(v_or_len, len) {
if (len === undef) {
len = v_or_len;
this.normalize();
this.mult(len);
} else {
var v = v_or_len;
v.normalize();
v.mult(len);
return v;
}
},
add: function(v, y, z) {
if (arguments.length === 1) {
this.x += v.x;
this.y += v.y;
this.z += v.z;
} else {
this.x += v;
this.y += y;
this.z += z;
}
},
sub: function(v, y, z) {
if (arguments.length === 1) {
this.x -= v.x;
this.y -= v.y;
this.z -= v.z;
} else {
this.x -= v;
this.y -= y;
this.z -= z;
}
},
mult: function(v) {
if (typeof v === 'number') {
this.x *= v;
this.y *= v;
this.z *= v;
} else {
this.x *= v.x;
this.y *= v.y;
this.z *= v.z;
}
},
div: function(v) {
if (typeof v === 'number') {
this.x /= v;
this.y /= v;
this.z /= v;
} else {
this.x /= v.x;
this.y /= v.y;
this.z /= v.z;
}
},
rotate: function(angle) {
var prev_x = this.x;
var c = p.cos(angle);
var s = p.sin(angle);
this.x = c * this.x - s * this.y;
this.y = s * prev_x + c * this.y;
},
dist: function(v) {
var dx = this.x - v.x,
dy = this.y - v.y,
dz = this.z - v.z;
return Math.sqrt(dx * dx + dy * dy + dz * dz);
},
dot: function(v, y, z) {
if (arguments.length === 1) {
return (this.x * v.x + this.y * v.y + this.z * v.z);
}
return (this.x * v + this.y * y + this.z * z);
},
cross: function(v) {
var x = this.x,
y = this.y,
z = this.z;
return new PVector(y * v.z - v.y * z,
z * v.x - v.z * x,
x * v.y - v.x * y);
},
lerp: function(v_or_x, amt_or_y, z, amt) {
var lerp_val = function(start, stop, amt) {
return start + (stop - start) * amt;
};
var x, y;
if (arguments.length === 2) {
// given vector and amt
amt = amt_or_y;
x = v_or_x.x;
y = v_or_x.y;
z = v_or_x.z;
} else {
// given x, y, z and amt
x = v_or_x;
y = amt_or_y;
}
this.x = lerp_val(this.x, x, amt);
this.y = lerp_val(this.y, y, amt);
this.z = lerp_val(this.z, z, amt);
},
normalize: function() {
var m = this.mag();
if (m > 0) {
this.div(m);
}
},
limit: function(high) {
if (this.mag() > high) {
this.normalize();
this.mult(high);
}
},
heading: function() {
// XXX(jeresig)
return -p.atan2(-this.y, this.x);
},
heading2D: function() {
return this.heading();
},
toString: function() {
return "[" + this.x + ", " + this.y + ", " + this.z + "]";
},
array: function() {
return [this.x, this.y, this.z];
}
};
function createPVectorMethod(method) {
return function(v1, v2) {
var v = v1.get();
v[method](v2);
return v;
};
}
// Create the static methods of PVector automatically
// We don't do toString because it causes a TypeError
// when attempting to stringify PVector
for (var method in PVector.prototype) {
if (PVector.prototype.hasOwnProperty(method) && !PVector.hasOwnProperty(method) &&
method !== "toString") {
PVector[method] = createPVectorMethod(method);
}
}
return PVector;
}());
// "Private" variables used to maintain state
var curContext,
curSketch,
drawing, // hold a Drawing2D or Drawing3D object
online = true,
doFill = true,
fillStyle = [1.0, 1.0, 1.0, 1.0],
currentFillColor = 0xFFFFFFFF,
isFillDirty = true,
doStroke = true,
strokeStyle = [0.0, 0.0, 0.0, 1.0],
currentStrokeColor = 0xFF000000,
isStrokeDirty = true,
lineWidth = 1,
loopStarted = false,
renderSmooth = false,
doLoop = true,
looping = 0,
curRectMode = PConstants.CORNER,
curEllipseMode = PConstants.CENTER,
normalX = 0,
normalY = 0,
normalZ = 0,
normalMode = PConstants.NORMAL_MODE_AUTO,
curFrameRate = 60,
curMsPerFrame = 1000/curFrameRate,
curCursor = PConstants.ARROW,
oldCursor = curElement.style.cursor,
curShape = PConstants.POLYGON,
curShapeCount = 0,
curvePoints = [],
curTightness = 0,
curveDet = 20,
curveInited = false,
backgroundObj = -3355444, // rgb(204, 204, 204) is the default gray background colour
bezDetail = 20,
colorModeA = 255,
colorModeX = 255,
colorModeY = 255,
colorModeZ = 255,
pathOpen = false,
mouseDragging = false,
pmouseXLastFrame = 0,
pmouseYLastFrame = 0,
curColorMode = PConstants.RGB,
curTint = null,
curTint3d = null,
getLoaded = false,
start = Date.now(),
timeSinceLastFPS = start,
framesSinceLastFPS = 0,
textcanvas,
curveBasisMatrix,
curveToBezierMatrix,
curveDrawMatrix,
bezierDrawMatrix,
bezierBasisInverse,
bezierBasisMatrix,
curContextCache = { attributes: {}, locations: {} },
// Shaders
programObject3D,
programObject2D,
programObjectUnlitShape,
boxBuffer,
boxNormBuffer,
boxOutlineBuffer,
rectBuffer,
rectNormBuffer,
sphereBuffer,
lineBuffer,
fillBuffer,
fillColorBuffer,
strokeColorBuffer,
pointBuffer,
shapeTexVBO,
canTex, // texture for createGraphics
textTex, // texture for 3d tex
curTexture = {width:0,height:0},
curTextureMode = PConstants.IMAGE,
usingTexture = false,
textBuffer,
textureBuffer,
indexBuffer,
// Text alignment
horizontalTextAlignment = PConstants.LEFT,
verticalTextAlignment = PConstants.BASELINE,
textMode = PConstants.MODEL,
// Font state
curFontName = "Arial",
curTextSize = 12,
curTextAscent = 9,
curTextDescent = 2,
curTextLeading = 14,
curTextFont = PFont.get(curFontName, curTextSize),
// Pixels cache
originalContext,
proxyContext = null,
isContextReplaced = false,
setPixelsCached,
maxPixelsCached = 1000,
pressedKeysMap = [],
lastPressedKeyCode = null,
codedKeys = [ PConstants.SHIFT, PConstants.CONTROL, PConstants.ALT, PConstants.CAPSLK, PConstants.PGUP, PConstants.PGDN,
PConstants.END, PConstants.HOME, PConstants.LEFT, PConstants.UP, PConstants.RIGHT, PConstants.DOWN, PConstants.NUMLK,
PConstants.INSERT, PConstants.F1, PConstants.F2, PConstants.F3, PConstants.F4, PConstants.F5, PConstants.F6, PConstants.F7,
PConstants.F8, PConstants.F9, PConstants.F10, PConstants.F11, PConstants.F12, PConstants.META ];
// Get padding and border style widths for mouse offsets
var stylePaddingLeft, stylePaddingTop, styleBorderLeft, styleBorderTop;
if (document.defaultView && document.defaultView.getComputedStyle) {
stylePaddingLeft = parseInt(document.defaultView.getComputedStyle(curElement, null)['paddingLeft'], 10) || 0;
stylePaddingTop = parseInt(document.defaultView.getComputedStyle(curElement, null)['paddingTop'], 10) || 0;
styleBorderLeft = parseInt(document.defaultView.getComputedStyle(curElement, null)['borderLeftWidth'], 10) || 0;
styleBorderTop = parseInt(document.defaultView.getComputedStyle(curElement, null)['borderTopWidth'], 10) || 0;
}
// User can only have MAX_LIGHTS lights
var lightCount = 0;
//sphere stuff
var sphereDetailV = 0,
sphereDetailU = 0,
sphereX = [],
sphereY = [],
sphereZ = [],
sinLUT = new Float32Array(PConstants.SINCOS_LENGTH),
cosLUT = new Float32Array(PConstants.SINCOS_LENGTH),
sphereVerts,
sphereNorms;
// Camera defaults and settings
var cam,
cameraInv,
modelView,
modelViewInv,
userMatrixStack,
userReverseMatrixStack,
inverseCopy,
projection,
manipulatingCamera = false,
frustumMode = false,
cameraFOV = 60 * (Math.PI / 180),
cameraX = p.width / 2,
cameraY = p.height / 2,
cameraZ = cameraY / Math.tan(cameraFOV / 2),
cameraNear = cameraZ / 10,
cameraFar = cameraZ * 10,
cameraAspect = p.width / p.height;
var vertArray = [],
curveVertArray = [],
curveVertCount = 0,
isCurve = false,
isBezier = false,
firstVert = true;
//PShape stuff
var curShapeMode = PConstants.CORNER;
// Stores states for pushStyle() and popStyle().
var styleArray = [];
// Vertices are specified in a counter-clockwise order
// triangles are in this order: back, front, right, bottom, left, top
var boxVerts = new Float32Array([
0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5,
0.5, 0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5,
0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, -0.5,
0.5, 0.5, 0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5]);
var boxOutlineVerts = new Float32Array([
0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, -0.5,
-0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5,
-0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, 0.5]);
var boxNorms = new Float32Array([
0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1,
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0,
-1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]);
// These verts are used for the fill and stroke using TRIANGLE_FAN and LINE_LOOP
var rectVerts = new Float32Array([0,0,0, 0,1,0, 1,1,0, 1,0,0]);
var rectNorms = new Float32Array([0,0,1, 0,0,1, 0,0,1, 0,0,1]);
// Shader for points and lines in begin/endShape
var vShaderSrcUnlitShape =
"varying vec4 frontColor;" +
"attribute vec3 aVertex;" +
"attribute vec4 aColor;" +
"uniform mat4 uView;" +
"uniform mat4 uProjection;" +
"uniform float pointSize;" +
"void main(void) {" +
" frontColor = aColor;" +
" gl_PointSize = pointSize;" +
" gl_Position = uProjection * uView * vec4(aVertex, 1.0);" +
"}";
var fShaderSrcUnlitShape =
"#ifdef GL_ES\n" +
"precision highp float;\n" +
"#endif\n" +
"varying vec4 frontColor;" +
"void main(void){" +
" gl_FragColor = frontColor;" +
"}";
// Shader for rect, text, box outlines, sphere outlines, point() and line()
var vertexShaderSource2D =
"varying vec4 frontColor;" +
"attribute vec3 Vertex;" +
"attribute vec2 aTextureCoord;" +
"uniform vec4 color;" +
"uniform mat4 model;" +
"uniform mat4 view;" +
"uniform mat4 projection;" +
"uniform float pointSize;" +
"varying vec2 vTextureCoord;"+
"void main(void) {" +
" gl_PointSize = pointSize;" +
" frontColor = color;" +
" gl_Position = projection * view * model * vec4(Vertex, 1.0);" +
" vTextureCoord = aTextureCoord;" +
"}";
var fragmentShaderSource2D =
"#ifdef GL_ES\n" +
"precision highp float;\n" +
"#endif\n" +
"varying vec4 frontColor;" +
"varying vec2 vTextureCoord;"+
"uniform sampler2D uSampler;"+
"uniform int picktype;"+
"void main(void){" +
" if(picktype == 0){"+
" gl_FragColor = frontColor;" +
" }" +
" else if(picktype == 1){"+
" float alpha = texture2D(uSampler, vTextureCoord).a;"+
" gl_FragColor = vec4(frontColor.rgb*alpha, alpha);\n"+
" }"+
"}";
var webglMaxTempsWorkaround = /Windows/.test(navigator.userAgent);
// Vertex shader for boxes and spheres
var vertexShaderSource3D =
"varying vec4 frontColor;" +
"attribute vec3 Vertex;" +
"attribute vec3 Normal;" +
"attribute vec4 aColor;" +
"attribute vec2 aTexture;" +
"varying vec2 vTexture;" +
"uniform vec4 color;" +
"uniform bool usingMat;" +
"uniform vec3 specular;" +
"uniform vec3 mat_emissive;" +
"uniform vec3 mat_ambient;" +
"uniform vec3 mat_specular;" +
"uniform float shininess;" +
"uniform mat4 model;" +
"uniform mat4 view;" +
"uniform mat4 projection;" +
"uniform mat4 normalTransform;" +
"uniform int lightCount;" +
"uniform vec3 falloff;" +
// careful changing the order of these fields. Some cards
// have issues with memory alignment
"struct Light {" +
" int type;" +
" vec3 color;" +
" vec3 position;" +
" vec3 direction;" +
" float angle;" +
" vec3 halfVector;" +
" float concentration;" +
"};" +
// nVidia cards have issues with arrays of structures
// so instead we create 8 instances of Light
"uniform Light lights0;" +
"uniform Light lights1;" +
"uniform Light lights2;" +
"uniform Light lights3;" +
"uniform Light lights4;" +
"uniform Light lights5;" +
"uniform Light lights6;" +
"uniform Light lights7;" +
// GLSL does not support switch
"Light getLight(int index){" +
" if(index == 0) return lights0;" +
" if(index == 1) return lights1;" +
" if(index == 2) return lights2;" +
" if(index == 3) return lights3;" +
" if(index == 4) return lights4;" +
" if(index == 5) return lights5;" +
" if(index == 6) return lights6;" +
// Do not use a conditional for the last return statement
// because some video cards will fail and complain that
// "not all paths return"
" return lights7;" +
"}" +
"void AmbientLight( inout vec3 totalAmbient, in vec3 ecPos, in Light light ) {" +
// Get the vector from the light to the vertex
// Get the distance from the current vector to the light position
" float d = length( light.position - ecPos );" +
" float attenuation = 1.0 / ( falloff[0] + ( falloff[1] * d ) + ( falloff[2] * d * d ));" +
" totalAmbient += light.color * attenuation;" +
"}" +
"void DirectionalLight( inout vec3 col, inout vec3 spec, in vec3 vertNormal, in vec3 ecPos, in Light light ) {" +
" float powerfactor = 0.0;" +
" float nDotVP = max(0.0, dot( vertNormal, normalize(-light.position) ));" +
" float nDotVH = max(0.0, dot( vertNormal, normalize(-light.position-normalize(ecPos) )));" +
" if( nDotVP != 0.0 ){" +
" powerfactor = pow( nDotVH, shininess );" +
" }" +
" col += light.color * nDotVP;" +
" spec += specular * powerfactor;" +
"}" +
"void PointLight( inout vec3 col, inout vec3 spec, in vec3 vertNormal, in vec3 ecPos, in Light light ) {" +
" float powerfactor;" +
// Get the vector from the light to the vertex
" vec3 VP = light.position - ecPos;" +
// Get the distance from the current vector to the light position
" float d = length( VP ); " +
// Normalize the light ray so it can be used in the dot product operation.
" VP = normalize( VP );" +
" float attenuation = 1.0 / ( falloff[0] + ( falloff[1] * d ) + ( falloff[2] * d * d ));" +
" float nDotVP = max( 0.0, dot( vertNormal, VP ));" +
" vec3 halfVector = normalize( VP - normalize(ecPos) );" +
" float nDotHV = max( 0.0, dot( vertNormal, halfVector ));" +
" if( nDotVP == 0.0) {" +
" powerfactor = 0.0;" +
" }" +
" else{" +
" powerfactor = pow( nDotHV, shininess );" +
" }" +
" spec += specular * powerfactor * attenuation;" +
" col += light.color * nDotVP * attenuation;" +
"}" +
/*
*/
"void SpotLight( inout vec3 col, inout vec3 spec, in vec3 vertNormal, in vec3 ecPos, in Light light ) {" +
" float spotAttenuation;" +
" float powerfactor;" +
// calculate the vector from the current vertex to the light.
" vec3 VP = light.position - ecPos; " +
" vec3 ldir = normalize( -light.direction );" +
// get the distance from the spotlight and the vertex
" float d = length( VP );" +
" VP = normalize( VP );" +
" float attenuation = 1.0 / ( falloff[0] + ( falloff[1] * d ) + ( falloff[2] * d * d ) );" +
// dot product of the vector from vertex to light and light direction.
" float spotDot = dot( VP, ldir );" +
// if the vertex falls inside the cone
(webglMaxTempsWorkaround ? // Windows reports max temps error if light.angle is used
" spotAttenuation = 1.0; " :
" if( spotDot > cos( light.angle ) ) {" +
" spotAttenuation = pow( spotDot, light.concentration );" +
" }" +
" else{" +
" spotAttenuation = 0.0;" +
" }" +
" attenuation *= spotAttenuation;" +
"") +
" float nDotVP = max( 0.0, dot( vertNormal, VP ));" +
" vec3 halfVector = normalize( VP - normalize(ecPos) );" +
" float nDotHV = max( 0.0, dot( vertNormal, halfVector ));" +
" if( nDotVP == 0.0 ) {" +
" powerfactor = 0.0;" +
" }" +
" else {" +
" powerfactor = pow( nDotHV, shininess );" +
" }" +
" spec += specular * powerfactor * attenuation;" +
" col += light.color * nDotVP * attenuation;" +
"}" +
"void main(void) {" +
" vec3 finalAmbient = vec3( 0.0, 0.0, 0.0 );" +
" vec3 finalDiffuse = vec3( 0.0, 0.0, 0.0 );" +
" vec3 finalSpecular = vec3( 0.0, 0.0, 0.0 );" +
" vec4 col = color;" +
" if(color[0] == -1.0){" +
" col = aColor;" +
" }" +
// We use the sphere vertices as the normals when we create the sphere buffer.
// But this only works if the sphere vertices are unit length, so we
// have to normalize the normals here. Since this is only required for spheres
// we could consider placing this in a conditional later on.
" vec3 norm = normalize(vec3( normalTransform * vec4( Normal, 0.0 ) ));" +
" vec4 ecPos4 = view * model * vec4(Vertex,1.0);" +
" vec3 ecPos = (vec3(ecPos4))/ecPos4.w;" +
// If there were no lights this draw call, just use the
// assigned fill color of the shape and the specular value
" if( lightCount == 0 ) {" +
" frontColor = col + vec4(mat_specular,1.0);" +
" }" +
" else {" +
// WebGL forces us to iterate over a constant value
// so we can't iterate using lightCount
" for( int i = 0; i < 8; i++ ) {" +
" Light l = getLight(i);" +
// We can stop iterating if we know we have gone past
// the number of lights which are on
" if( i >= lightCount ){" +
" break;" +
" }" +
" if( l.type == 0 ) {" +
" AmbientLight( finalAmbient, ecPos, l );" +
" }" +
" else if( l.type == 1 ) {" +
" DirectionalLight( finalDiffuse, finalSpecular, norm, ecPos, l );" +
" }" +
" else if( l.type == 2 ) {" +
" PointLight( finalDiffuse, finalSpecular, norm, ecPos, l );" +
" }" +
" else {" +
" SpotLight( finalDiffuse, finalSpecular, norm, ecPos, l );" +
" }" +
" }" +
" if( usingMat == false ) {" +
" frontColor = vec4(" +
" vec3(col) * finalAmbient +" +
" vec3(col) * finalDiffuse +" +
" vec3(col) * finalSpecular," +
" col[3] );" +
" }" +
" else{" +
" frontColor = vec4( " +
" mat_emissive + " +
" (vec3(col) * mat_ambient * finalAmbient) + " +
" (vec3(col) * finalDiffuse) + " +
" (mat_specular * finalSpecular), " +
" col[3] );" +
" }" +
" }" +
" vTexture.xy = aTexture.xy;" +
" gl_Position = projection * view * model * vec4( Vertex, 1.0 );" +
"}";
var fragmentShaderSource3D =
"#ifdef GL_ES\n" +
"precision highp float;\n" +
"#endif\n" +
"varying vec4 frontColor;" +
"uniform sampler2D sampler;" +
"uniform bool usingTexture;" +
"varying vec2 vTexture;" +
// In Processing, when a texture is used, the fill color is ignored
// vec4(1.0,1.0,1.0,0.5)
"void main(void){" +
" if(usingTexture){" +
" gl_FragColor = vec4(texture2D(sampler, vTexture.xy)) * frontColor;" +
" }"+
" else{" +
" gl_FragColor = frontColor;" +
" }" +
"}";
////////////////////////////////////////////////////////////////////////////
// 3D Functions
////////////////////////////////////////////////////////////////////////////
/*
* Sets a uniform variable in a program object to a particular
* value. Before calling this function, ensure the correct
* program object has been installed as part of the current
* rendering state by calling useProgram.
*
* On some systems, if the variable exists in the shader but isn't used,
* the compiler will optimize it out and this function will fail.
*
* @param {WebGLProgram} programObj program object returned from
* createProgramObject
* @param {String} varName the name of the variable in the shader
* @param {float | Array} varValue either a scalar value or an Array
*
* @returns none
*
* @see uniformi
* @see uniformMatrix
*/
function uniformf(cacheId, programObj, varName, varValue) {
var varLocation = curContextCache.locations[cacheId];
if(varLocation === undef) {
varLocation = curContext.getUniformLocation(programObj, varName);
curContextCache.locations[cacheId] = varLocation;
}
// the variable won't be found if it was optimized out.
if (varLocation !== null) {
if (varValue.length === 4) {
curContext.uniform4fv(varLocation, varValue);
} else if (varValue.length === 3) {
curContext.uniform3fv(varLocation, varValue);
} else if (varValue.length === 2) {
curContext.uniform2fv(varLocation, varValue);
} else {
curContext.uniform1f(varLocation, varValue);
}
}
}
/**
* Sets a uniform int or int array in a program object to a particular
* value. Before calling this function, ensure the correct
* program object has been installed as part of the current
* rendering state.
*
* On some systems, if the variable exists in the shader but isn't used,
* the compiler will optimize it out and this function will fail.
*
* @param {WebGLProgram} programObj program object returned from
* createProgramObject
* @param {String} varName the name of the variable in the shader
* @param {int | Array} varValue either a scalar value or an Array
*
* @returns none
*
* @see uniformf
* @see uniformMatrix
*/
function uniformi(cacheId, programObj, varName, varValue) {
var varLocation = curContextCache.locations[cacheId];
if(varLocation === undef) {
varLocation = curContext.getUniformLocation(programObj, varName);
curContextCache.locations[cacheId] = varLocation;
}
// the variable won't be found if it was optimized out.
if (varLocation !== null) {
if (varValue.length === 4) {
curContext.uniform4iv(varLocation, varValue);
} else if (varValue.length === 3) {
curContext.uniform3iv(varLocation, varValue);
} else if (varValue.length === 2) {
curContext.uniform2iv(varLocation, varValue);
} else {
curContext.uniform1i(varLocation, varValue);
}
}
}
/**
* Sets the value of a uniform matrix variable in a program
* object. Before calling this function, ensure the correct
* program object has been installed as part of the current
* rendering state.
*
* On some systems, if the variable exists in the shader but
* isn't used, the compiler will optimize it out and this
* function will fail.
*
* @param {WebGLProgram} programObj program object returned from
* createProgramObject
* @param {String} varName the name of the variable in the shader
* @param {boolean} transpose must be false
* @param {Array} matrix an array of 4, 9 or 16 values
*
* @returns none
*
* @see uniformi
* @see uniformf
*/
function uniformMatrix(cacheId, programObj, varName, transpose, matrix) {
var varLocation = curContextCache.locations[cacheId];
if(varLocation === undef) {
varLocation = curContext.getUniformLocation(programObj, varName);
curContextCache.locations[cacheId] = varLocation;
}
// the variable won't be found if it was optimized out.
if (varLocation !== -1) {
if (matrix.length === 16) {
curContext.uniformMatrix4fv(varLocation, transpose, matrix);
} else if (matrix.length === 9) {
curContext.uniformMatrix3fv(varLocation, transpose, matrix);
} else {
curContext.uniformMatrix2fv(varLocation, transpose, matrix);
}
}
}
/**
* Binds the VBO, sets the vertex attribute data for the program
* object and enables the attribute.
*
* On some systems, if the attribute exists in the shader but
* isn't used, the compiler will optimize it out and this
* function will fail.
*
* @param {WebGLProgram} programObj program object returned from
* createProgramObject
* @param {String} varName the name of the variable in the shader
* @param {int} size the number of components per vertex attribute
* @param {WebGLBuffer} VBO Vertex Buffer Object
*
* @returns none
*
* @see disableVertexAttribPointer
*/
function vertexAttribPointer(cacheId, programObj, varName, size, VBO) {
var varLocation = curContextCache.attributes[cacheId];
if(varLocation === undef) {
varLocation = curContext.getAttribLocation(programObj, varName);
curContextCache.attributes[cacheId] = varLocation;
}
if (varLocation !== -1) {
curContext.bindBuffer(curContext.ARRAY_BUFFER, VBO);
curContext.vertexAttribPointer(varLocation, size, curContext.FLOAT, false, 0, 0);
curContext.enableVertexAttribArray(varLocation);
}
}
/**
* Disables a program object attribute from being sent to WebGL.
*
* @param {WebGLProgram} programObj program object returned from
* createProgramObject
* @param {String} varName name of the attribute
*
* @returns none
*
* @see vertexAttribPointer
*/
function disableVertexAttribPointer(cacheId, programObj, varName){
var varLocation = curContextCache.attributes[cacheId];
if(varLocation === undef) {
varLocation = curContext.getAttribLocation(programObj, varName);
curContextCache.attributes[cacheId] = varLocation;
}
if (varLocation !== -1) {
curContext.disableVertexAttribArray(varLocation);
}
}
/**
* Creates a WebGL program object.
*
* @param {String} vetexShaderSource
* @param {String} fragmentShaderSource
*
* @returns {WebGLProgram} A program object
*/
var createProgramObject = function(curContext, vetexShaderSource, fragmentShaderSource) {
var vertexShaderObject = curContext.createShader(curContext.VERTEX_SHADER);
curContext.shaderSource(vertexShaderObject, vetexShaderSource);
curContext.compileShader(vertexShaderObject);
if (!curContext.getShaderParameter(vertexShaderObject, curContext.COMPILE_STATUS)) {
throw curContext.getShaderInfoLog(vertexShaderObject);
}
var fragmentShaderObject = curContext.createShader(curContext.FRAGMENT_SHADER);
curContext.shaderSource(fragmentShaderObject, fragmentShaderSource);
curContext.compileShader(fragmentShaderObject);
if (!curContext.getShaderParameter(fragmentShaderObject, curContext.COMPILE_STATUS)) {
throw curContext.getShaderInfoLog(fragmentShaderObject);
}
var programObject = curContext.createProgram();
curContext.attachShader(programObject, vertexShaderObject);
curContext.attachShader(programObject, fragmentShaderObject);
curContext.linkProgram(programObject);
if (!curContext.getProgramParameter(programObject, curContext.LINK_STATUS)) {
throw "Error linking shaders.";
}
return programObject;
};
////////////////////////////////////////////////////////////////////////////
// 2D/3D drawing handling
////////////////////////////////////////////////////////////////////////////
var imageModeCorner = function(x, y, w, h, whAreSizes) {
return {
x: x,
y: y,
w: w,
h: h
};
};
var imageModeConvert = imageModeCorner;
var imageModeCorners = function(x, y, w, h, whAreSizes) {
return {
x: x,
y: y,
w: whAreSizes ? w : w - x,
h: whAreSizes ? h : h - y
};
};
var imageModeCenter = function(x, y, w, h, whAreSizes) {
return {
x: x - w / 2,
y: y - h / 2,
w: w,
h: h
};
};
// Objects for shared, 2D and 3D contexts
var DrawingShared = function(){};
var Drawing2D = function(){};
var Drawing3D = function(){};
var DrawingPre = function(){};
// Setup the prototype chain
Drawing2D.prototype = new DrawingShared();
Drawing2D.prototype.constructor = Drawing2D;
Drawing3D.prototype = new DrawingShared();
Drawing3D.prototype.constructor = Drawing3D;
DrawingPre.prototype = new DrawingShared();
DrawingPre.prototype.constructor = DrawingPre;
// A no-op function for when the user calls 3D functions from a 2D sketch
// We can change this to a throw or console.error() later if we want
DrawingShared.prototype.a3DOnlyFunction = nop;
////////////////////////////////////////////////////////////////////////////
// Char handling
////////////////////////////////////////////////////////////////////////////
var charMap = {};
var Char = p.Character = function(chr) {
if (typeof chr === 'string' && chr.length === 1) {
this.code = chr.charCodeAt(0);
} else if (typeof chr === 'number') {
this.code = chr;
} else if (chr instanceof Char) {
this.code = chr;
} else {
this.code = NaN;
}
return (charMap[this.code] === undef) ? charMap[this.code] = this : charMap[this.code];
};
Char.prototype.toString = function() {
return String.fromCharCode(this.code);
};
Char.prototype.valueOf = function() {
return this.code;
};
/**
* Datatype for storing shapes. Processing can currently load and display SVG (Scalable Vector Graphics) shapes.
* Before a shape is used, it must be loaded with the <b>loadShape()</b> function. The <b>shape()</b> function is used to draw the shape to the display window.
* The <b>PShape</b> object contain a group of methods, linked below, that can operate on the shape data.
* <br><br>The <b>loadShape()</b> method supports SVG files created with Inkscape and Adobe Illustrator.
* It is not a full SVG implementation, but offers some straightforward support for handling vector data.
*
* @param {int} family the shape type, one of GROUP, PRIMITIVE, PATH, or GEOMETRY
*
* @see #shape()
* @see #loadShape()
* @see #shapeMode()
*/
var PShape = p.PShape = function(family) {
this.family = family || PConstants.GROUP;
this.visible = true;
this.style = true;
this.children = [];
this.nameTable = [];
this.params = [];
this.name = "";
this.image = null; //type PImage
this.matrix = null;
this.kind = null;
this.close = null;
this.width = null;
this.height = null;
this.parent = null;
};
/**
* PShape methods
* missing: findChild(), apply(), contains(), findChild(), getPrimitive(), getParams(), getVertex() , getVertexCount(),
* getVertexCode() , getVertexCodes() , getVertexCodeCount(), getVertexX(), getVertexY(), getVertexZ()
*/
PShape.prototype = {
/**
* @member PShape
* The isVisible() function returns a boolean value "true" if the image is set to be visible, "false" if not. This is modified with the <b>setVisible()</b> parameter.
* <br><br>The visibility of a shape is usually controlled by whatever program created the SVG file.
* For instance, this parameter is controlled by showing or hiding the shape in the layers palette in Adobe Illustrator.
*
* @return {boolean} returns "true" if the image is set to be visible, "false" if not
*/
isVisible: function(){
return this.visible;
},
/**
* @member PShape
* The setVisible() function sets the shape to be visible or invisible. This is determined by the value of the <b>visible</b> parameter.
* <br><br>The visibility of a shape is usually controlled by whatever program created the SVG file.
* For instance, this parameter is controlled by showing or hiding the shape in the layers palette in Adobe Illustrator.
*
* @param {boolean} visible "false" makes the shape invisible and "true" makes it visible
*/
setVisible: function (visible){
this.visible = visible;
},
/**
* @member PShape
* The disableStyle() function disables the shape's style data and uses Processing's current styles. Styles include attributes such as colors, stroke weight, and stroke joints.
* Overrides this shape's style information and uses PGraphics styles and colors. Identical to ignoreStyles(true). Also disables styles for all child shapes.
*/
disableStyle: function(){
this.style = false;
for(var i = 0, j=this.children.length; i<j; i++) {
this.children[i].disableStyle();
}
},
/**
* @member PShape
* The enableStyle() function enables the shape's style data and ignores Processing's current styles. Styles include attributes such as colors, stroke weight, and stroke joints.
*/
enableStyle: function(){
this.style = true;
for(var i = 0, j=this.children.length; i<j; i++) {
this.children[i].enableStyle();
}
},
/**
* @member PShape
* The getFamily function returns the shape type
*
* @return {int} the shape type, one of GROUP, PRIMITIVE, PATH, or GEOMETRY
*/
getFamily: function(){
return this.family;
},
/**
* @member PShape
* The getWidth() function gets the width of the drawing area (not necessarily the shape boundary).
*/
getWidth: function(){
return this.width;
},
/**
* @member PShape
* The getHeight() function gets the height of the drawing area (not necessarily the shape boundary).
*/
getHeight: function(){
return this.height;
},
/**
* @member PShape
* The setName() function sets the name of the shape
*
* @param {String} name the name of the shape
*/
setName: function(name){
this.name = name;
},
/**
* @member PShape
* The getName() function returns the name of the shape
*
* @return {String} the name of the shape
*/
getName: function(){
return this.name;
},
/**
* @member PShape
* Called by the following (the shape() command adds the g)
* PShape s = loadShapes("blah.svg");
* shape(s);
*/
draw: function(){
if (this.visible) {
this.pre();
this.drawImpl();
this.post();
}
},
/**
* @member PShape
* the drawImpl() function draws the SVG document.
*/
drawImpl: function(){
if (this.family === PConstants.GROUP) {
this.drawGroup();
} else if (this.family === PConstants.PRIMITIVE) {
this.drawPrimitive();
} else if (this.family === PConstants.GEOMETRY) {
this.drawGeometry();
} else if (this.family === PConstants.PATH) {
this.drawPath();
}
},
/**
* @member PShape
* The drawPath() function draws the <path> part of the SVG document.
*/
drawPath: function(){
var i, j;
if (this.vertices.length === 0) { return; }
p.beginShape();
if (this.vertexCodes.length === 0) { // each point is a simple vertex
if (this.vertices[0].length === 2) { // drawing 2D vertices
for (i = 0, j = this.vertices.length; i < j; i++) {
p.vertex(this.vertices[i][0], this.vertices[i][1]);
}
} else { // drawing 3D vertices
for (i = 0, j = this.vertices.length; i < j; i++) {
p.vertex(this.vertices[i][0],
this.vertices[i][1],
this.vertices[i][2]);
}
}
} else { // coded set of vertices
var index = 0;
if (this.vertices[0].length === 2) { // drawing a 2D path
for (i = 0, j = this.vertexCodes.length; i < j; i++) {
if (this.vertexCodes[i] === PConstants.VERTEX) {
p.vertex(this.vertices[index][0], this.vertices[index][1]);
if ( this.vertices[index]["moveTo"] === true) {
vertArray[vertArray.length-1]["moveTo"] = true;
} else if ( this.vertices[index]["moveTo"] === false) {
vertArray[vertArray.length-1]["moveTo"] = false;
}
p.breakShape = false;
index++;
} else if (this.vertexCodes[i] === PConstants.BEZIER_VERTEX) {
p.bezierVertex(this.vertices[index+0][0],
this.vertices[index+0][1],
this.vertices[index+1][0],
this.vertices[index+1][1],
this.vertices[index+2][0],
this.vertices[index+2][1]);
index += 3;
} else if (this.vertexCodes[i] === PConstants.CURVE_VERTEX) {
p.curveVertex(this.vertices[index][0],
this.vertices[index][1]);
index++;
} else if (this.vertexCodes[i] === PConstants.BREAK) {
p.breakShape = true;
}
}
} else { // drawing a 3D path
for (i = 0, j = this.vertexCodes.length; i < j; i++) {
if (this.vertexCodes[i] === PConstants.VERTEX) {
p.vertex(this.vertices[index][0],
this.vertices[index][1],
this.vertices[index][2]);
if (this.vertices[index]["moveTo"] === true) {
vertArray[vertArray.length-1]["moveTo"] = true;
} else if (this.vertices[index]["moveTo"] === false) {
vertArray[vertArray.length-1]["moveTo"] = false;
}
p.breakShape = false;
} else if (this.vertexCodes[i] === PConstants.BEZIER_VERTEX) {
p.bezierVertex(this.vertices[index+0][0],
this.vertices[index+0][1],
this.vertices[index+0][2],
this.vertices[index+1][0],
this.vertices[index+1][1],
this.vertices[index+1][2],
this.vertices[index+2][0],
this.vertices[index+2][1],
this.vertices[index+2][2]);
index += 3;
} else if (this.vertexCodes[i] === PConstants.CURVE_VERTEX) {
p.curveVertex(this.vertices[index][0],
this.vertices[index][1],
this.vertices[index][2]);
index++;
} else if (this.vertexCodes[i] === PConstants.BREAK) {
p.breakShape = true;
}
}
}
}
p.endShape(this.close ? PConstants.CLOSE : PConstants.OPEN);
},
/**
* @member PShape
* The drawGeometry() function draws the geometry part of the SVG document.
*/
drawGeometry: function() {
var i, j;
p.beginShape(this.kind);
if (this.style) {
for (i = 0, j = this.vertices.length; i < j; i++) {
p.vertex(this.vertices[i]);
}
} else {
for (i = 0, j = this.vertices.length; i < j; i++) {
var vert = this.vertices[i];
if (vert[2] === 0) {
p.vertex(vert[0], vert[1]);
} else {
p.vertex(vert[0], vert[1], vert[2]);
}
}
}
p.endShape();
},
/**
* @member PShape
* The drawGroup() function draws the <g> part of the SVG document.
*/
drawGroup: function() {
for (var i = 0, j = this.children.length; i < j; i++) {
this.children[i].draw();
}
},
/**
* @member PShape
* The drawPrimitive() function draws SVG document shape elements. These can be point, line, triangle, quad, rect, ellipse, arc, box, or sphere.
*/
drawPrimitive: function() {
if (this.kind === PConstants.POINT) {
p.point(this.params[0], this.params[1]);
} else if (this.kind === PConstants.LINE) {
if (this.params.length === 4) { // 2D
p.line(this.params[0], this.params[1],
this.params[2], this.params[3]);
} else { // 3D
p.line(this.params[0], this.params[1], this.params[2],
this.params[3], this.params[4], this.params[5]);
}
} else if (this.kind === PConstants.TRIANGLE) {
p.triangle(this.params[0], this.params[1],
this.params[2], this.params[3],
this.params[4], this.params[5]);
} else if (this.kind === PConstants.QUAD) {
p.quad(this.params[0], this.params[1],
this.params[2], this.params[3],
this.params[4], this.params[5],
this.params[6], this.params[7]);
} else if (this.kind === PConstants.RECT) {
if (this.image !== null) {
p.imageMode(PConstants.CORNER);
p.image(this.image,
this.params[0],
this.params[1],
this.params[2],
this.params[3]);
} else {
p.rectMode(PConstants.CORNER);
p.rect(this.params[0],
this.params[1],
this.params[2],
this.params[3]);
}
} else if (this.kind === PConstants.ELLIPSE) {
p.ellipseMode(PConstants.CORNER);
p.ellipse(this.params[0],
this.params[1],
this.params[2],
this.params[3]);
} else if (this.kind === PConstants.ARC) {
p.ellipseMode(PConstants.CORNER);
p.arc(this.params[0],
this.params[1],
this.params[2],
this.params[3],
this.params[4],
this.params[5]);
} else if (this.kind === PConstants.BOX) {
if (this.params.length === 1) {
p.box(this.params[0]);
} else {
p.box(this.params[0], this.params[1], this.params[2]);
}
} else if (this.kind === PConstants.SPHERE) {
p.sphere(this.params[0]);
}
},
/**
* @member PShape
* The pre() function performs the preparations before the SVG is drawn. This includes doing transformations and storing previous styles.
*/
pre: function() {
if (this.matrix) {
p.pushMatrix();
curContext.transform(this.matrix.elements[0],
this.matrix.elements[3],
this.matrix.elements[1],
this.matrix.elements[4],
this.matrix.elements[2],
this.matrix.elements[5]);
//p.applyMatrix(this.matrix.elements[0],this.matrix.elements[0]);
}
if (this.style) {
p.pushStyle();
this.styles();
}
},
/**
* @member PShape
* The post() function performs the necessary actions after the SVG is drawn. This includes removing transformations and removing added styles.
*/
post: function() {
if (this.matrix) {
p.popMatrix();
}
if (this.style) {
p.popStyle();
}
},
/**
* @member PShape
* The styles() function changes the Processing's current styles
*/
styles: function() {
if (this.stroke) {
p.stroke(this.strokeColor);
p.strokeWeight(this.strokeWeight);
p.strokeCap(this.strokeCap);
p.strokeJoin(this.strokeJoin);
} else {
p.noStroke();
}
if (this.fill) {
p.fill(this.fillColor);
} else {
p.noFill();
}
},
/**
* @member PShape
* The getChild() function extracts a child shape from a parent shape. Specify the name of the shape with the <b>target</b> parameter or the
* layer position of the shape to get with the <b>index</b> parameter.
* The shape is returned as a <b>PShape</b> object, or <b>null</b> is returned if there is an error.
*
* @param {String} target the name of the shape to get
* @param {int} index the layer position of the shape to get
*
* @return {PShape} returns a child element of a shape as a PShape object or null if there is an error
*/
getChild: function(child) {
var i, j;
if (typeof child === 'number') {
return this.children[child];
}
var found;
if(child === "" || this.name === child){
return this;
}
if(this.nameTable.length > 0) {
for(i = 0, j = this.nameTable.length; i < j || found; i++) {
if(this.nameTable[i].getName === child) {
found = this.nameTable[i];
break;
}
}
if (found) { return found; }
}
for(i = 0, j = this.children.length; i < j; i++) {
found = this.children[i].getChild(child);
if(found) { return found; }
}
return null;
},
/**
* @member PShape
* The getChildCount() returns the number of children
*
* @return {int} returns a count of children
*/
getChildCount: function () {
return this.children.length;
},
/**
* @member PShape
* The addChild() adds a child to the PShape.
*
* @param {PShape} child the child to add
*/
addChild: function( child ) {
this.children.push(child);
child.parent = this;
if (child.getName() !== null) {
this.addName(child.getName(), child);
}
},
/**
* @member PShape
* The addName() functions adds a shape to the name lookup table.
*
* @param {String} name the name to be added
* @param {PShape} shape the shape
*/
addName: function(name, shape) {
if (this.parent !== null) {
this.parent.addName( name, shape );
} else {
this.nameTable.push( [name, shape] );
}
},
/**
* @member PShape
* The translate() function specifies an amount to displace the shape. The <b>x</b> parameter specifies left/right translation, the <b>y</b> parameter specifies up/down translation, and the <b>z</b> parameter specifies translations toward/away from the screen.
* Subsequent calls to the method accumulates the effect. For example, calling <b>translate(50, 0)</b> and then <b>translate(20, 0)</b> is the same as <b>translate(70, 0)</b>.
* This transformation is applied directly to the shape, it's not refreshed each time <b>draw()</b> is run.
* <br><br>Using this method with the <b>z</b> parameter requires using the P3D or OPENGL parameter in combination with size.
*
* @param {int|float} x left/right translation
* @param {int|float} y up/down translation
* @param {int|float} z forward/back translation
*
* @see PMatrix2D#translate
* @see PMatrix3D#translate
*/
translate: function() {
if(arguments.length === 2)
{
this.checkMatrix(2);
this.matrix.translate(arguments[0], arguments[1]);
} else {
this.checkMatrix(3);
this.matrix.translate(arguments[0], arguments[1], 0);
}
},
/**
* @member PShape
* The checkMatrix() function makes sure that the shape's matrix is 1) not null, and 2) has a matrix
* that can handle <em>at least</em> the specified number of dimensions.
*
* @param {int} dimensions the specified number of dimensions
*/
checkMatrix: function(dimensions) {
if(this.matrix === null) {
if(dimensions === 2) {
this.matrix = new p.PMatrix2D();
} else {
this.matrix = new p.PMatrix3D();
}
}else if(dimensions === 3 && this.matrix instanceof p.PMatrix2D) {
this.matrix = new p.PMatrix3D();
}
},
/**
* @member PShape
* The rotateX() function rotates a shape around the x-axis the amount specified by the <b>angle</b> parameter. Angles should be specified in radians (values from 0 to TWO_PI) or converted to radians with the <b>radians()</b> method.
* <br><br>Shapes are always rotated around the upper-left corner of their bounding box. Positive numbers rotate objects in a clockwise direction.
* Subsequent calls to the method accumulates the effect. For example, calling <b>rotateX(HALF_PI)</b> and then <b>rotateX(HALF_PI)</b> is the same as <b>rotateX(PI)</b>.
* This transformation is applied directly to the shape, it's not refreshed each time <b>draw()</b> is run.
* <br><br>This method requires a 3D renderer. You need to pass P3D or OPENGL as a third parameter into the <b>size()</b> method as shown in the example above.
*
* @param {float}angle angle of rotation specified in radians
*
* @see PMatrix3D#rotateX
*/
rotateX: function(angle) {
this.rotate(angle, 1, 0, 0);
},
/**
* @member PShape
* The rotateY() function rotates a shape around the y-axis the amount specified by the <b>angle</b> parameter. Angles should be specified in radians (values from 0 to TWO_PI) or converted to radians with the <b>radians()</b> method.
* <br><br>Shapes are always rotated around the upper-left corner of their bounding box. Positive numbers rotate objects in a clockwise direction.
* Subsequent calls to the method accumulates the effect. For example, calling <b>rotateY(HALF_PI)</b> and then <b>rotateY(HALF_PI)</b> is the same as <b>rotateY(PI)</b>.
* This transformation is applied directly to the shape, it's not refreshed each time <b>draw()</b> is run.
* <br><br>This method requires a 3D renderer. You need to pass P3D or OPENGL as a third parameter into the <b>size()</b> method as shown in the example above.
*
* @param {float}angle angle of rotation specified in radians
*
* @see PMatrix3D#rotateY
*/
rotateY: function(angle) {
this.rotate(angle, 0, 1, 0);
},
/**
* @member PShape
* The rotateZ() function rotates a shape around the z-axis the amount specified by the <b>angle</b> parameter. Angles should be specified in radians (values from 0 to TWO_PI) or converted to radians with the <b>radians()</b> method.
* <br><br>Shapes are always rotated around the upper-left corner of their bounding box. Positive numbers rotate objects in a clockwise direction.
* Subsequent calls to the method accumulates the effect. For example, calling <b>rotateZ(HALF_PI)</b> and then <b>rotateZ(HALF_PI)</b> is the same as <b>rotateZ(PI)</b>.
* This transformation is applied directly to the shape, it's not refreshed each time <b>draw()</b> is run.
* <br><br>This method requires a 3D renderer. You need to pass P3D or OPENGL as a third parameter into the <b>size()</b> method as shown in the example above.
*
* @param {float}angle angle of rotation specified in radians
*
* @see PMatrix3D#rotateZ
*/
rotateZ: function(angle) {
this.rotate(angle, 0, 0, 1);
},
/**
* @member PShape
* The rotate() function rotates a shape the amount specified by the <b>angle</b> parameter. Angles should be specified in radians (values from 0 to TWO_PI) or converted to radians with the <b>radians()</b> method.
* <br><br>Shapes are always rotated around the upper-left corner of their bounding box. Positive numbers rotate objects in a clockwise direction.
* Transformations apply to everything that happens after and subsequent calls to the method accumulates the effect.
* For example, calling <b>rotate(HALF_PI)</b> and then <b>rotate(HALF_PI)</b> is the same as <b>rotate(PI)</b>.
* This transformation is applied directly to the shape, it's not refreshed each time <b>draw()</b> is run.
* If optional parameters x,y,z are supplied, the rotate is about the point (x, y, z).
*
* @param {float}angle angle of rotation specified in radians
* @param {float}x x-coordinate of the point
* @param {float}y y-coordinate of the point
* @param {float}z z-coordinate of the point
* @see PMatrix2D#rotate
* @see PMatrix3D#rotate
*/
rotate: function() {
if(arguments.length === 1){
this.checkMatrix(2);
this.matrix.rotate(arguments[0]);
} else {
this.checkMatrix(3);
this.matrix.rotate(arguments[0],
arguments[1],
arguments[2],
arguments[3]);
}
},
/**
* @member PShape
* The scale() function increases or decreases the size of a shape by expanding and contracting vertices. Shapes always scale from the relative origin of their bounding box.
* Scale values are specified as decimal percentages. For example, the method call <b>scale(2.0)</b> increases the dimension of a shape by 200%.
* Subsequent calls to the method multiply the effect. For example, calling <b>scale(2.0)</b> and then <b>scale(1.5)</b> is the same as <b>scale(3.0)</b>.
* This transformation is applied directly to the shape, it's not refreshed each time <b>draw()</b> is run.
* <br><br>Using this fuction with the <b>z</b> parameter requires passing P3D or OPENGL into the size() parameter.
*
* @param {float}s percentage to scale the object
* @param {float}x percentage to scale the object in the x-axis
* @param {float}y percentage to scale the object in the y-axis
* @param {float}z percentage to scale the object in the z-axis
*
* @see PMatrix2D#scale
* @see PMatrix3D#scale
*/
scale: function() {
if(arguments.length === 2) {
this.checkMatrix(2);
this.matrix.scale(arguments[0], arguments[1]);
} else if (arguments.length === 3) {
this.checkMatrix(2);
this.matrix.scale(arguments[0], arguments[1], arguments[2]);
} else {
this.checkMatrix(2);
this.matrix.scale(arguments[0]);
}
},
/**
* @member PShape
* The resetMatrix() function resets the matrix
*
* @see PMatrix2D#reset
* @see PMatrix3D#reset
*/
resetMatrix: function() {
this.checkMatrix(2);
this.matrix.reset();
},
/**
* @member PShape
* The applyMatrix() function multiplies this matrix by another matrix of type PMatrix3D or PMatrix2D.
* Individual elements can also be provided
*
* @param {PMatrix3D|PMatrix2D} matrix the matrix to multiply by
*
* @see PMatrix2D#apply
* @see PMatrix3D#apply
*/
applyMatrix: function(matrix) {
if (arguments.length === 1) {
this.applyMatrix(matrix.elements[0],
matrix.elements[1], 0,
matrix.elements[2],
matrix.elements[3],
matrix.elements[4], 0,
matrix.elements[5],
0, 0, 1, 0,
0, 0, 0, 1);
} else if (arguments.length === 6) {
this.checkMatrix(2);
this.matrix.apply(arguments[0], arguments[1], arguments[2], 0,
arguments[3], arguments[4], arguments[5], 0,
0, 0, 1, 0,
0, 0, 0, 1);
} else if (arguments.length === 16) {
this.checkMatrix(3);
this.matrix.apply(arguments[0],
arguments[1],
arguments[2],
arguments[3],
arguments[4],
arguments[5],
arguments[6],
arguments[7],
arguments[8],
arguments[9],
arguments[10],
arguments[11],
arguments[12],
arguments[13],
arguments[14],
arguments[15]);
}
}
};
/**
* SVG stands for Scalable Vector Graphics, a portable graphics format. It is
* a vector format so it allows for infinite resolution and relatively small
* file sizes. Most modern media software can view SVG files, including Adobe
* products, Firefox, etc. Illustrator and Inkscape can edit SVG files.
*
* @param {PApplet} parent typically use "this"
* @param {String} filename name of the SVG file to load
* @param {XMLElement} xml an XMLElement element
* @param {PShapeSVG} parent the parent PShapeSVG
*
* @see PShape
*/
var PShapeSVG = p.PShapeSVG = function() {
p.PShape.call( this ); // PShape is the base class.
if (arguments.length === 1) { //xml element coming in
this.element = arguments[0] ;//new p.XMLElement(null, arguments[0]);
// set values to their defaults according to the SVG spec
this.vertexCodes = [];
this.vertices = [];
this.opacity = 1;
this.stroke = false;
this.strokeColor = PConstants.ALPHA_MASK;
this.strokeWeight = 1;
this.strokeCap = PConstants.SQUARE; // BUTT in svg spec
this.strokeJoin = PConstants.MITER;
this.strokeGradient = null;
this.strokeGradientPaint = null;
this.strokeName = null;
this.strokeOpacity = 1;
this.fill = true;
this.fillColor = PConstants.ALPHA_MASK;
this.fillGradient = null;
this.fillGradientPaint = null;
this.fillName = null;
this.fillOpacity = 1;
if (this.element.getName() !== "svg") {
throw("root is not <svg>, it's <" + this.element.getName() + ">");
}
}
else if (arguments.length === 2) {
if (typeof arguments[1] === 'string') {
if (arguments[1].indexOf(".svg") > -1) { //its a filename
this.element = new p.XMLElement(null, arguments[1]);
// set values to their defaults according to the SVG spec
this.vertexCodes = [];
this.vertices = [];
this.opacity = 1;
this.stroke = false;
this.strokeColor = PConstants.ALPHA_MASK;
this.strokeWeight = 1;
this.strokeCap = PConstants.SQUARE; // BUTT in svg spec
this.strokeJoin = PConstants.MITER;
this.strokeGradient = "";
this.strokeGradientPaint = "";
this.strokeName = "";
this.strokeOpacity = 1;
this.fill = true;
this.fillColor = PConstants.ALPHA_MASK;
this.fillGradient = null;
this.fillGradientPaint = null;
this.fillOpacity = 1;
}
} else { // XMLElement
if (arguments[0]) { // PShapeSVG
this.element = arguments[1];
this.vertexCodes = arguments[0].vertexCodes.slice();
this.vertices = arguments[0].vertices.slice();
this.stroke = arguments[0].stroke;
this.strokeColor = arguments[0].strokeColor;
this.strokeWeight = arguments[0].strokeWeight;
this.strokeCap = arguments[0].strokeCap;
this.strokeJoin = arguments[0].strokeJoin;
this.strokeGradient = arguments[0].strokeGradient;
this.strokeGradientPaint = arguments[0].strokeGradientPaint;
this.strokeName = arguments[0].strokeName;
this.fill = arguments[0].fill;
this.fillColor = arguments[0].fillColor;
this.fillGradient = arguments[0].fillGradient;
this.fillGradientPaint = arguments[0].fillGradientPaint;
this.fillName = arguments[0].fillName;
this.strokeOpacity = arguments[0].strokeOpacity;
this.fillOpacity = arguments[0].fillOpacity;
this.opacity = arguments[0].opacity;
}
}
}
this.name = this.element.getStringAttribute("id");
var displayStr = this.element.getStringAttribute("display", "inline");
this.visible = displayStr !== "none";
var str = this.element.getAttribute("transform");
if (str) {
this.matrix = this.parseMatrix(str);
}
// not proper parsing of the viewBox, but will cover us for cases where
// the width and height of the object is not specified
var viewBoxStr = this.element.getStringAttribute("viewBox");
if ( viewBoxStr !== null ) {
var viewBox = viewBoxStr.split(" ");
this.width = viewBox[2];
this.height = viewBox[3];
}
// TODO if viewbox is not same as width/height, then use it to scale
// the original objects. for now, viewbox only used when width/height
// are empty values (which by the spec means w/h of "100%"
var unitWidth = this.element.getStringAttribute("width");
var unitHeight = this.element.getStringAttribute("height");
if (unitWidth !== null) {
this.width = this.parseUnitSize(unitWidth);
this.height = this.parseUnitSize(unitHeight);
} else {
if ((this.width === 0) || (this.height === 0)) {
// For the spec, the default is 100% and 100%. For purposes
// here, insert a dummy value because this is prolly just a
// font or something for which the w/h doesn't matter.
this.width = 1;
this.height = 1;
//show warning
throw("The width and/or height is not " +
"readable in the <svg> tag of this file.");
}
}
this.parseColors(this.element);
this.parseChildren(this.element);
};
/**
* PShapeSVG methods
* missing: getChild(), print(), parseStyleAttributes(), styles() - deals with strokeGradient and fillGradient
*/
PShapeSVG.prototype = new PShape();
/**
* @member PShapeSVG
* The parseMatrix() function parses the specified SVG matrix into a PMatrix2D. Note that PMatrix2D
* is rotated relative to the SVG definition, so parameters are rearranged
* here. More about the transformation matrices in
* <a href="http://www.w3.org/TR/SVG/coords.html#TransformAttribute">this section</a>
* of the SVG documentation.
*
* @param {String} str text of the matrix param.
*
* @return {PMatrix2D} a PMatrix2D
*/
PShapeSVG.prototype.parseMatrix = (function() {
function getCoords(s) {
var m = [];
s.replace(/\((.*?)\)/, (function() {
return function(all, params) {
// get the coordinates that can be separated by spaces or a comma
m = params.replace(/,+/g, " ").split(/\s+/);
};
}()));
return m;
}
return function(str) {
this.checkMatrix(2);
var pieces = [];
str.replace(/\s*(\w+)\((.*?)\)/g, function(all) {
// get a list of transform definitions
pieces.push(p.trim(all));
});
if (pieces.length === 0) {
return null;
}
for (var i = 0, j = pieces.length; i < j; i++) {
var m = getCoords(pieces[i]);
if (pieces[i].indexOf("matrix") !== -1) {
this.matrix.set(m[0], m[2], m[4], m[1], m[3], m[5]);
} else if (pieces[i].indexOf("translate") !== -1) {
var tx = m[0];
var ty = (m.length === 2) ? m[1] : 0;
this.matrix.translate(tx,ty);
} else if (pieces[i].indexOf("scale") !== -1) {
var sx = m[0];
var sy = (m.length === 2) ? m[1] : m[0];
this.matrix.scale(sx,sy);
} else if (pieces[i].indexOf("rotate") !== -1) {
var angle = m[0];
if (m.length === 1) {
// XXX(jeresig)
this.matrix.rotate(p.angleMode === "degrees" ? angle: p.radians(angle));
} else if (m.length === 3) {
this.matrix.translate(m[1], m[2]);
// XXX(jeresig)
this.matrix.rotate(p.angleMode === "degrees" ? m[0] : p.radians(m[0]));
this.matrix.translate(-m[1], -m[2]);
}
} else if (pieces[i].indexOf("skewX") !== -1) {
this.matrix.skewX(parseFloat(m[0]));
} else if (pieces[i].indexOf("skewY") !== -1) {
this.matrix.skewY(m[0]);
}
}
return this.matrix;
};
}());
/**
* @member PShapeSVG
* The parseChildren() function parses the specified XMLElement
*
* @param {XMLElement}element the XMLElement to parse
*/
PShapeSVG.prototype.parseChildren = function(element) {
var newelement = element.getChildren();
var children = new p.PShape();
for (var i = 0, j = newelement.length; i < j; i++) {
var kid = this.parseChild(newelement[i]);
if (kid) {
children.addChild(kid);
}
}
this.children.push(children);
};
/**
* @member PShapeSVG
* The getName() function returns the name
*
* @return {String} the name
*/
PShapeSVG.prototype.getName = function() {
return this.name;
};
/**
* @member PShapeSVG
* The parseChild() function parses a child XML element.
*
* @param {XMLElement} elem the element to parse
*
* @return {PShape} the newly created PShape
*/
PShapeSVG.prototype.parseChild = function( elem ) {
var name = elem.getName();
var shape;
if (name === "g") {
shape = new PShapeSVG(this, elem);
} else if (name === "defs") {
// generally this will contain gradient info, so may
// as well just throw it into a group element for parsing
shape = new PShapeSVG(this, elem);
} else if (name === "line") {
shape = new PShapeSVG(this, elem);
shape.parseLine();
} else if (name === "circle") {
shape = new PShapeSVG(this, elem);
shape.parseEllipse(true);
} else if (name === "ellipse") {
shape = new PShapeSVG(this, elem);
shape.parseEllipse(false);
} else if (name === "rect") {
shape = new PShapeSVG(this, elem);
shape.parseRect();
} else if (name === "polygon") {
shape = new PShapeSVG(this, elem);
shape.parsePoly(true);
} else if (name === "polyline") {
shape = new PShapeSVG(this, elem);
shape.parsePoly(false);
} else if (name === "path") {
shape = new PShapeSVG(this, elem);
shape.parsePath();
} else if (name === "radialGradient") {
//return new RadialGradient(this, elem);
unimplemented('PShapeSVG.prototype.parseChild, name = radialGradient');
} else if (name === "linearGradient") {
//return new LinearGradient(this, elem);
unimplemented('PShapeSVG.prototype.parseChild, name = linearGradient');
} else if (name === "text") {
unimplemented('PShapeSVG.prototype.parseChild, name = text');
} else if (name === "filter") {
unimplemented('PShapeSVG.prototype.parseChild, name = filter');
} else if (name === "mask") {
unimplemented('PShapeSVG.prototype.parseChild, name = mask');
} else {
// ignoring
nop();
}
return shape;
};
/**
* @member PShapeSVG
* The parsePath() function parses the <path> element of the svg file
* A path is defined by including a path element which contains a d="(path data)" attribute, where the d attribute contains
* the moveto, line, curve (both cubic and quadratic Beziers), arc and closepath instructions.
**/
PShapeSVG.prototype.parsePath = function() {
this.family = PConstants.PATH;
this.kind = 0;
var pathDataChars = [];
var c;
//change multiple spaces and commas to single space
var pathData = p.trim(this.element.getStringAttribute("d")
.replace(/[\s,]+/g,' '));
if (pathData === null) {
return;
}
pathData = p.__toCharArray(pathData);
var cx = 0,
cy = 0,
ctrlX = 0,
ctrlY = 0,
ctrlX1 = 0,
ctrlX2 = 0,
ctrlY1 = 0,
ctrlY2 = 0,
endX = 0,
endY = 0,
ppx = 0,
ppy = 0,
px = 0,
py = 0,
i = 0,
valOf = 0;
var str = "";
var tmpArray =[];
var flag = false;
var lastInstruction;
var command;
var j, k;
while (i< pathData.length) {
valOf = pathData[i].valueOf();
if ((valOf >= 65 && valOf <= 90) || (valOf >= 97 && valOf <= 122)) {
// if it's a letter
// populate the tmpArray with coordinates
j = i;
i++;
if (i < pathData.length) { // don't go over boundary of array
tmpArray = [];
valOf = pathData[i].valueOf();
while (!((valOf >= 65 && valOf <= 90) ||
(valOf >= 97 && valOf <= 100) ||
(valOf >= 102 && valOf <= 122))
&& flag === false) { // if its NOT a letter
if (valOf === 32) { //if its a space and the str isn't empty
// sometimes you get a space after the letter
if (str !== "") {
tmpArray.push(parseFloat(str));
str = "";
}
i++;
} else if (valOf === 45) { //if it's a -
// allow for 'e' notation in numbers, e.g. 2.10e-9
if (pathData[i-1].valueOf() === 101) {
str += pathData[i].toString();
i++;
} else {
// sometimes no space separator after (ex: 104.535-16.322)
if (str !== "") {
tmpArray.push(parseFloat(str));
}
str = pathData[i].toString();
i++;
}
} else {
str += pathData[i].toString();
i++;
}
if (i === pathData.length) { // don't go over boundary of array
flag = true;
} else {
valOf = pathData[i].valueOf();
}
}
}
if (str !== "") {
tmpArray.push(parseFloat(str));
str = "";
}
command = pathData[j];
valOf = command.valueOf();
if (valOf === 77) { // M - move to (absolute)
if (tmpArray.length >= 2 && tmpArray.length % 2 ===0) {
// need one+ pairs of co-ordinates
cx = tmpArray[0];
cy = tmpArray[1];
this.parsePathMoveto(cx, cy);
if (tmpArray.length > 2) {
for (j = 2, k = tmpArray.length; j < k; j+=2) {
// absolute line to
cx = tmpArray[j];
cy = tmpArray[j+1];
this.parsePathLineto(cx,cy);
}
}
}
} else if (valOf === 109) { // m - move to (relative)
if (tmpArray.length >= 2 && tmpArray.length % 2 === 0) {
// need one+ pairs of co-ordinates
cx += tmpArray[0];
cy += tmpArray[1];
this.parsePathMoveto(cx,cy);
if (tmpArray.length > 2) {
for (j = 2, k = tmpArray.length; j < k; j+=2) {
// relative line to
cx += tmpArray[j];
cy += tmpArray[j + 1];
this.parsePathLineto(cx,cy);
}
}
}
} else if (valOf === 76) { // L - lineto (absolute)
if (tmpArray.length >= 2 && tmpArray.length % 2 === 0) {
// need one+ pairs of co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=2) {
cx = tmpArray[j];
cy = tmpArray[j + 1];
this.parsePathLineto(cx,cy);
}
}
} else if (valOf === 108) { // l - lineto (relative)
if (tmpArray.length >= 2 && tmpArray.length % 2 === 0) {
// need one+ pairs of co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=2) {
cx += tmpArray[j];
cy += tmpArray[j+1];
this.parsePathLineto(cx,cy);
}
}
} else if (valOf === 72) { // H - horizontal lineto (absolute)
for (j = 0, k = tmpArray.length; j < k; j++) {
// multiple x co-ordinates can be provided
cx = tmpArray[j];
this.parsePathLineto(cx, cy);
}
} else if (valOf === 104) { // h - horizontal lineto (relative)
for (j = 0, k = tmpArray.length; j < k; j++) {
// multiple x co-ordinates can be provided
cx += tmpArray[j];
this.parsePathLineto(cx, cy);
}
} else if (valOf === 86) { // V - vertical lineto (absolute)
for (j = 0, k = tmpArray.length; j < k; j++) {
// multiple y co-ordinates can be provided
cy = tmpArray[j];
this.parsePathLineto(cx, cy);
}
} else if (valOf === 118) { // v - vertical lineto (relative)
for (j = 0, k = tmpArray.length; j < k; j++) {
// multiple y co-ordinates can be provided
cy += tmpArray[j];
this.parsePathLineto(cx, cy);
}
} else if (valOf === 67) { // C - curve to (absolute)
if (tmpArray.length >= 6 && tmpArray.length % 6 === 0) {
// need one+ multiples of 6 co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=6) {
ctrlX1 = tmpArray[j];
ctrlY1 = tmpArray[j + 1];
ctrlX2 = tmpArray[j + 2];
ctrlY2 = tmpArray[j + 3];
endX = tmpArray[j + 4];
endY = tmpArray[j + 5];
this.parsePathCurveto(ctrlX1,
ctrlY1,
ctrlX2,
ctrlY2,
endX,
endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 99) { // c - curve to (relative)
if (tmpArray.length >= 6 && tmpArray.length % 6 === 0) {
// need one+ multiples of 6 co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=6) {
ctrlX1 = cx + tmpArray[j];
ctrlY1 = cy + tmpArray[j + 1];
ctrlX2 = cx + tmpArray[j + 2];
ctrlY2 = cy + tmpArray[j + 3];
endX = cx + tmpArray[j + 4];
endY = cy + tmpArray[j + 5];
this.parsePathCurveto(ctrlX1,
ctrlY1,
ctrlX2,
ctrlY2,
endX,
endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 83) { // S - curve to shorthand (absolute)
if (tmpArray.length >= 4 && tmpArray.length % 4 === 0) {
// need one+ multiples of 4 co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=4) {
if (lastInstruction.toLowerCase() === "c" ||
lastInstruction.toLowerCase() === "s") {
ppx = this.vertices[ this.vertices.length-2 ][0];
ppy = this.vertices[ this.vertices.length-2 ][1];
px = this.vertices[ this.vertices.length-1 ][0];
py = this.vertices[ this.vertices.length-1 ][1];
ctrlX1 = px + (px - ppx);
ctrlY1 = py + (py - ppy);
} else {
//If there is no previous curve,
//the current point will be used as the first control point.
ctrlX1 = this.vertices[this.vertices.length-1][0];
ctrlY1 = this.vertices[this.vertices.length-1][1];
}
ctrlX2 = tmpArray[j];
ctrlY2 = tmpArray[j + 1];
endX = tmpArray[j + 2];
endY = tmpArray[j + 3];
this.parsePathCurveto(ctrlX1,
ctrlY1,
ctrlX2,
ctrlY2,
endX,
endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 115) { // s - curve to shorthand (relative)
if (tmpArray.length >= 4 && tmpArray.length % 4 === 0) {
// need one+ multiples of 4 co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=4) {
if (lastInstruction.toLowerCase() === "c" ||
lastInstruction.toLowerCase() === "s") {
ppx = this.vertices[this.vertices.length-2][0];
ppy = this.vertices[this.vertices.length-2][1];
px = this.vertices[this.vertices.length-1][0];
py = this.vertices[this.vertices.length-1][1];
ctrlX1 = px + (px - ppx);
ctrlY1 = py + (py - ppy);
} else {
//If there is no previous curve,
//the current point will be used as the first control point.
ctrlX1 = this.vertices[this.vertices.length-1][0];
ctrlY1 = this.vertices[this.vertices.length-1][1];
}
ctrlX2 = cx + tmpArray[j];
ctrlY2 = cy + tmpArray[j + 1];
endX = cx + tmpArray[j + 2];
endY = cy + tmpArray[j + 3];
this.parsePathCurveto(ctrlX1,
ctrlY1,
ctrlX2,
ctrlY2,
endX,
endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 81) { // Q - quadratic curve to (absolute)
if (tmpArray.length >= 4 && tmpArray.length % 4 === 0) {
// need one+ multiples of 4 co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=4) {
ctrlX = tmpArray[j];
ctrlY = tmpArray[j + 1];
endX = tmpArray[j + 2];
endY = tmpArray[j + 3];
this.parsePathQuadto(cx, cy, ctrlX, ctrlY, endX, endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 113) { // q - quadratic curve to (relative)
if (tmpArray.length >= 4 && tmpArray.length % 4 === 0) {
// need one+ multiples of 4 co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=4) {
ctrlX = cx + tmpArray[j];
ctrlY = cy + tmpArray[j + 1];
endX = cx + tmpArray[j + 2];
endY = cy + tmpArray[j + 3];
this.parsePathQuadto(cx, cy, ctrlX, ctrlY, endX, endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 84) {
// T - quadratic curve to shorthand (absolute)
if (tmpArray.length >= 2 && tmpArray.length % 2 === 0) {
// need one+ pairs of co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=2) {
if (lastInstruction.toLowerCase() === "q" ||
lastInstruction.toLowerCase() === "t") {
ppx = this.vertices[this.vertices.length-2][0];
ppy = this.vertices[this.vertices.length-2][1];
px = this.vertices[this.vertices.length-1][0];
py = this.vertices[this.vertices.length-1][1];
ctrlX = px + (px - ppx);
ctrlY = py + (py - ppy);
} else {
// If there is no previous command or if the previous command
// was not a Q, q, T or t, assume the control point is
// coincident with the current point.
ctrlX = cx;
ctrlY = cy;
}
endX = tmpArray[j];
endY = tmpArray[j + 1];
this.parsePathQuadto(cx, cy, ctrlX, ctrlY, endX, endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 116) {
// t - quadratic curve to shorthand (relative)
if (tmpArray.length >= 2 && tmpArray.length % 2 === 0) {
// need one+ pairs of co-ordinates
for (j = 0, k = tmpArray.length; j < k; j+=2) {
if (lastInstruction.toLowerCase() === "q" ||
lastInstruction.toLowerCase() === "t") {
ppx = this.vertices[this.vertices.length-2][0];
ppy = this.vertices[this.vertices.length-2][1];
px = this.vertices[this.vertices.length-1][0];
py = this.vertices[this.vertices.length-1][1];
ctrlX = px + (px - ppx);
ctrlY = py + (py - ppy);
} else {
// If there is no previous command or if the previous command
// was not a Q, q, T or t, assume the control point is
// coincident with the current point.
ctrlX = cx;
ctrlY = cy;
}
endX = cx + tmpArray[j];
endY = cy + tmpArray[j + 1];
this.parsePathQuadto(cx, cy, ctrlX, ctrlY, endX, endY);
cx = endX;
cy = endY;
}
}
} else if (valOf === 90 || valOf === 122) { // Z or z (these do the same thing)
this.close = true;
}
lastInstruction = command.toString();
} else { i++;}
}
};
/**
* @member PShapeSVG
* PShapeSVG.parsePath() helper function
*
* @see PShapeSVG#parsePath
*/
PShapeSVG.prototype.parsePathQuadto = function(x1, y1, cx, cy, x2, y2) {
if (this.vertices.length > 0) {
this.parsePathCode(PConstants.BEZIER_VERTEX);
// x1/y1 already covered by last moveto, lineto, or curveto
this.parsePathVertex(x1 + ((cx-x1)*2/3), y1 + ((cy-y1)*2/3));
this.parsePathVertex(x2 + ((cx-x2)*2/3), y2 + ((cy-y2)*2/3));
this.parsePathVertex(x2, y2);
} else {
throw ("Path must start with M/m");
}
};
/**
* @member PShapeSVG
* PShapeSVG.parsePath() helper function
*
* @see PShapeSVG#parsePath
*/
PShapeSVG.prototype.parsePathCurveto = function(x1, y1, x2, y2, x3, y3) {
if (this.vertices.length > 0) {
this.parsePathCode(PConstants.BEZIER_VERTEX );
this.parsePathVertex(x1, y1);
this.parsePathVertex(x2, y2);
this.parsePathVertex(x3, y3);
} else {
throw ("Path must start with M/m");
}
};
/**
* @member PShapeSVG
* PShapeSVG.parsePath() helper function
*
* @see PShapeSVG#parsePath
*/
PShapeSVG.prototype.parsePathLineto = function(px, py) {
if (this.vertices.length > 0) {
this.parsePathCode(PConstants.VERTEX);
this.parsePathVertex(px, py);
// add property to distinguish between curContext.moveTo
// or curContext.lineTo
this.vertices[this.vertices.length-1]["moveTo"] = false;
} else {
throw ("Path must start with M/m");
}
};
PShapeSVG.prototype.parsePathMoveto = function(px, py) {
if (this.vertices.length > 0) {
this.parsePathCode(PConstants.BREAK);
}
this.parsePathCode(PConstants.VERTEX);
this.parsePathVertex(px, py);
// add property to distinguish between curContext.moveTo
// or curContext.lineTo
this.vertices[this.vertices.length-1]["moveTo"] = true;
};
/**
* @member PShapeSVG
* PShapeSVG.parsePath() helper function
*
* @see PShapeSVG#parsePath
*/
PShapeSVG.prototype.parsePathVertex = function(x, y) {
var verts = [];
verts[0] = x;
verts[1] = y;
this.vertices.push(verts);
};
/**
* @member PShapeSVG
* PShapeSVG.parsePath() helper function
*
* @see PShapeSVG#parsePath
*/
PShapeSVG.prototype.parsePathCode = function(what) {
this.vertexCodes.push(what);
};
/**
* @member PShapeSVG
* The parsePoly() function parses a polyline or polygon from an SVG file.
*
* @param {boolean}val true if shape is closed (polygon), false if not (polyline)
*/
PShapeSVG.prototype.parsePoly = function(val) {
this.family = PConstants.PATH;
this.close = val;
var pointsAttr = p.trim(this.element.getStringAttribute("points")
.replace(/[,\s]+/g,' '));
if (pointsAttr !== null) {
//split into array
var pointsBuffer = pointsAttr.split(" ");
if (pointsBuffer.length % 2 === 0) {
for (var i = 0, j = pointsBuffer.length; i < j; i++) {
var verts = [];
verts[0] = pointsBuffer[i];
verts[1] = pointsBuffer[++i];
this.vertices.push(verts);
}
} else {
throw("Error parsing polygon points: odd number of coordinates provided");
}
}
};
/**
* @member PShapeSVG
* The parseRect() function parses a rect from an SVG file.
*/
PShapeSVG.prototype.parseRect = function() {
this.kind = PConstants.RECT;
this.family = PConstants.PRIMITIVE;
this.params = [];
this.params[0] = this.element.getFloatAttribute("x");
this.params[1] = this.element.getFloatAttribute("y");
this.params[2] = this.element.getFloatAttribute("width");
this.params[3] = this.element.getFloatAttribute("height");
if (this.params[2] < 0 || this.params[3] < 0) {
throw("svg error: negative width or height found while parsing <rect>");
}
};
/**
* @member PShapeSVG
* The parseEllipse() function handles parsing ellipse and circle tags.
*
* @param {boolean}val true if this is a circle and not an ellipse
*/
PShapeSVG.prototype.parseEllipse = function(val) {
this.kind = PConstants.ELLIPSE;
this.family = PConstants.PRIMITIVE;
this.params = [];
this.params[0] = this.element.getFloatAttribute("cx") | 0 ;
this.params[1] = this.element.getFloatAttribute("cy") | 0;
var rx, ry;
if (val) {
rx = ry = this.element.getFloatAttribute("r");
if (rx < 0) {
throw("svg error: negative radius found while parsing <circle>");
}
} else {
rx = this.element.getFloatAttribute("rx");
ry = this.element.getFloatAttribute("ry");
if (rx < 0 || ry < 0) {
throw("svg error: negative x-axis radius or y-axis radius found while parsing <ellipse>");
}
}
this.params[0] -= rx;
this.params[1] -= ry;
this.params[2] = rx*2;
this.params[3] = ry*2;
};
/**
* @member PShapeSVG
* The parseLine() function handles parsing line tags.
*
* @param {boolean}val true if this is a circle and not an ellipse
*/
PShapeSVG.prototype.parseLine = function() {
this.kind = PConstants.LINE;
this.family = PConstants.PRIMITIVE;
this.params = [];
this.params[0] = this.element.getFloatAttribute("x1");
this.params[1] = this.element.getFloatAttribute("y1");
this.params[2] = this.element.getFloatAttribute("x2");
this.params[3] = this.element.getFloatAttribute("y2");
};
/**
* @member PShapeSVG
* The parseColors() function handles parsing the opacity, strijem stroke-width, stroke-linejoin,stroke-linecap, fill, and style attributes
*
* @param {XMLElement}element the element of which attributes to parse
*/
PShapeSVG.prototype.parseColors = function(element) {
if (element.hasAttribute("opacity")) {
this.setOpacity(element.getAttribute("opacity"));
}
if (element.hasAttribute("stroke")) {
this.setStroke(element.getAttribute("stroke"));
}
if (element.hasAttribute("stroke-width")) {
// if NaN (i.e. if it's 'inherit') then default
// back to the inherit setting
this.setStrokeWeight(element.getAttribute("stroke-width"));
}
if (element.hasAttribute("stroke-linejoin") ) {
this.setStrokeJoin(element.getAttribute("stroke-linejoin"));
}
if (element.hasAttribute("stroke-linecap")) {
this.setStrokeCap(element.getStringAttribute("stroke-linecap"));
}
// fill defaults to black (though stroke defaults to "none")
// http://www.w3.org/TR/SVG/painting.html#FillProperties
if (element.hasAttribute("fill")) {
this.setFill(element.getStringAttribute("fill"));
}
if (element.hasAttribute("style")) {
var styleText = element.getStringAttribute("style");
var styleTokens = styleText.toString().split( ";" );
for (var i = 0, j = styleTokens.length; i < j; i++) {
var tokens = p.trim(styleTokens[i].split( ":" ));
if (tokens[0] === "fill") {
this.setFill(tokens[1]);
} else if (tokens[0] === "fill-opacity") {
this.setFillOpacity(tokens[1]);
} else if (tokens[0] === "stroke") {
this.setStroke(tokens[1]);
} else if (tokens[0] === "stroke-width") {
this.setStrokeWeight(tokens[1]);
} else if (tokens[0] === "stroke-linecap") {
this.setStrokeCap(tokens[1]);
} else if (tokens[0] === "stroke-linejoin") {
this.setStrokeJoin(tokens[1]);
} else if (tokens[0] === "stroke-opacity") {
this.setStrokeOpacity(tokens[1]);
} else if (tokens[0] === "opacity") {
this.setOpacity(tokens[1]);
} // Other attributes are not yet implemented
}
}
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} opacityText the value of fillOpacity
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setFillOpacity = function(opacityText) {
this.fillOpacity = parseFloat(opacityText);
this.fillColor = this.fillOpacity * 255 << 24 |
this.fillColor & 0xFFFFFF;
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} fillText the value of fill
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setFill = function (fillText) {
var opacityMask = this.fillColor & 0xFF000000;
if (fillText === "none") {
this.fill = false;
} else if (fillText.indexOf("#") === 0) {
this.fill = true;
if (fillText.length === 4) {
// convert #00F to #0000FF
fillText = fillText.replace(/#(.)(.)(.)/,"#$1$1$2$2$3$3");
}
this.fillColor = opacityMask |
(parseInt(fillText.substring(1), 16 )) &
0xFFFFFF;
} else if (fillText.indexOf("rgb") === 0) {
this.fill = true;
this.fillColor = opacityMask | this.parseRGB(fillText);
} else if (fillText.indexOf("url(#") === 0) {
this.fillName = fillText.substring(5, fillText.length - 1 );
} else if (colors[fillText]) {
this.fill = true;
this.fillColor = opacityMask |
(parseInt(colors[fillText].substring(1), 16)) &
0xFFFFFF;
}
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} opacity the value of opacity
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setOpacity = function(opacity) {
this.strokeColor = parseFloat(opacity) * 255 << 24 |
this.strokeColor & 0xFFFFFF;
this.fillColor = parseFloat(opacity) * 255 << 24 |
this.fillColor & 0xFFFFFF;
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} strokeText the value to set stroke to
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setStroke = function(strokeText) {
var opacityMask = this.strokeColor & 0xFF000000;
if (strokeText === "none") {
this.stroke = false;
} else if (strokeText.charAt( 0 ) === "#") {
this.stroke = true;
if (strokeText.length === 4) {
// convert #00F to #0000FF
strokeText = strokeText.replace(/#(.)(.)(.)/,"#$1$1$2$2$3$3");
}
this.strokeColor = opacityMask |
(parseInt( strokeText.substring( 1 ), 16 )) &
0xFFFFFF;
} else if (strokeText.indexOf( "rgb" ) === 0 ) {
this.stroke = true;
this.strokeColor = opacityMask | this.parseRGB(strokeText);
} else if (strokeText.indexOf( "url(#" ) === 0) {
this.strokeName = strokeText.substring(5, strokeText.length - 1);
} else if (colors[strokeText]) {
this.stroke = true;
this.strokeColor = opacityMask |
(parseInt(colors[strokeText].substring(1), 16)) &
0xFFFFFF;
}
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} weight the value to set strokeWeight to
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setStrokeWeight = function(weight) {
this.strokeWeight = this.parseUnitSize(weight);
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} linejoin the value to set strokeJoin to
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setStrokeJoin = function(linejoin) {
if (linejoin === "miter") {
this.strokeJoin = PConstants.MITER;
} else if (linejoin === "round") {
this.strokeJoin = PConstants.ROUND;
} else if (linejoin === "bevel") {
this.strokeJoin = PConstants.BEVEL;
}
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} linecap the value to set strokeCap to
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setStrokeCap = function (linecap) {
if (linecap === "butt") {
this.strokeCap = PConstants.SQUARE;
} else if (linecap === "round") {
this.strokeCap = PConstants.ROUND;
} else if (linecap === "square") {
this.strokeCap = PConstants.PROJECT;
}
};
/**
* @member PShapeSVG
* PShapeSVG.parseColors() helper function
*
* @param {String} opacityText the value to set stroke opacity to
*
* @see PShapeSVG#parseColors
*/
PShapeSVG.prototype.setStrokeOpacity = function (opacityText) {
this.strokeOpacity = parseFloat(opacityText);
this.strokeColor = this.strokeOpacity * 255 << 24 |
this.strokeColor &
0xFFFFFF;
};
/**
* @member PShapeSVG
* The parseRGB() function parses an rbg() color string and returns a color int
*
* @param {String} color the color to parse in rbg() format
*
* @return {int} the equivalent color int
*/
PShapeSVG.prototype.parseRGB = function(color) {
var sub = color.substring(color.indexOf('(') + 1, color.indexOf(')'));
var values = sub.split(", ");
return (values[0] << 16) | (values[1] << 8) | (values[2]);
};
/**
* @member PShapeSVG
* The parseUnitSize() function parse a size that may have a suffix for its units.
* Ignoring cases where this could also be a percentage.
* The <A HREF="http://www.w3.org/TR/SVG/coords.html#Units">units</A> spec:
* <UL>
* <LI>"1pt" equals "1.25px" (and therefore 1.25 user units)
* <LI>"1pc" equals "15px" (and therefore 15 user units)
* <LI>"1mm" would be "3.543307px" (3.543307 user units)
* <LI>"1cm" equals "35.43307px" (and therefore 35.43307 user units)
* <LI>"1in" equals "90px" (and therefore 90 user units)
* </UL>
*/
PShapeSVG.prototype.parseUnitSize = function (text) {
var len = text.length - 2;
if (len < 0) { return text; }
if (text.indexOf("pt") === len) {
return parseFloat(text.substring(0, len)) * 1.25;
}
if (text.indexOf("pc") === len) {
return parseFloat( text.substring( 0, len)) * 15;
}
if (text.indexOf("mm") === len) {
return parseFloat( text.substring(0, len)) * 3.543307;
}
if (text.indexOf("cm") === len) {
return parseFloat(text.substring(0, len)) * 35.43307;
}
if (text.indexOf("in") === len) {
return parseFloat(text.substring(0, len)) * 90;
}
if (text.indexOf("px") === len) {
return parseFloat(text.substring(0, len));
}
return parseFloat(text);
};
/**
* The shape() function displays shapes to the screen.
* Processing currently works with SVG shapes only.
* The <b>shape</b> parameter specifies the shape to display and the <b>x</b>
* and <b>y</b> parameters define the location of the shape from its
* upper-left corner.
* The shape is displayed at its original size unless the <b>width</b>
* and <b>height</b> parameters specify a different size.
* The <b>shapeMode()</b> function changes the way the parameters work.
* A call to <b>shapeMode(CORNERS)</b>, for example, will change the width
* and height parameters to define the x and y values of the opposite corner
* of the shape.
* <br><br>
* Note complex shapes may draw awkwardly with P2D, P3D, and OPENGL. Those
* renderers do not yet support shapes that have holes or complicated breaks.
*
* @param {PShape} shape the shape to display
* @param {int|float} x x-coordinate of the shape
* @param {int|float} y y-coordinate of the shape
* @param {int|float} width width to display the shape
* @param {int|float} height height to display the shape
*
* @see PShape
* @see loadShape()
* @see shapeMode()
*/
p.shape = function(shape, x, y, width, height) {
if (arguments.length >= 1 && arguments[0] !== null) {
if (shape.isVisible()) {
p.pushMatrix();
if (curShapeMode === PConstants.CENTER) {
if (arguments.length === 5) {
p.translate(x - width/2, y - height/2);
p.scale(width / shape.getWidth(), height / shape.getHeight());
} else if (arguments.length === 3) {
p.translate(x - shape.getWidth()/2, - shape.getHeight()/2);
} else {
p.translate(-shape.getWidth()/2, -shape.getHeight()/2);
}
} else if (curShapeMode === PConstants.CORNER) {
if (arguments.length === 5) {
p.translate(x, y);
p.scale(width / shape.getWidth(), height / shape.getHeight());
} else if (arguments.length === 3) {
p.translate(x, y);
}
} else if (curShapeMode === PConstants.CORNERS) {
if (arguments.length === 5) {
width -= x;
height -= y;
p.translate(x, y);
p.scale(width / shape.getWidth(), height / shape.getHeight());
} else if (arguments.length === 3) {
p.translate(x, y);
}
}
shape.draw();
if ((arguments.length === 1 && curShapeMode === PConstants.CENTER ) || arguments.length > 1) {
p.popMatrix();
}
}
}
};
/**
* The shapeMode() function modifies the location from which shapes draw.
* The default mode is <b>shapeMode(CORNER)</b>, which specifies the
* location to be the upper left corner of the shape and uses the third
* and fourth parameters of <b>shape()</b> to specify the width and height.
* The syntax <b>shapeMode(CORNERS)</b> uses the first and second parameters
* of <b>shape()</b> to set the location of one corner and uses the third
* and fourth parameters to set the opposite corner.
* The syntax <b>shapeMode(CENTER)</b> draws the shape from its center point
* and uses the third and forth parameters of <b>shape()</b> to specify the
* width and height.
* The parameter must be written in "ALL CAPS" because Processing syntax
* is case sensitive.
*
* @param {int} mode One of CORNER, CORNERS, CENTER
*
* @see shape()
* @see rectMode()
*/
p.shapeMode = function (mode) {
curShapeMode = mode;
};
/**
* The loadShape() function loads vector shapes into a variable of type PShape. Currently, only SVG files may be loaded.
* In most cases, <b>loadShape()</b> should be used inside <b>setup()</b> because loading shapes inside <b>draw()</b> will reduce the speed of a sketch.
*
* @param {String} filename an SVG file
*
* @return {PShape} a object of type PShape or null
* @see PShape
* @see PApplet#shape()
* @see PApplet#shapeMode()
*/
p.loadShape = function (filename) {
if (arguments.length === 1) {
if (filename.indexOf(".svg") > -1) {
return new PShapeSVG(null, filename);
}
}
return null;
};
/**
* XMLAttribute is an attribute of a XML element. This is an internal class
*
* @param {String} fname the full name of the attribute
* @param {String} n the short name of the attribute
* @param {String} namespace the namespace URI of the attribute
* @param {String} v the value of the attribute
* @param {String }t the type of the attribute
*
* @see XMLElement
*/
var XMLAttribute = function(fname, n, nameSpace, v, t){
this.fullName = fname || "";
this.name = n || "";
this.namespace = nameSpace || "";
this.value = v;
this.type = t;
};
/**
* XMLAttribute methods
*/
XMLAttribute.prototype = {
/**
* @member XMLAttribute
* The getName() function returns the short name of the attribute
*
* @return {String} the short name of the attribute
*/
getName: function() {
return this.name;
},
/**
* @member XMLAttribute
* The getFullName() function returns the full name of the attribute
*
* @return {String} the full name of the attribute
*/
getFullName: function() {
return this.fullName;
},
/**
* @member XMLAttribute
* The getNamespace() function returns the namespace of the attribute
*
* @return {String} the namespace of the attribute
*/
getNamespace: function() {
return this.namespace;
},
/**
* @member XMLAttribute
* The getValue() function returns the value of the attribute
*
* @return {String} the value of the attribute
*/
getValue: function() {
return this.value;
},
/**
* @member XMLAttribute
* The getValue() function returns the type of the attribute
*
* @return {String} the type of the attribute
*/
getType: function() {
return this.type;
},
/**
* @member XMLAttribute
* The setValue() function sets the value of the attribute
*
* @param {String} newval the new value
*/
setValue: function(newval) {
this.value = newval;
}
};
/**
* XMLElement is a representation of an XML object. The object is able to parse XML code
*
* @param {PApplet} parent typically use "this"
* @param {String} filename name of the XML/SVG file to load
* @param {String} xml the xml/svg string
* @param {String} fullname the full name of the element
* @param {String} namespace the namespace of the URI
* @param {String} systemID the system ID of the XML data where the element starts
* @param {Integer }lineNr the line in the XML data where the element starts
*/
var XMLElement = p.XMLElement = function() {
this.attributes = [];
this.children = [];
this.fullName = null;
this.name = null;
this.namespace = "";
this.content = null;
this.parent = null;
this.lineNr = "";
this.systemID = "";
this.type = "ELEMENT";
if (arguments.length === 4) {
this.fullName = arguments[0] || "";
if (arguments[1]) {
this.name = arguments[1];
} else {
var index = this.fullName.indexOf(':');
if (index >= 0) {
this.name = this.fullName.substring(index + 1);
} else {
this.name = this.fullName;
}
}
this.namespace = arguments[1];
this.lineNr = arguments[3];
this.systemID = arguments[2];
}
else if ((arguments.length === 2 && arguments[1].indexOf(".") > -1) ) {
// filename or svg xml element
this.parse(arguments[arguments.length -1]);
} else if (arguments.length === 1 && typeof arguments[0] === "string"){
this.parse(arguments[0]);
}
};
/**
* XMLElement methods
* missing: enumerateAttributeNames(), enumerateChildren(),
* NOTE: parse does not work when a url is passed in
*/
XMLElement.prototype = {
/**
* @member XMLElement
* The parse() function retrieves the file via ajax() and uses DOMParser()
* parseFromString method to make an XML document
* @addon
*
* @param {String} filename name of the XML/SVG file to load
*
* @throws ExceptionType Error loading document
*
* @see XMLElement#parseChildrenRecursive
*/
parse: function(textstring) {
var xmlDoc;
try {
var extension = textstring.substring(textstring.length-4);
if (extension === ".xml" || extension === ".svg") {
textstring = ajax(textstring);
}
xmlDoc = new DOMParser().parseFromString(textstring, "text/xml");
var elements = xmlDoc.documentElement;
if (elements) {
this.parseChildrenRecursive(null, elements);
} else {
throw ("Error loading document");
}
return this;
} catch(e) {
throw(e);
}
},
/**
* @member XMLElement
* Internal helper function for parse().
* Loops through the
* @addon
*
* @param {XMLElement} parent the parent node
* @param {XML document childNodes} elementpath the remaining nodes that need parsing
*
* @return {XMLElement} the new element and its children elements
*/
parseChildrenRecursive: function (parent , elementpath){
var xmlelement,
xmlattribute,
tmpattrib,
l, m,
child;
if (!parent) { // this element is the root element
this.fullName = elementpath.localName;
this.name = elementpath.nodeName;
xmlelement = this;
} else { // this element has a parent
xmlelement = new XMLElement(elementpath.localName, elementpath.nodeName, "", "");
xmlelement.parent = parent;
}
// if this is a text node, return a PCData element, instead of an XML element.
if(elementpath.nodeType === 3 && elementpath.textContent !== "") {
return this.createPCDataElement(elementpath.textContent);
}
// bind all attributes
for (l = 0, m = elementpath.attributes.length; l < m; l++) {
tmpattrib = elementpath.attributes[l];
xmlattribute = new XMLAttribute(tmpattrib.getname,
tmpattrib.nodeName,
tmpattrib.namespaceURI,
tmpattrib.nodeValue,
tmpattrib.nodeType);
xmlelement.attributes.push(xmlattribute);
}
// bind all children
for (l = 0, m = elementpath.childNodes.length; l < m; l++) {
var node = elementpath.childNodes[l];
if (node.nodeType === 1 || node.nodeType === 3) { // ELEMENT_NODE or TEXT_NODE
child = xmlelement.parseChildrenRecursive(xmlelement, node);
if (child !== null) {
xmlelement.children.push(child);
}
}
}
return xmlelement;
},
/**
* @member XMLElement
* The createElement() function Creates an empty element
*
* @param {String} fullName the full name of the element
* @param {String} namespace the namespace URI
* @param {String} systemID the system ID of the XML data where the element starts
* @param {int} lineNr the line in the XML data where the element starts
*/
createElement: function () {
if (arguments.length === 2) {
return new XMLElement(arguments[0], arguments[1], null, null);
}
return new XMLElement(arguments[0], arguments[1], arguments[2], arguments[3]);
},
/**
* @member XMLElement
* The createPCDataElement() function creates an element to be used for #PCDATA content.
* Because Processing discards whitespace TEXT nodes, this method will not build an element
* if the passed content is empty after trimming for whitespace.
*
* @return {XMLElement} new "test" XMLElement, or null if content consists only of whitespace
*/
createPCDataElement: function (content) {
if(content.replace(/^\s+$/g,"") === "") {
return null;
}
var pcdata = new XMLElement();
pcdata.content = content;
pcdata.type = "TEXT";
return pcdata;
},
/**
* @member XMLElement
* The hasAttribute() function returns whether an attribute exists
*
* @param {String} name name of the attribute
* @param {String} namespace the namespace URI of the attribute
*
* @return {boolean} true if the attribute exists
*/
hasAttribute: function () {
if (arguments.length === 1) {
return this.getAttribute(arguments[0]) !== null;
}
if (arguments.length === 2) {
return this.getAttribute(arguments[0],arguments[1]) !== null;
}
},
/**
* @member XMLElement
* The equals() function checks to see if the XMLElement being passed in equals another XMLElement
*
* @param {XMLElement} rawElement the element to compare to
*
* @return {boolean} true if the element equals another element
*/
equals: function(other) {
if (!(other instanceof XMLElement)) {
return false;
}
var i, j;
if (this.name !== other.getLocalName()) { return false; }
if (this.attributes.length !== other.getAttributeCount()) { return false; }
// attributes may be ordered differently
if (this.attributes.length !== other.attributes.length) { return false; }
var attr_name, attr_ns, attr_value, attr_type, attr_other;
for (i = 0, j = this.attributes.length; i < j; i++) {
attr_name = this.attributes[i].getName();
attr_ns = this.attributes[i].getNamespace();
attr_other = other.findAttribute(attr_name, attr_ns);
if (attr_other === null) { return false; }
if (this.attributes[i].getValue() !== attr_other.getValue()) { return false; }
if (this.attributes[i].getType() !== attr_other.getType()) { return false; }
}
// children must be ordered identically
if (this.children.length !== other.getChildCount()) { return false; }
if (this.children.length>0) {
var child1, child2;
for (i = 0, j = this.children.length; i < j; i++) {
child1 = this.getChild(i);
child2 = other.getChild(i);
if (!child1.equals(child2)) { return false; }
}
return true;
}
return (this.content === other.content);
},
/**
* @member XMLElement
* The getContent() function returns the content of an element. If there is no such content, null is returned
*
* @return {String} the (possibly null) content
*/
getContent: function(){
if (this.type === "TEXT") {
return this.content;
}
var children = this.children;
if (children.length === 1 && children[0].type === "TEXT") {
return children[0].content;
}
return null;
},
/**
* @member XMLElement
* The getAttribute() function returns the value of an attribute
*
* @param {String} name the non-null full name of the attribute
* @param {String} namespace the namespace URI, which may be null
* @param {String} defaultValue the default value of the attribute
*
* @return {String} the value, or defaultValue if the attribute does not exist
*/
getAttribute: function (){
var attribute;
if( arguments.length === 2 ){
attribute = this.findAttribute(arguments[0]);
if (attribute) {
return attribute.getValue();
}
return arguments[1];
} else if (arguments.length === 1) {
attribute = this.findAttribute(arguments[0]);
if (attribute) {
return attribute.getValue();
}
return null;
} else if (arguments.length === 3) {
attribute = this.findAttribute(arguments[0],arguments[1]);
if (attribute) {
return attribute.getValue();
}
return arguments[2];
}
},
/**
* @member XMLElement
* The getStringAttribute() function returns the string attribute of the element
* If the <b>defaultValue</b> parameter is used and the attribute doesn't exist, the <b>defaultValue</b> value is returned.
* When calling the function without the <b>defaultValue</b> parameter, if the attribute doesn't exist, the value 0 is returned.
*
* @param name the name of the attribute
* @param defaultValue value returned if the attribute is not found
*
* @return {String} the value, or defaultValue if the attribute does not exist
*/
getStringAttribute: function() {
if (arguments.length === 1) {
return this.getAttribute(arguments[0]);
}
if (arguments.length === 2){
return this.getAttribute(arguments[0], arguments[1]);
}
return this.getAttribute(arguments[0], arguments[1],arguments[2]);
},
/**
* Processing 1.5 XML API wrapper for the generic String
* attribute getter. This may only take one argument.
*/
getString: function(attributeName) {
return this.getStringAttribute(attributeName);
},
/**
* @member XMLElement
* The getFloatAttribute() function returns the float attribute of the element.
* If the <b>defaultValue</b> parameter is used and the attribute doesn't exist, the <b>defaultValue</b> value is returned.
* When calling the function without the <b>defaultValue</b> parameter, if the attribute doesn't exist, the value 0 is returned.
*
* @param name the name of the attribute
* @param defaultValue value returned if the attribute is not found
*
* @return {float} the value, or defaultValue if the attribute does not exist
*/
getFloatAttribute: function() {
if (arguments.length === 1 ) {
return parseFloat(this.getAttribute(arguments[0], 0));
}
if (arguments.length === 2 ){
return this.getAttribute(arguments[0], arguments[1]);
}
return this.getAttribute(arguments[0], arguments[1],arguments[2]);
},
/**
* Processing 1.5 XML API wrapper for the generic float
* attribute getter. This may only take one argument.
*/
getFloat: function(attributeName) {
return this.getFloatAttribute(attributeName);
},
/**
* @member XMLElement
* The getIntAttribute() function returns the integer attribute of the element.
* If the <b>defaultValue</b> parameter is used and the attribute doesn't exist, the <b>defaultValue</b> value is returned.
* When calling the function without the <b>defaultValue</b> parameter, if the attribute doesn't exist, the value 0 is returned.
*
* @param name the name of the attribute
* @param defaultValue value returned if the attribute is not found
*
* @return {int} the value, or defaultValue if the attribute does not exist
*/
getIntAttribute: function () {
if (arguments.length === 1) {
return this.getAttribute( arguments[0], 0 );
}
if (arguments.length === 2) {
return this.getAttribute(arguments[0], arguments[1]);
}
return this.getAttribute(arguments[0], arguments[1],arguments[2]);
},
/**
* Processing 1.5 XML API wrapper for the generic int
* attribute getter. This may only take one argument.
*/
getInt: function(attributeName) {
return this.getIntAttribute(attributeName);
},
/**
* @member XMLElement
* The hasChildren() function returns whether the element has children.
*
* @return {boolean} true if the element has children.
*/
hasChildren: function () {
return this.children.length > 0 ;
},
/**
* @member XMLElement
* The addChild() function adds a child element
*
* @param {XMLElement} child the non-null child to add.
*/
addChild: function (child) {
if (child !== null) {
child.parent = this;
this.children.push(child);
}
},
/**
* @member XMLElement
* The insertChild() function inserts a child element at the index provided
*
* @param {XMLElement} child the non-null child to add.
* @param {int} index where to put the child.
*/
insertChild: function (child, index) {
if (child) {
if ((child.getLocalName() === null) && (! this.hasChildren())) {
var lastChild = this.children[this.children.length -1];
if (lastChild.getLocalName() === null) {
lastChild.setContent(lastChild.getContent() + child.getContent());
return;
}
}
child.parent = this;
this.children.splice(index,0,child);
}
},
/**
* @member XMLElement
* The getChild() returns the child XMLElement as specified by the <b>index</b> parameter.
* The value of the <b>index</b> parameter must be less than the total number of children to avoid going out of the array storing the child elements.
* When the <b>path</b> parameter is specified, then it will return all children that match that path. The path is a series of elements and sub-elements, separated by slashes.
*
* @param {int} index where to put the child.
* @param {String} path path to a particular element
*
* @return {XMLElement} the element
*/
getChild: function (){
if (typeof arguments[0] === "number") {
return this.children[arguments[0]];
}
if (arguments[0].indexOf('/') !== -1) { // path was given
this.getChildRecursive(arguments[0].split("/"), 0);
return null;
}
var kid, kidName;
for (var i = 0, j = this.getChildCount(); i < j; i++) {
kid = this.getChild(i);
kidName = kid.getName();
if (kidName !== null && kidName === arguments[0]) {
return kid;
}
}
return null;
},
/**
* @member XMLElement
* The getChildren() returns all of the children as an XMLElement array.
* When the <b>path</b> parameter is specified, then it will return all children that match that path.
* The path is a series of elements and sub-elements, separated by slashes.
*
* @param {String} path element name or path/to/element
*
* @return {XMLElement} array of child elements that match
*
* @see XMLElement#getChildCount()
* @see XMLElement#getChild()
*/
getChildren: function(){
if (arguments.length === 1) {
if (typeof arguments[0] === "number") {
return this.getChild( arguments[0]);
}
if (arguments[0].indexOf('/') !== -1) { // path was given
return this.getChildrenRecursive( arguments[0].split("/"), 0);
}
var matches = [];
var kid, kidName;
for (var i = 0, j = this.getChildCount(); i < j; i++) {
kid = this.getChild(i);
kidName = kid.getName();
if (kidName !== null && kidName === arguments[0]) {
matches.push(kid);
}
}
return matches;
}
return this.children;
},
/**
* @member XMLElement
* The getChildCount() returns the number of children for the element.
*
* @return {int} the count
*
* @see XMLElement#getChild()
* @see XMLElement#getChildren()
*/
getChildCount: function(){
return this.children.length;
},
/**
* @member XMLElement
* Internal helper function for getChild().
*
* @param {String[]} items result of splitting the query on slashes
* @param {int} offset where in the items[] array we're currently looking
*
* @return {XMLElement} matching element or null if no match
*/
getChildRecursive: function (items, offset) {
var kid, kidName;
for(var i = 0, j = this.getChildCount(); i < j; i++) {
kid = this.getChild(i);
kidName = kid.getName();
if (kidName !== null && kidName === items[offset]) {
if (offset === items.length-1) {
return kid;
}
offset += 1;
return kid.getChildRecursive(items, offset);
}
}
return null;
},
/**
* @member XMLElement
* Internal helper function for getChildren().
*
* @param {String[]} items result of splitting the query on slashes
* @param {int} offset where in the items[] array we're currently looking
*
* @return {XMLElement[]} matching elements or empty array if no match
*/
getChildrenRecursive: function (items, offset) {
if (offset === items.length-1) {
return this.getChildren(items[offset]);
}
var matches = this.getChildren(items[offset]);
var kidMatches = [];
for (var i = 0; i < matches.length; i++) {
kidMatches = kidMatches.concat(matches[i].getChildrenRecursive(items, offset+1));
}
return kidMatches;
},
/**
* @member XMLElement
* The isLeaf() function returns whether the element is a leaf element.
*
* @return {boolean} true if the element has no children.
*/
isLeaf: function(){
return !this.hasChildren();
},
/**
* @member XMLElement
* The listChildren() function put the names of all children into an array. Same as looping through
* each child and calling getName() on each XMLElement.
*
* @return {String[]} a list of element names.
*/
listChildren: function() {
var arr = [];
for (var i = 0, j = this.children.length; i < j; i++) {
arr.push( this.getChild(i).getName());
}
return arr;
},
/**
* @member XMLElement
* The removeAttribute() function removes an attribute
*
* @param {String} name the non-null name of the attribute.
* @param {String} namespace the namespace URI of the attribute, which may be null.
*/
removeAttribute: function (name , namespace) {
this.namespace = namespace || "";
for (var i = 0, j = this.attributes.length; i < j; i++) {
if (this.attributes[i].getName() === name && this.attributes[i].getNamespace() === this.namespace) {
this.attributes.splice(i, 1);
break;
}
}
},
/**
* @member XMLElement
* The removeChild() removes a child element.
*
* @param {XMLElement} child the the non-null child to be renoved
*/
removeChild: function(child) {
if (child) {
for (var i = 0, j = this.children.length; i < j; i++) {
if (this.children[i].equals(child)) {
this.children.splice(i, 1);
break;
}
}
}
},
/**
* @member XMLElement
* The removeChildAtIndex() removes the child located at a certain index
*
* @param {int} index the index of the child, where the first child has index 0
*/
removeChildAtIndex: function(index) {
if (this.children.length > index) { //make sure its not outofbounds
this.children.splice(index, 1);
}
},
/**
* @member XMLElement
* The findAttribute() function searches an attribute
*
* @param {String} name fullName the non-null full name of the attribute
* @param {String} namespace the name space, which may be null
*
* @return {XMLAttribute} the attribute, or null if the attribute does not exist.
*/
findAttribute: function (name, namespace) {
this.namespace = namespace || "";
for (var i = 0, j = this.attributes.length; i < j; i++) {
if (this.attributes[i].getName() === name && this.attributes[i].getNamespace() === this.namespace) {
return this.attributes[i];
}
}
return null;
},
/**
* @member XMLElement
* The setAttribute() function sets an attribute.
*
* @param {String} name the non-null full name of the attribute
* @param {String} namespace the non-null value of the attribute
*/
setAttribute: function() {
var attr;
if (arguments.length === 3) {
var index = arguments[0].indexOf(':');
var name = arguments[0].substring(index + 1);
attr = this.findAttribute(name, arguments[1]);
if (attr) {
attr.setValue(arguments[2]);
} else {
attr = new XMLAttribute(arguments[0], name, arguments[1], arguments[2], "CDATA");
this.attributes.push(attr);
}
} else {
attr = this.findAttribute(arguments[0]);
if (attr) {
attr.setValue(arguments[1]);
} else {
attr = new XMLAttribute(arguments[0], arguments[0], null, arguments[1], "CDATA");
this.attributes.push(attr);
}
}
},
/**
* Processing 1.5 XML API wrapper for the generic String
* attribute setter. This must take two arguments.
*/
setString: function(attribute, value) {
this.setAttribute(attribute, value);
},
/**
* Processing 1.5 XML API wrapper for the generic int
* attribute setter. This must take two arguments.
*/
setInt: function(attribute, value) {
this.setAttribute(attribute, value);
},
/**
* Processing 1.5 XML API wrapper for the generic float
* attribute setter. This must take two arguments.
*/
setFloat: function(attribute, value) {
this.setAttribute(attribute, value);
},
/**
* @member XMLElement
* The setContent() function sets the #PCDATA content. It is an error to call this method with a
* non-null value if there are child objects.
*
* @param {String} content the (possibly null) content
*/
setContent: function(content) {
if (this.children.length>0) {
Processing.debug("Tried to set content for XMLElement with children"); }
this.content = content;
},
/**
* @member XMLElement
* The setName() function sets the full name. This method also sets the short name and clears the
* namespace URI.
*
* @param {String} name the non-null name
* @param {String} namespace the namespace URI, which may be null.
*/
setName: function() {
if (arguments.length === 1) {
this.name = arguments[0];
this.fullName = arguments[0];
this.namespace = null;
} else {
var index = arguments[0].indexOf(':');
if ((arguments[1] === null) || (index < 0)) {
this.name = arguments[0];
} else {
this.name = arguments[0].substring(index + 1);
}
this.fullName = arguments[0];
this.namespace = arguments[1];
}
},
/**
* @member XMLElement
* The getName() function returns the full name (i.e. the name including an eventual namespace
* prefix) of the element.
*
* @return {String} the name, or null if the element only contains #PCDATA.
*/
getName: function() {
return this.fullName;
},
/**
* @member XMLElement
* The getLocalName() function returns the local name (i.e. the name excluding an eventual namespace
* prefix) of the element.
*
* @return {String} the name, or null if the element only contains #PCDATA.
*/
getLocalName: function() {
return this.name;
},
/**
* @member XMLElement
* The getAttributeCount() function returns the number of attributes for the node
* that this XMLElement represents.
*
* @return {int} the number of attributes in this XMLElement
*/
getAttributeCount: function() {
return this.attributes.length;
},
/**
* @member XMLElement
* The toString() function returns the XML definition of an XMLElement.
*
* @return {String} the XML definition of this XMLElement
*/
toString: function() {
// shortcut for text nodes
if(this.type==="TEXT") { return this.content; }
// real XMLElements
var tagstring = (this.namespace !== "" && this.namespace !== this.name ? this.namespace + ":" : "") + this.name;
var xmlstring = "<" + tagstring;
var a,c;
// serialize the attributes to XML string
for (a = 0; a<this.attributes.length; a++) {
var attr = this.attributes[a];
xmlstring += " " + attr.getName() + "=" + '"' + attr.getValue() + '"';
}
// serialize all children to XML string
if (this.children.length === 0) {
if (this.content==="") {
xmlstring += "/>";
} else {
xmlstring += ">" + this.content + "</"+tagstring+">";
}
} else {
xmlstring += ">";
for (c = 0; c<this.children.length; c++) {
xmlstring += this.children[c].toString();
}
xmlstring += "</" + tagstring + ">";
}
return xmlstring;
}
};
/**
* static Processing 1.5 XML API wrapper for the
* parse method. This may only take one argument.
*/
XMLElement.parse = function(xmlstring) {
var element = new XMLElement();
element.parse(xmlstring);
return element;
};
////////////////////////////////////////////////////////////////////////////
// 2D Matrix
////////////////////////////////////////////////////////////////////////////
/**
* Helper function for printMatrix(). Finds the largest scalar
* in the matrix, then number of digits left of the decimal.
* Call from PMatrix2D and PMatrix3D's print() function.
*/
var printMatrixHelper = function(elements) {
var big = 0;
for (var i = 0; i < elements.length; i++) {
if (i !== 0) {
big = Math.max(big, Math.abs(elements[i]));
} else {
big = Math.abs(elements[i]);
}
}
var digits = (big + "").indexOf(".");
if (digits === 0) {
digits = 1;
} else if (digits === -1) {
digits = (big + "").length;
}
return digits;
};
/**
* PMatrix2D is a 3x2 affine matrix implementation. The constructor accepts another PMatrix2D or a list of six float elements.
* If no parameters are provided the matrix is set to the identity matrix.
*
* @param {PMatrix2D} matrix the initial matrix to set to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the second element of the matrix
* @param {float} m02 the third element of the matrix
* @param {float} m10 the fourth element of the matrix
* @param {float} m11 the fifth element of the matrix
* @param {float} m12 the sixth element of the matrix
*/
var PMatrix2D = p.PMatrix2D = function() {
if (arguments.length === 0) {
this.reset();
} else if (arguments.length === 1 && arguments[0] instanceof PMatrix2D) {
this.set(arguments[0].array());
} else if (arguments.length === 6) {
this.set(arguments[0], arguments[1], arguments[2], arguments[3], arguments[4], arguments[5]);
}
};
/**
* PMatrix2D methods
*/
PMatrix2D.prototype = {
/**
* @member PMatrix2D
* The set() function sets the matrix elements. The function accepts either another PMatrix2D, an array of elements, or a list of six floats.
*
* @param {PMatrix2D} matrix the matrix to set this matrix to
* @param {float[]} elements an array of elements to set this matrix to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the third element of the matrix
* @param {float} m10 the fourth element of the matrix
* @param {float} m11 the fith element of the matrix
* @param {float} m12 the sixth element of the matrix
*/
set: function() {
if (arguments.length === 6) {
var a = arguments;
this.set([a[0], a[1], a[2],
a[3], a[4], a[5]]);
} else if (arguments.length === 1 && arguments[0] instanceof PMatrix2D) {
this.elements = arguments[0].array();
} else if (arguments.length === 1 && arguments[0] instanceof Array) {
this.elements = arguments[0].slice();
}
},
/**
* @member PMatrix2D
* The get() function returns a copy of this PMatrix2D.
*
* @return {PMatrix2D} a copy of this PMatrix2D
*/
get: function() {
var outgoing = new PMatrix2D();
outgoing.set(this.elements);
return outgoing;
},
/**
* @member PMatrix2D
* The reset() function sets this PMatrix2D to the identity matrix.
*/
reset: function() {
this.set([1, 0, 0, 0, 1, 0]);
},
/**
* @member PMatrix2D
* The array() function returns a copy of the element values.
* @addon
*
* @return {float[]} returns a copy of the element values
*/
array: function array() {
return this.elements.slice();
},
/**
* @member PMatrix2D
* The translate() function translates this matrix by moving the current coordinates to the location specified by tx and ty.
*
* @param {float} tx the x-axis coordinate to move to
* @param {float} ty the y-axis coordinate to move to
*/
translate: function(tx, ty) {
this.elements[2] = tx * this.elements[0] + ty * this.elements[1] + this.elements[2];
this.elements[5] = tx * this.elements[3] + ty * this.elements[4] + this.elements[5];
},
/**
* @member PMatrix2D
* The invTranslate() function translates this matrix by moving the current coordinates to the negative location specified by tx and ty.
*
* @param {float} tx the x-axis coordinate to move to
* @param {float} ty the y-axis coordinate to move to
*/
invTranslate: function(tx, ty) {
this.translate(-tx, -ty);
},
/**
* @member PMatrix2D
* The transpose() function is not used in processingjs.
*/
transpose: function() {
// Does nothing in Processing.
},
/**
* @member PMatrix2D
* The mult() function multiplied this matrix.
* If two array elements are passed in the function will multiply a two element vector against this matrix.
* If target is null or not length four, a new float array will be returned.
* The values for vec and target can be the same (though that's less efficient).
* If two PVectors are passed in the function multiply the x and y coordinates of a PVector against this matrix.
*
* @param {PVector} source, target the PVectors used to multiply this matrix
* @param {float[]} source, target the arrays used to multiply this matrix
*
* @return {PVector|float[]} returns a PVector or an array representing the new matrix
*/
mult: function(source, target) {
var x, y;
if (source instanceof PVector) {
x = source.x;
y = source.y;
if (!target) {
target = new PVector();
}
} else if (source instanceof Array) {
x = source[0];
y = source[1];
if (!target) {
target = [];
}
}
if (target instanceof Array) {
target[0] = this.elements[0] * x + this.elements[1] * y + this.elements[2];
target[1] = this.elements[3] * x + this.elements[4] * y + this.elements[5];
} else if (target instanceof PVector) {
target.x = this.elements[0] * x + this.elements[1] * y + this.elements[2];
target.y = this.elements[3] * x + this.elements[4] * y + this.elements[5];
target.z = 0;
}
return target;
},
/**
* @member PMatrix2D
* The multX() function calculates the x component of a vector from a transformation.
*
* @param {float} x the x component of the vector being transformed
* @param {float} y the y component of the vector being transformed
*
* @return {float} returnes the result of the calculation
*/
multX: function(x, y) {
return (x * this.elements[0] + y * this.elements[1] + this.elements[2]);
},
/**
* @member PMatrix2D
* The multY() function calculates the y component of a vector from a transformation.
*
* @param {float} x the x component of the vector being transformed
* @param {float} y the y component of the vector being transformed
*
* @return {float} returnes the result of the calculation
*/
multY: function(x, y) {
return (x * this.elements[3] + y * this.elements[4] + this.elements[5]);
},
/**
* @member PMatrix2D
* The skewX() function skews the matrix along the x-axis the amount specified by the angle parameter.
* Angles should be specified in radians (values from 0 to PI*2) or converted to radians with the <b>radians()</b> function.
*
* @param {float} angle angle of skew specified in radians
*/
skewX: function(angle) {
this.apply(1, 0, 1, angle, 0, 0);
},
/**
* @member PMatrix2D
* The skewY() function skews the matrix along the y-axis the amount specified by the angle parameter.
* Angles should be specified in radians (values from 0 to PI*2) or converted to radians with the <b>radians()</b> function.
*
* @param {float} angle angle of skew specified in radians
*/
skewY: function(angle) {
this.apply(1, 0, 1, 0, angle, 0);
},
/**
* @member PMatrix2D
* The determinant() function calvculates the determinant of this matrix.
*
* @return {float} the determinant of the matrix
*/
determinant: function() {
return (this.elements[0] * this.elements[4] - this.elements[1] * this.elements[3]);
},
/**
* @member PMatrix2D
* The invert() function inverts this matrix
*
* @return {boolean} true if successful
*/
invert: function() {
var d = this.determinant();
if (Math.abs( d ) > PConstants.MIN_INT) {
var old00 = this.elements[0];
var old01 = this.elements[1];
var old02 = this.elements[2];
var old10 = this.elements[3];
var old11 = this.elements[4];
var old12 = this.elements[5];
this.elements[0] = old11 / d;
this.elements[3] = -old10 / d;
this.elements[1] = -old01 / d;
this.elements[4] = old00 / d;
this.elements[2] = (old01 * old12 - old11 * old02) / d;
this.elements[5] = (old10 * old02 - old00 * old12) / d;
return true;
}
return false;
},
/**
* @member PMatrix2D
* The scale() function increases or decreases the size of a shape by expanding and contracting vertices. When only one parameter is specified scale will occur in all dimensions.
* This is equivalent to a two parameter call.
*
* @param {float} sx the amount to scale on the x-axis
* @param {float} sy the amount to scale on the y-axis
*/
scale: function(sx, sy) {
if (sx && !sy) {
sy = sx;
}
if (sx && sy) {
this.elements[0] *= sx;
this.elements[1] *= sy;
this.elements[3] *= sx;
this.elements[4] *= sy;
}
},
/**
* @member PMatrix2D
* The invScale() function decreases or increases the size of a shape by contracting and expanding vertices. When only one parameter is specified scale will occur in all dimensions.
* This is equivalent to a two parameter call.
*
* @param {float} sx the amount to scale on the x-axis
* @param {float} sy the amount to scale on the y-axis
*/
invScale: function(sx, sy) {
if (sx && !sy) {
sy = sx;
}
this.scale(1 / sx, 1 / sy);
},
/**
* @member PMatrix2D
* The apply() function multiplies the current matrix by the one specified through the parameters. Note that either a PMatrix2D or a list of floats can be passed in.
*
* @param {PMatrix2D} matrix the matrix to apply this matrix to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the third element of the matrix
* @param {float} m10 the fourth element of the matrix
* @param {float} m11 the fith element of the matrix
* @param {float} m12 the sixth element of the matrix
*/
apply: function() {
var source;
if (arguments.length === 1 && arguments[0] instanceof PMatrix2D) {
source = arguments[0].array();
} else if (arguments.length === 6) {
source = Array.prototype.slice.call(arguments);
} else if (arguments.length === 1 && arguments[0] instanceof Array) {
source = arguments[0];
}
var result = [0, 0, this.elements[2],
0, 0, this.elements[5]];
var e = 0;
for (var row = 0; row < 2; row++) {
for (var col = 0; col < 3; col++, e++) {
result[e] += this.elements[row * 3 + 0] * source[col + 0] +
this.elements[row * 3 + 1] * source[col + 3];
}
}
this.elements = result.slice();
},
/**
* @member PMatrix2D
* The preApply() function applies another matrix to the left of this one. Note that either a PMatrix2D or elements of a matrix can be passed in.
*
* @param {PMatrix2D} matrix the matrix to apply this matrix to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the third element of the matrix
* @param {float} m10 the fourth element of the matrix
* @param {float} m11 the fith element of the matrix
* @param {float} m12 the sixth element of the matrix
*/
preApply: function() {
var source;
if (arguments.length === 1 && arguments[0] instanceof PMatrix2D) {
source = arguments[0].array();
} else if (arguments.length === 6) {
source = Array.prototype.slice.call(arguments);
} else if (arguments.length === 1 && arguments[0] instanceof Array) {
source = arguments[0];
}
var result = [0, 0, source[2],
0, 0, source[5]];
result[2] = source[2] + this.elements[2] * source[0] + this.elements[5] * source[1];
result[5] = source[5] + this.elements[2] * source[3] + this.elements[5] * source[4];
result[0] = this.elements[0] * source[0] + this.elements[3] * source[1];
result[3] = this.elements[0] * source[3] + this.elements[3] * source[4];
result[1] = this.elements[1] * source[0] + this.elements[4] * source[1];
result[4] = this.elements[1] * source[3] + this.elements[4] * source[4];
this.elements = result.slice();
},
/**
* @member PMatrix2D
* The rotate() function rotates the matrix.
*
* @param {float} angle the angle of rotation in radiants
*/
rotate: function(angle) {
// XXX(jeresig)
var c = p.cos(angle);
var s = p.sin(angle);
var temp1 = this.elements[0];
var temp2 = this.elements[1];
this.elements[0] = c * temp1 + s * temp2;
this.elements[1] = -s * temp1 + c * temp2;
temp1 = this.elements[3];
temp2 = this.elements[4];
this.elements[3] = c * temp1 + s * temp2;
this.elements[4] = -s * temp1 + c * temp2;
},
/**
* @member PMatrix2D
* The rotateZ() function rotates the matrix.
*
* @param {float} angle the angle of rotation in radiants
*/
rotateZ: function(angle) {
this.rotate(angle);
},
/**
* @member PMatrix2D
* The invRotateZ() function rotates the matrix in opposite direction.
*
* @param {float} angle the angle of rotation in radiants
*/
invRotateZ: function(angle) {
// XXX(jeresig)
this.rotateZ(angle - (p.angleMode === "degrees" ? 180 : Math.PI));
},
/**
* @member PMatrix2D
* The print() function prints out the elements of this matrix
*/
print: function() {
var digits = printMatrixHelper(this.elements);
var output = "" + p.nfs(this.elements[0], digits, 4) + " " +
p.nfs(this.elements[1], digits, 4) + " " +
p.nfs(this.elements[2], digits, 4) + "\n" +
p.nfs(this.elements[3], digits, 4) + " " +
p.nfs(this.elements[4], digits, 4) + " " +
p.nfs(this.elements[5], digits, 4) + "\n\n";
p.println(output);
}
};
/**
* PMatrix3D is a 4x4 matrix implementation. The constructor accepts another PMatrix3D or a list of six or sixteen float elements.
* If no parameters are provided the matrix is set to the identity matrix.
*/
var PMatrix3D = p.PMatrix3D = function() {
// When a matrix is created, it is set to an identity matrix
this.reset();
};
/**
* PMatrix3D methods
*/
PMatrix3D.prototype = {
/**
* @member PMatrix2D
* The set() function sets the matrix elements. The function accepts either another PMatrix3D, an array of elements, or a list of six or sixteen floats.
*
* @param {PMatrix3D} matrix the initial matrix to set to
* @param {float[]} elements an array of elements to set this matrix to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the second element of the matrix
* @param {float} m02 the third element of the matrix
* @param {float} m03 the fourth element of the matrix
* @param {float} m10 the fifth element of the matrix
* @param {float} m11 the sixth element of the matrix
* @param {float} m12 the seventh element of the matrix
* @param {float} m13 the eight element of the matrix
* @param {float} m20 the nineth element of the matrix
* @param {float} m21 the tenth element of the matrix
* @param {float} m22 the eleventh element of the matrix
* @param {float} m23 the twelveth element of the matrix
* @param {float} m30 the thirteenth element of the matrix
* @param {float} m31 the fourtheenth element of the matrix
* @param {float} m32 the fivetheenth element of the matrix
* @param {float} m33 the sixteenth element of the matrix
*/
set: function() {
if (arguments.length === 16) {
this.elements = Array.prototype.slice.call(arguments);
} else if (arguments.length === 1 && arguments[0] instanceof PMatrix3D) {
this.elements = arguments[0].array();
} else if (arguments.length === 1 && arguments[0] instanceof Array) {
this.elements = arguments[0].slice();
}
},
/**
* @member PMatrix3D
* The get() function returns a copy of this PMatrix3D.
*
* @return {PMatrix3D} a copy of this PMatrix3D
*/
get: function() {
var outgoing = new PMatrix3D();
outgoing.set(this.elements);
return outgoing;
},
/**
* @member PMatrix3D
* The reset() function sets this PMatrix3D to the identity matrix.
*/
reset: function() {
this.elements = [1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1];
},
/**
* @member PMatrix3D
* The array() function returns a copy of the element values.
* @addon
*
* @return {float[]} returns a copy of the element values
*/
array: function array() {
return this.elements.slice();
},
/**
* @member PMatrix3D
* The translate() function translates this matrix by moving the current coordinates to the location specified by tx, ty, and tz.
*
* @param {float} tx the x-axis coordinate to move to
* @param {float} ty the y-axis coordinate to move to
* @param {float} tz the z-axis coordinate to move to
*/
translate: function(tx, ty, tz) {
if (tz === undef) {
tz = 0;
}
this.elements[3] += tx * this.elements[0] + ty * this.elements[1] + tz * this.elements[2];
this.elements[7] += tx * this.elements[4] + ty * this.elements[5] + tz * this.elements[6];
this.elements[11] += tx * this.elements[8] + ty * this.elements[9] + tz * this.elements[10];
this.elements[15] += tx * this.elements[12] + ty * this.elements[13] + tz * this.elements[14];
},
/**
* @member PMatrix3D
* The transpose() function transpose this matrix.
*/
transpose: function() {
var temp = this.elements[4];
this.elements[4] = this.elements[1];
this.elements[1] = temp;
temp = this.elements[8];
this.elements[8] = this.elements[2];
this.elements[2] = temp;
temp = this.elements[6];
this.elements[6] = this.elements[9];
this.elements[9] = temp;
temp = this.elements[3];
this.elements[3] = this.elements[12];
this.elements[12] = temp;
temp = this.elements[7];
this.elements[7] = this.elements[13];
this.elements[13] = temp;
temp = this.elements[11];
this.elements[11] = this.elements[14];
this.elements[14] = temp;
},
/**
* @member PMatrix3D
* The mult() function multiplied this matrix.
* If two array elements are passed in the function will multiply a two element vector against this matrix.
* If target is null or not length four, a new float array will be returned.
* The values for vec and target can be the same (though that's less efficient).
* If two PVectors are passed in the function multiply the x and y coordinates of a PVector against this matrix.
*
* @param {PVector} source, target the PVectors used to multiply this matrix
* @param {float[]} source, target the arrays used to multiply this matrix
*
* @return {PVector|float[]} returns a PVector or an array representing the new matrix
*/
mult: function(source, target) {
var x, y, z, w;
if (source instanceof PVector) {
x = source.x;
y = source.y;
z = source.z;
w = 1;
if (!target) {
target = new PVector();
}
} else if (source instanceof Array) {
x = source[0];
y = source[1];
z = source[2];
w = source[3] || 1;
if ( !target || (target.length !== 3 && target.length !== 4) ) {
target = [0, 0, 0];
}
}
if (target instanceof Array) {
if (target.length === 3) {
target[0] = this.elements[0] * x + this.elements[1] * y + this.elements[2] * z + this.elements[3];
target[1] = this.elements[4] * x + this.elements[5] * y + this.elements[6] * z + this.elements[7];
target[2] = this.elements[8] * x + this.elements[9] * y + this.elements[10] * z + this.elements[11];
} else if (target.length === 4) {
target[0] = this.elements[0] * x + this.elements[1] * y + this.elements[2] * z + this.elements[3] * w;
target[1] = this.elements[4] * x + this.elements[5] * y + this.elements[6] * z + this.elements[7] * w;
target[2] = this.elements[8] * x + this.elements[9] * y + this.elements[10] * z + this.elements[11] * w;
target[3] = this.elements[12] * x + this.elements[13] * y + this.elements[14] * z + this.elements[15] * w;
}
}
if (target instanceof PVector) {
target.x = this.elements[0] * x + this.elements[1] * y + this.elements[2] * z + this.elements[3];
target.y = this.elements[4] * x + this.elements[5] * y + this.elements[6] * z + this.elements[7];
target.z = this.elements[8] * x + this.elements[9] * y + this.elements[10] * z + this.elements[11];
}
return target;
},
/**
* @member PMatrix3D
* The preApply() function applies another matrix to the left of this one. Note that either a PMatrix3D or elements of a matrix can be passed in.
*
* @param {PMatrix3D} matrix the matrix to apply this matrix to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the second element of the matrix
* @param {float} m02 the third element of the matrix
* @param {float} m03 the fourth element of the matrix
* @param {float} m10 the fifth element of the matrix
* @param {float} m11 the sixth element of the matrix
* @param {float} m12 the seventh element of the matrix
* @param {float} m13 the eight element of the matrix
* @param {float} m20 the nineth element of the matrix
* @param {float} m21 the tenth element of the matrix
* @param {float} m22 the eleventh element of the matrix
* @param {float} m23 the twelveth element of the matrix
* @param {float} m30 the thirteenth element of the matrix
* @param {float} m31 the fourtheenth element of the matrix
* @param {float} m32 the fivetheenth element of the matrix
* @param {float} m33 the sixteenth element of the matrix
*/
preApply: function() {
var source;
if (arguments.length === 1 && arguments[0] instanceof PMatrix3D) {
source = arguments[0].array();
} else if (arguments.length === 16) {
source = Array.prototype.slice.call(arguments);
} else if (arguments.length === 1 && arguments[0] instanceof Array) {
source = arguments[0];
}
var result = [0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0];
var e = 0;
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++, e++) {
result[e] += this.elements[col + 0] * source[row * 4 + 0] + this.elements[col + 4] *
source[row * 4 + 1] + this.elements[col + 8] * source[row * 4 + 2] +
this.elements[col + 12] * source[row * 4 + 3];
}
}
this.elements = result.slice();
},
/**
* @member PMatrix3D
* The apply() function multiplies the current matrix by the one specified through the parameters. Note that either a PMatrix3D or a list of floats can be passed in.
*
* @param {PMatrix3D} matrix the matrix to apply this matrix to
* @param {float} m00 the first element of the matrix
* @param {float} m01 the second element of the matrix
* @param {float} m02 the third element of the matrix
* @param {float} m03 the fourth element of the matrix
* @param {float} m10 the fifth element of the matrix
* @param {float} m11 the sixth element of the matrix
* @param {float} m12 the seventh element of the matrix
* @param {float} m13 the eight element of the matrix
* @param {float} m20 the nineth element of the matrix
* @param {float} m21 the tenth element of the matrix
* @param {float} m22 the eleventh element of the matrix
* @param {float} m23 the twelveth element of the matrix
* @param {float} m30 the thirteenth element of the matrix
* @param {float} m31 the fourtheenth element of the matrix
* @param {float} m32 the fivetheenth element of the matrix
* @param {float} m33 the sixteenth element of the matrix
*/
apply: function() {
var source;
if (arguments.length === 1 && arguments[0] instanceof PMatrix3D) {
source = arguments[0].array();
} else if (arguments.length === 16) {
source = Array.prototype.slice.call(arguments);
} else if (arguments.length === 1 && arguments[0] instanceof Array) {
source = arguments[0];
}
var result = [0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0];
var e = 0;
for (var row = 0; row < 4; row++) {
for (var col = 0; col < 4; col++, e++) {
result[e] += this.elements[row * 4 + 0] * source[col + 0] + this.elements[row * 4 + 1] *
source[col + 4] + this.elements[row * 4 + 2] * source[col + 8] +
this.elements[row * 4 + 3] * source[col + 12];
}
}
this.elements = result.slice();
},
/**
* @member PMatrix3D
* The rotate() function rotates the matrix.
*
* @param {float} angle the angle of rotation in radiants
*/
rotate: function(angle, v0, v1, v2) {
if (!v1) {
this.rotateZ(angle);
} else {
// TODO should make sure this vector is normalized
var c = p.cos(angle);
var s = p.sin(angle);
var t = 1.0 - c;
this.apply((t * v0 * v0) + c,
(t * v0 * v1) - (s * v2),
(t * v0 * v2) + (s * v1),
0,
(t * v0 * v1) + (s * v2),
(t * v1 * v1) + c,
(t * v1 * v2) - (s * v0),
0,
(t * v0 * v2) - (s * v1),
(t * v1 * v2) + (s * v0),
(t * v2 * v2) + c,
0,
0, 0, 0, 1);
}
},
/**
* @member PMatrix3D
* The invApply() function applies the inverted matrix to this matrix.
*
* @param {float} m00 the first element of the matrix
* @param {float} m01 the second element of the matrix
* @param {float} m02 the third element of the matrix
* @param {float} m03 the fourth element of the matrix
* @param {float} m10 the fifth element of the matrix
* @param {float} m11 the sixth element of the matrix
* @param {float} m12 the seventh element of the matrix
* @param {float} m13 the eight element of the matrix
* @param {float} m20 the nineth element of the matrix
* @param {float} m21 the tenth element of the matrix
* @param {float} m22 the eleventh element of the matrix
* @param {float} m23 the twelveth element of the matrix
* @param {float} m30 the thirteenth element of the matrix
* @param {float} m31 the fourtheenth element of the matrix
* @param {float} m32 the fivetheenth element of the matrix
* @param {float} m33 the sixteenth element of the matrix
*
* @return {boolean} returns true if the operation was successful.
*/
invApply: function() {
if (inverseCopy === undef) {
inverseCopy = new PMatrix3D();
}
var a = arguments;
inverseCopy.set(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8],
a[9], a[10], a[11], a[12], a[13], a[14], a[15]);
if (!inverseCopy.invert()) {
return false;
}
this.preApply(inverseCopy);
return true;
},
/**
* @member PMatrix3D
* The rotateZ() function rotates the matrix.
*
* @param {float} angle the angle of rotation in radiants
*/
rotateX: function(angle) {
var c = p.cos(angle);
var s = p.sin(angle);
this.apply([1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1]);
},
/**
* @member PMatrix3D
* The rotateY() function rotates the matrix.
*
* @param {float} angle the angle of rotation in radiants
*/
rotateY: function(angle) {
var c = p.cos(angle);
var s = p.sin(angle);
this.apply([c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1]);
},
/**
* @member PMatrix3D
* The rotateZ() function rotates the matrix.
*
* @param {float} angle the angle of rotation in radiants
*/
rotateZ: function(angle) {
// XXX(jeresig)
var c = p.cos(angle);
var s = p.sin(angle);
this.apply([c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]);
},
/**
* @member PMatrix3D
* The scale() function increases or decreases the size of a matrix by expanding and contracting vertices. When only one parameter is specified scale will occur in all dimensions.
* This is equivalent to a three parameter call.
*
* @param {float} sx the amount to scale on the x-axis
* @param {float} sy the amount to scale on the y-axis
* @param {float} sz the amount to scale on the z-axis
*/
scale: function(sx, sy, sz) {
if (sx && !sy && !sz) {
sy = sz = sx;
} else if (sx && sy && !sz) {
sz = 1;
}
if (sx && sy && sz) {
this.elements[0] *= sx;
this.elements[1] *= sy;
this.elements[2] *= sz;
this.elements[4] *= sx;
this.elements[5] *= sy;
this.elements[6] *= sz;
this.elements[8] *= sx;
this.elements[9] *= sy;
this.elements[10] *= sz;
this.elements[12] *= sx;
this.elements[13] *= sy;
this.elements[14] *= sz;
}
},
/**
* @member PMatrix3D
* The skewX() function skews the matrix along the x-axis the amount specified by the angle parameter.
* Angles should be specified in radians (values from 0 to PI*2) or converted to radians with the <b>radians()</b> function.
*
* @param {float} angle angle of skew specified in radians
*/
skewX: function(angle) {
// XXX(jeresig)
var t = p.tan(angle);
this.apply(1, t, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
},
/**
* @member PMatrix3D
* The skewY() function skews the matrix along the y-axis the amount specified by the angle parameter.
* Angles should be specified in radians (values from 0 to PI*2) or converted to radians with the <b>radians()</b> function.
*
* @param {float} angle angle of skew specified in radians
*/
skewY: function(angle) {
// XXX(jeresig)
var t = p.tan(angle);
this.apply(1, 0, 0, 0, t, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
},
multX: function(x, y, z, w) {
if (!z) {
return this.elements[0] * x + this.elements[1] * y + this.elements[3];
}
if (!w) {
return this.elements[0] * x + this.elements[1] * y + this.elements[2] * z + this.elements[3];
}
return this.elements[0] * x + this.elements[1] * y + this.elements[2] * z + this.elements[3] * w;
},
multY: function(x, y, z, w) {
if (!z) {
return this.elements[4] * x + this.elements[5] * y + this.elements[7];
}
if (!w) {
return this.elements[4] * x + this.elements[5] * y + this.elements[6] * z + this.elements[7];
}
return this.elements[4] * x + this.elements[5] * y + this.elements[6] * z + this.elements[7] * w;
},
multZ: function(x, y, z, w) {
if (!w) {
return this.elements[8] * x + this.elements[9] * y + this.elements[10] * z + this.elements[11];
}
return this.elements[8] * x + this.elements[9] * y + this.elements[10] * z + this.elements[11] * w;
},
multW: function(x, y, z, w) {
if (!w) {
return this.elements[12] * x + this.elements[13] * y + this.elements[14] * z + this.elements[15];
}
return this.elements[12] * x + this.elements[13] * y + this.elements[14] * z + this.elements[15] * w;
},
/**
* @member PMatrix3D
* The invert() function inverts this matrix
*
* @return {boolean} true if successful
*/
invert: function() {
var fA0 = this.elements[0] * this.elements[5] - this.elements[1] * this.elements[4];
var fA1 = this.elements[0] * this.elements[6] - this.elements[2] * this.elements[4];
var fA2 = this.elements[0] * this.elements[7] - this.elements[3] * this.elements[4];
var fA3 = this.elements[1] * this.elements[6] - this.elements[2] * this.elements[5];
var fA4 = this.elements[1] * this.elements[7] - this.elements[3] * this.elements[5];
var fA5 = this.elements[2] * this.elements[7] - this.elements[3] * this.elements[6];
var fB0 = this.elements[8] * this.elements[13] - this.elements[9] * this.elements[12];
var fB1 = this.elements[8] * this.elements[14] - this.elements[10] * this.elements[12];
var fB2 = this.elements[8] * this.elements[15] - this.elements[11] * this.elements[12];
var fB3 = this.elements[9] * this.elements[14] - this.elements[10] * this.elements[13];
var fB4 = this.elements[9] * this.elements[15] - this.elements[11] * this.elements[13];
var fB5 = this.elements[10] * this.elements[15] - this.elements[11] * this.elements[14];
// Determinant
var fDet = fA0 * fB5 - fA1 * fB4 + fA2 * fB3 + fA3 * fB2 - fA4 * fB1 + fA5 * fB0;
// Account for a very small value
// return false if not successful.
if (Math.abs(fDet) <= 1e-9) {
return false;
}
var kInv = [];
kInv[0] = +this.elements[5] * fB5 - this.elements[6] * fB4 + this.elements[7] * fB3;
kInv[4] = -this.elements[4] * fB5 + this.elements[6] * fB2 - this.elements[7] * fB1;
kInv[8] = +this.elements[4] * fB4 - this.elements[5] * fB2 + this.elements[7] * fB0;
kInv[12] = -this.elements[4] * fB3 + this.elements[5] * fB1 - this.elements[6] * fB0;
kInv[1] = -this.elements[1] * fB5 + this.elements[2] * fB4 - this.elements[3] * fB3;
kInv[5] = +this.elements[0] * fB5 - this.elements[2] * fB2 + this.elements[3] * fB1;
kInv[9] = -this.elements[0] * fB4 + this.elements[1] * fB2 - this.elements[3] * fB0;
kInv[13] = +this.elements[0] * fB3 - this.elements[1] * fB1 + this.elements[2] * fB0;
kInv[2] = +this.elements[13] * fA5 - this.elements[14] * fA4 + this.elements[15] * fA3;
kInv[6] = -this.elements[12] * fA5 + this.elements[14] * fA2 - this.elements[15] * fA1;
kInv[10] = +this.elements[12] * fA4 - this.elements[13] * fA2 + this.elements[15] * fA0;
kInv[14] = -this.elements[12] * fA3 + this.elements[13] * fA1 - this.elements[14] * fA0;
kInv[3] = -this.elements[9] * fA5 + this.elements[10] * fA4 - this.elements[11] * fA3;
kInv[7] = +this.elements[8] * fA5 - this.elements[10] * fA2 + this.elements[11] * fA1;
kInv[11] = -this.elements[8] * fA4 + this.elements[9] * fA2 - this.elements[11] * fA0;
kInv[15] = +this.elements[8] * fA3 - this.elements[9] * fA1 + this.elements[10] * fA0;
// Inverse using Determinant
var fInvDet = 1.0 / fDet;
kInv[0] *= fInvDet;
kInv[1] *= fInvDet;
kInv[2] *= fInvDet;
kInv[3] *= fInvDet;
kInv[4] *= fInvDet;
kInv[5] *= fInvDet;
kInv[6] *= fInvDet;
kInv[7] *= fInvDet;
kInv[8] *= fInvDet;
kInv[9] *= fInvDet;
kInv[10] *= fInvDet;
kInv[11] *= fInvDet;
kInv[12] *= fInvDet;
kInv[13] *= fInvDet;
kInv[14] *= fInvDet;
kInv[15] *= fInvDet;
this.elements = kInv.slice();
return true;
},
toString: function() {
var str = "";
for (var i = 0; i < 15; i++) {
str += this.elements[i] + ", ";
}
str += this.elements[15];
return str;
},
/**
* @member PMatrix3D
* The print() function prints out the elements of this matrix
*/
print: function() {
var digits = printMatrixHelper(this.elements);
var output = "" + p.nfs(this.elements[0], digits, 4) + " " + p.nfs(this.elements[1], digits, 4) +
" " + p.nfs(this.elements[2], digits, 4) + " " + p.nfs(this.elements[3], digits, 4) +
"\n" + p.nfs(this.elements[4], digits, 4) + " " + p.nfs(this.elements[5], digits, 4) +
" " + p.nfs(this.elements[6], digits, 4) + " " + p.nfs(this.elements[7], digits, 4) +
"\n" + p.nfs(this.elements[8], digits, 4) + " " + p.nfs(this.elements[9], digits, 4) +
" " + p.nfs(this.elements[10], digits, 4) + " " + p.nfs(this.elements[11], digits, 4) +
"\n" + p.nfs(this.elements[12], digits, 4) + " " + p.nfs(this.elements[13], digits, 4) +
" " + p.nfs(this.elements[14], digits, 4) + " " + p.nfs(this.elements[15], digits, 4) + "\n\n";
p.println(output);
},
invTranslate: function(tx, ty, tz) {
this.preApply(1, 0, 0, -tx, 0, 1, 0, -ty, 0, 0, 1, -tz, 0, 0, 0, 1);
},
invRotateX: function(angle) {
// XXX(jeresig)
var c = p.cos(-angle);
var s = p.sin(-angle);
this.preApply([1, 0, 0, 0, 0, c, -s, 0, 0, s, c, 0, 0, 0, 0, 1]);
},
invRotateY: function(angle) {
// XXX(jeresig)
var c = p.cos(-angle);
var s = p.sin(-angle);
this.preApply([c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1]);
},
invRotateZ: function(angle) {
// XXX(jeresig)
var c = p.cos(-angle);
var s = p.sin(-angle);
this.preApply([c, -s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]);
},
invScale: function(x, y, z) {
this.preApply([1 / x, 0, 0, 0, 0, 1 / y, 0, 0, 0, 0, 1 / z, 0, 0, 0, 0, 1]);
}
};
/**
* @private
* The matrix stack stores the transformations and translations that occur within the space.
*/
var PMatrixStack = p.PMatrixStack = function() {
this.matrixStack = [];
};
/**
* @member PMatrixStack
* load pushes the matrix given in the function into the stack
*
* @param {Object | Array} matrix the matrix to be pushed into the stack
*/
PMatrixStack.prototype.load = function() {
var tmpMatrix = drawing.$newPMatrix();
if (arguments.length === 1) {
tmpMatrix.set(arguments[0]);
} else {
tmpMatrix.set(arguments);
}
this.matrixStack.push(tmpMatrix);
};
Drawing2D.prototype.$newPMatrix = function() {
return new PMatrix2D();
};
Drawing3D.prototype.$newPMatrix = function() {
return new PMatrix3D();
};
/**
* @member PMatrixStack
* push adds a duplicate of the top of the stack onto the stack - uses the peek function
*/
PMatrixStack.prototype.push = function() {
this.matrixStack.push(this.peek());
};
/**
* @member PMatrixStack
* pop removes returns the matrix at the top of the stack
*
* @returns {Object} the matrix at the top of the stack
*/
PMatrixStack.prototype.pop = function() {
return this.matrixStack.pop();
};
/**
* @member PMatrixStack
* peek returns but doesn't remove the matrix at the top of the stack
*
* @returns {Object} the matrix at the top of the stack
*/
PMatrixStack.prototype.peek = function() {
var tmpMatrix = drawing.$newPMatrix();
tmpMatrix.set(this.matrixStack[this.matrixStack.length - 1]);
return tmpMatrix;
};
/**
* @member PMatrixStack
* this function multiplies the matrix at the top of the stack with the matrix given as a parameter
*
* @param {Object | Array} matrix the matrix to be multiplied into the stack
*/
PMatrixStack.prototype.mult = function(matrix) {
this.matrixStack[this.matrixStack.length - 1].apply(matrix);
};
////////////////////////////////////////////////////////////////////////////
// Array handling
////////////////////////////////////////////////////////////////////////////
/**
* The split() function breaks a string into pieces using a character or string
* as the divider. The delim parameter specifies the character or characters that
* mark the boundaries between each piece. A String[] array is returned that contains
* each of the pieces.
* If the result is a set of numbers, you can convert the String[] array to to a float[]
* or int[] array using the datatype conversion functions int() and float() (see example above).
* The splitTokens() function works in a similar fashion, except that it splits using a range
* of characters instead of a specific character or sequence.
*
* @param {String} str the String to be split
* @param {String} delim the character or String used to separate the data
*
* @returns {string[]} The new string array
*
* @see splitTokens
* @see join
* @see trim
*/
p.split = function(str, delim) {
return str.split(delim);
};
/**
* The splitTokens() function splits a String at one or many character "tokens." The tokens
* parameter specifies the character or characters to be used as a boundary.
* If no tokens character is specified, any whitespace character is used to split.
* Whitespace characters include tab (\t), line feed (\n), carriage return (\r), form
* feed (\f), and space. To convert a String to an array of integers or floats, use the
* datatype conversion functions int() and float() to convert the array of Strings.
*
* @param {String} str the String to be split
* @param {Char[]} tokens list of individual characters that will be used as separators
*
* @returns {string[]} The new string array
*
* @see split
* @see join
* @see trim
*/
p.splitTokens = function(str, tokens) {
if (arguments.length === 1) {
tokens = "\n\t\r\f ";
}
tokens = "[" + tokens + "]";
var ary = [];
var index = 0;
var pos = str.search(tokens);
while (pos >= 0) {
if (pos === 0) {
str = str.substring(1);
} else {
ary[index] = str.substring(0, pos);
index++;
str = str.substring(pos);
}
pos = str.search(tokens);
}
if (str.length > 0) {
ary[index] = str;
}
if (ary.length === 0) {
ary = undef;
}
return ary;
};
/**
* Expands an array by one element and adds data to the new position. The datatype of
* the element parameter must be the same as the datatype of the array.
* When using an array of objects, the data returned from the function must be cast to
* the object array's data type. For example: SomeClass[] items = (SomeClass[])
* append(originalArray, element).
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} array boolean[],
* byte[], char[], int[], float[], or String[], or an array of objects
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} element new data for the array
*
* @returns Array (the same datatype as the input)
*
* @see shorten
* @see expand
*/
p.append = function(array, element) {
array[array.length] = element;
return array;
};
/**
* Concatenates two arrays. For example, concatenating the array { 1, 2, 3 } and the
* array { 4, 5, 6 } yields { 1, 2, 3, 4, 5, 6 }. Both parameters must be arrays of the
* same datatype.
* When using an array of objects, the data returned from the function must be cast to the
* object array's data type. For example: SomeClass[] items = (SomeClass[]) concat(array1, array2).
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} array1 boolean[],
* byte[], char[], int[], float[], String[], or an array of objects
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} array2 boolean[],
* byte[], char[], int[], float[], String[], or an array of objects
*
* @returns Array (the same datatype as the input)
*
* @see splice
*/
p.concat = function(array1, array2) {
return array1.concat(array2);
};
/**
* Sorts an array of numbers from smallest to largest and puts an array of
* words in alphabetical order. The original array is not modified, a
* re-ordered array is returned. The count parameter states the number of
* elements to sort. For example if there are 12 elements in an array and
* if count is the value 5, only the first five elements on the array will
* be sorted. Alphabetical ordering is case insensitive.
*
* @param {String[] | int[] | float[]} array Array of elements to sort
* @param {int} numElem Number of elements to sort
*
* @returns {String[] | int[] | float[]} Array (same datatype as the input)
*
* @see reverse
*/
p.sort = function(array, numElem) {
var ret = [];
// depending on the type used (int, float) or string
// we'll need to use a different compare function
if (array.length > 0) {
// copy since we need to return another array
var elemsToCopy = numElem > 0 ? numElem : array.length;
for (var i = 0; i < elemsToCopy; i++) {
ret.push(array[i]);
}
if (typeof array[0] === "string") {
ret.sort();
}
// int or float
else {
ret.sort(function(a, b) {
return a - b;
});
}
// copy on the rest of the elements that were not sorted in case the user
// only wanted a subset of an array to be sorted.
if (numElem > 0) {
for (var j = ret.length; j < array.length; j++) {
ret.push(array[j]);
}
}
}
return ret;
};
/**
* Inserts a value or array of values into an existing array. The first two parameters must
* be of the same datatype. The array parameter defines the array which will be modified
* and the second parameter defines the data which will be inserted. When using an array
* of objects, the data returned from the function must be cast to the object array's data
* type. For example: SomeClass[] items = (SomeClass[]) splice(array1, array2, index).
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} array boolean[],
* byte[], char[], int[], float[], String[], or an array of objects
* @param {boolean|byte|char|int|float|String|boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects}
* value boolean, byte, char, int, float, String, boolean[], byte[], char[], int[],
* float[], String[], or other Object: value or an array of objects to be spliced in
* @param {int} index position in the array from which to insert data
*
* @returns Array (the same datatype as the input)
*
* @see contract
* @see subset
*/
p.splice = function(array, value, index) {
// Trying to splice an empty array into "array" in P5 won't do
// anything, just return the original.
if(value.length === 0)
{
return array;
}
// If the second argument was an array, we'll need to iterate over all
// the "value" elements and add one by one because
// array.splice(index, 0, value);
// would create a multi-dimensional array which isn't what we want.
if(value instanceof Array) {
for(var i = 0, j = index; i < value.length; j++,i++) {
array.splice(j, 0, value[i]);
}
} else {
array.splice(index, 0, value);
}
return array;
};
/**
* Extracts an array of elements from an existing array. The array parameter defines the
* array from which the elements will be copied and the offset and length parameters determine
* which elements to extract. If no length is given, elements will be extracted from the offset
* to the end of the array. When specifying the offset remember the first array element is 0.
* This function does not change the source array.
* When using an array of objects, the data returned from the function must be cast to the
* object array's data type.
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} array boolean[],
* byte[], char[], int[], float[], String[], or an array of objects
* @param {int} offset position to begin
* @param {int} length number of values to extract
*
* @returns Array (the same datatype as the input)
*
* @see splice
*/
p.subset = function(array, offset, length) {
var end = (length !== undef) ? offset + length : array.length;
return array.slice(offset, end);
};
/**
* Combines an array of Strings into one String, each separated by the character(s) used for
* the separator parameter. To join arrays of ints or floats, it's necessary to first convert
* them to strings using nf() or nfs().
*
* @param {Array} array array of Strings
* @param {char|String} separator char or String to be placed between each item
*
* @returns {String} The combined string
*
* @see split
* @see trim
* @see nf
* @see nfs
*/
p.join = function(array, seperator) {
return array.join(seperator);
};
/**
* Decreases an array by one element and returns the shortened array. When using an
* array of objects, the data returned from the function must be cast to the object array's
* data type. For example: SomeClass[] items = (SomeClass[]) shorten(originalArray).
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} array
* boolean[], byte[], char[], int[], float[], or String[], or an array of objects
*
* @returns Array (the same datatype as the input)
*
* @see append
* @see expand
*/
p.shorten = function(ary) {
var newary = [];
// copy array into new array
var len = ary.length;
for (var i = 0; i < len; i++) {
newary[i] = ary[i];
}
newary.pop();
return newary;
};
/**
* Increases the size of an array. By default, this function doubles the size of the array,
* but the optional newSize parameter provides precise control over the increase in size.
* When using an array of objects, the data returned from the function must be cast to the
* object array's data type. For example: SomeClass[] items = (SomeClass[]) expand(originalArray).
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]|array of objects} ary
* boolean[], byte[], char[], int[], float[], String[], or an array of objects
* @param {int} newSize positive int: new size for the array
*
* @returns Array (the same datatype as the input)
*
* @see contract
*/
p.expand = function(ary, targetSize) {
var temp = ary.slice(0),
newSize = targetSize || ary.length * 2;
temp.length = newSize;
return temp;
};
/**
* Copies an array (or part of an array) to another array. The src array is copied to the
* dst array, beginning at the position specified by srcPos and into the position specified
* by dstPos. The number of elements to copy is determined by length. The simplified version
* with two arguments copies an entire array to another of the same size. It is equivalent
* to "arrayCopy(src, 0, dst, 0, src.length)". This function is far more efficient for copying
* array data than iterating through a for and copying each element.
*
* @param {Array} src an array of any data type: the source array
* @param {Array} dest an array of any data type (as long as it's the same as src): the destination array
* @param {int} srcPos starting position in the source array
* @param {int} destPos starting position in the destination array
* @param {int} length number of array elements to be copied
*
* @returns none
*/
p.arrayCopy = function() { // src, srcPos, dest, destPos, length) {
var src, srcPos = 0, dest, destPos = 0, length;
if (arguments.length === 2) {
// recall itself and copy src to dest from start index 0 to 0 of src.length
src = arguments[0];
dest = arguments[1];
length = src.length;
} else if (arguments.length === 3) {
// recall itself and copy src to dest from start index 0 to 0 of length
src = arguments[0];
dest = arguments[1];
length = arguments[2];
} else if (arguments.length === 5) {
src = arguments[0];
srcPos = arguments[1];
dest = arguments[2];
destPos = arguments[3];
length = arguments[4];
}
// copy src to dest from index srcPos to index destPos of length recursivly on objects
for (var i = srcPos, j = destPos; i < length + srcPos; i++, j++) {
if (dest[j] !== undef) {
dest[j] = src[i];
} else {
throw "array index out of bounds exception";
}
}
};
/**
* Reverses the order of an array.
*
* @param {boolean[]|byte[]|char[]|int[]|float[]|String[]} array
* boolean[], byte[], char[], int[], float[], or String[]
*
* @returns Array (the same datatype as the input)
*
* @see sort
*/
p.reverse = function(array) {
return array.reverse();
};
////////////////////////////////////////////////////////////////////////////
// Color functions
////////////////////////////////////////////////////////////////////////////
// helper functions for internal blending modes
p.mix = function(a, b, f) {
return a + (((b - a) * f) >> 8);
};
p.peg = function(n) {
return (n < 0) ? 0 : ((n > 255) ? 255 : n);
};
// blending modes
/**
* These are internal blending modes used for BlendColor()
*
* @param {Color} c1 First Color to blend
* @param {Color} c2 Second Color to blend
*
* @returns {Color} The blended Color
*
* @see BlendColor
* @see Blend
*/
p.modes = (function() {
var ALPHA_MASK = PConstants.ALPHA_MASK,
RED_MASK = PConstants.RED_MASK,
GREEN_MASK = PConstants.GREEN_MASK,
BLUE_MASK = PConstants.BLUE_MASK,
min = Math.min,
max = Math.max;
function applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb) {
var a = min(((c1 & 0xff000000) >>> 24) + f, 0xff) << 24;
var r = (ar + (((cr - ar) * f) >> 8));
r = ((r < 0) ? 0 : ((r > 255) ? 255 : r)) << 16;
var g = (ag + (((cg - ag) * f) >> 8));
g = ((g < 0) ? 0 : ((g > 255) ? 255 : g)) << 8;
var b = ab + (((cb - ab) * f) >> 8);
b = (b < 0) ? 0 : ((b > 255) ? 255 : b);
return (a | r | g | b);
}
return {
replace: function(c1, c2) {
return c2;
},
blend: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK),
ag = (c1 & GREEN_MASK),
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK),
bg = (c2 & GREEN_MASK),
bb = (c2 & BLUE_MASK);
return (min(((c1 & ALPHA_MASK) >>> 24) + f, 0xff) << 24 |
(ar + (((br - ar) * f) >> 8)) & RED_MASK |
(ag + (((bg - ag) * f) >> 8)) & GREEN_MASK |
(ab + (((bb - ab) * f) >> 8)) & BLUE_MASK);
},
add: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24;
return (min(((c1 & ALPHA_MASK) >>> 24) + f, 0xff) << 24 |
min(((c1 & RED_MASK) + ((c2 & RED_MASK) >> 8) * f), RED_MASK) & RED_MASK |
min(((c1 & GREEN_MASK) + ((c2 & GREEN_MASK) >> 8) * f), GREEN_MASK) & GREEN_MASK |
min((c1 & BLUE_MASK) + (((c2 & BLUE_MASK) * f) >> 8), BLUE_MASK));
},
subtract: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24;
return (min(((c1 & ALPHA_MASK) >>> 24) + f, 0xff) << 24 |
max(((c1 & RED_MASK) - ((c2 & RED_MASK) >> 8) * f), GREEN_MASK) & RED_MASK |
max(((c1 & GREEN_MASK) - ((c2 & GREEN_MASK) >> 8) * f), BLUE_MASK) & GREEN_MASK |
max((c1 & BLUE_MASK) - (((c2 & BLUE_MASK) * f) >> 8), 0));
},
lightest: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24;
return (min(((c1 & ALPHA_MASK) >>> 24) + f, 0xff) << 24 |
max(c1 & RED_MASK, ((c2 & RED_MASK) >> 8) * f) & RED_MASK |
max(c1 & GREEN_MASK, ((c2 & GREEN_MASK) >> 8) * f) & GREEN_MASK |
max(c1 & BLUE_MASK, ((c2 & BLUE_MASK) * f) >> 8));
},
darkest: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK),
ag = (c1 & GREEN_MASK),
ab = (c1 & BLUE_MASK),
br = min(c1 & RED_MASK, ((c2 & RED_MASK) >> 8) * f),
bg = min(c1 & GREEN_MASK, ((c2 & GREEN_MASK) >> 8) * f),
bb = min(c1 & BLUE_MASK, ((c2 & BLUE_MASK) * f) >> 8);
return (min(((c1 & ALPHA_MASK) >>> 24) + f, 0xff) << 24 |
(ar + (((br - ar) * f) >> 8)) & RED_MASK |
(ag + (((bg - ag) * f) >> 8)) & GREEN_MASK |
(ab + (((bb - ab) * f) >> 8)) & BLUE_MASK);
},
difference: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = (ar > br) ? (ar - br) : (br - ar),
cg = (ag > bg) ? (ag - bg) : (bg - ag),
cb = (ab > bb) ? (ab - bb) : (bb - ab);
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
exclusion: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = ar + br - ((ar * br) >> 7),
cg = ag + bg - ((ag * bg) >> 7),
cb = ab + bb - ((ab * bb) >> 7);
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
multiply: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = (ar * br) >> 8,
cg = (ag * bg) >> 8,
cb = (ab * bb) >> 8;
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
screen: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = 255 - (((255 - ar) * (255 - br)) >> 8),
cg = 255 - (((255 - ag) * (255 - bg)) >> 8),
cb = 255 - (((255 - ab) * (255 - bb)) >> 8);
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
hard_light: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = (br < 128) ? ((ar * br) >> 7) : (255 - (((255 - ar) * (255 - br)) >> 7)),
cg = (bg < 128) ? ((ag * bg) >> 7) : (255 - (((255 - ag) * (255 - bg)) >> 7)),
cb = (bb < 128) ? ((ab * bb) >> 7) : (255 - (((255 - ab) * (255 - bb)) >> 7));
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
soft_light: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = ((ar * br) >> 7) + ((ar * ar) >> 8) - ((ar * ar * br) >> 15),
cg = ((ag * bg) >> 7) + ((ag * ag) >> 8) - ((ag * ag * bg) >> 15),
cb = ((ab * bb) >> 7) + ((ab * ab) >> 8) - ((ab * ab * bb) >> 15);
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
overlay: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK),
cr = (ar < 128) ? ((ar * br) >> 7) : (255 - (((255 - ar) * (255 - br)) >> 7)),
cg = (ag < 128) ? ((ag * bg) >> 7) : (255 - (((255 - ag) * (255 - bg)) >> 7)),
cb = (ab < 128) ? ((ab * bb) >> 7) : (255 - (((255 - ab) * (255 - bb)) >> 7));
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
dodge: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK);
var cr = 255;
if (br !== 255) {
cr = (ar << 8) / (255 - br);
cr = (cr < 0) ? 0 : ((cr > 255) ? 255 : cr);
}
var cg = 255;
if (bg !== 255) {
cg = (ag << 8) / (255 - bg);
cg = (cg < 0) ? 0 : ((cg > 255) ? 255 : cg);
}
var cb = 255;
if (bb !== 255) {
cb = (ab << 8) / (255 - bb);
cb = (cb < 0) ? 0 : ((cb > 255) ? 255 : cb);
}
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
},
burn: function(c1, c2) {
var f = (c2 & ALPHA_MASK) >>> 24,
ar = (c1 & RED_MASK) >> 16,
ag = (c1 & GREEN_MASK) >> 8,
ab = (c1 & BLUE_MASK),
br = (c2 & RED_MASK) >> 16,
bg = (c2 & GREEN_MASK) >> 8,
bb = (c2 & BLUE_MASK);
var cr = 0;
if (br !== 0) {
cr = ((255 - ar) << 8) / br;
cr = 255 - ((cr < 0) ? 0 : ((cr > 255) ? 255 : cr));
}
var cg = 0;
if (bg !== 0) {
cg = ((255 - ag) << 8) / bg;
cg = 255 - ((cg < 0) ? 0 : ((cg > 255) ? 255 : cg));
}
var cb = 0;
if (bb !== 0) {
cb = ((255 - ab) << 8) / bb;
cb = 255 - ((cb < 0) ? 0 : ((cb > 255) ? 255 : cb));
}
return applyMode(c1, f, ar, ag, ab, br, bg, bb, cr, cg, cb);
}
};
}());
function color$4(aValue1, aValue2, aValue3, aValue4) {
var r, g, b, a;
if (curColorMode === PConstants.HSB) {
var rgb = p.color.toRGB(aValue1, aValue2, aValue3);
r = rgb[0];
g = rgb[1];
b = rgb[2];
} else {
r = Math.round(255 * (aValue1 / colorModeX));
g = Math.round(255 * (aValue2 / colorModeY));
b = Math.round(255 * (aValue3 / colorModeZ));
}
a = Math.round(255 * (aValue4 / colorModeA));
// Limit values less than 0 and greater than 255
r = (r < 0) ? 0 : r;
g = (g < 0) ? 0 : g;
b = (b < 0) ? 0 : b;
a = (a < 0) ? 0 : a;
r = (r > 255) ? 255 : r;
g = (g > 255) ? 255 : g;
b = (b > 255) ? 255 : b;
a = (a > 255) ? 255 : a;
// Create color int
return (a << 24) & PConstants.ALPHA_MASK | (r << 16) & PConstants.RED_MASK | (g << 8) & PConstants.GREEN_MASK | b & PConstants.BLUE_MASK;
}
function color$2(aValue1, aValue2) {
var a;
// Color int and alpha
if (aValue1 & PConstants.ALPHA_MASK) {
a = Math.round(255 * (aValue2 / colorModeA));
// Limit values less than 0 and greater than 255
a = (a > 255) ? 255 : a;
a = (a < 0) ? 0 : a;
return aValue1 - (aValue1 & PConstants.ALPHA_MASK) + ((a << 24) & PConstants.ALPHA_MASK);
}
// Grayscale and alpha
if (curColorMode === PConstants.RGB) {
return color$4(aValue1, aValue1, aValue1, aValue2);
}
if (curColorMode === PConstants.HSB) {
return color$4(0, 0, (aValue1 / colorModeX) * colorModeZ, aValue2);
}
}
function color$1(aValue1) {
// Grayscale
if (aValue1 <= colorModeX && aValue1 >= 0) {
if (curColorMode === PConstants.RGB) {
return color$4(aValue1, aValue1, aValue1, colorModeA);
}
if (curColorMode === PConstants.HSB) {
return color$4(0, 0, (aValue1 / colorModeX) * colorModeZ, colorModeA);
}
}
// Color int
if (aValue1) {
if (aValue1 > 2147483647) {
// Java Overflow
aValue1 -= 4294967296;
}
return aValue1;
}
}
/**
* Creates colors for storing in variables of the color datatype. The parameters are
* interpreted as RGB or HSB values depending on the current colorMode(). The default
* mode is RGB values from 0 to 255 and therefore, the function call color(255, 204, 0)
* will return a bright yellow color. More about how colors are stored can be found in
* the reference for the color datatype.
*
* @param {int|float} aValue1 red or hue or grey values relative to the current color range.
* Also can be color value in hexadecimal notation (i.e. #FFCC00 or 0xFFFFCC00)
* @param {int|float} aValue2 green or saturation values relative to the current color range
* @param {int|float} aValue3 blue or brightness values relative to the current color range
* @param {int|float} aValue4 relative to current color range. Represents alpha
*
* @returns {color} the color
*
* @see colorMode
*/
p.color = function(aValue1, aValue2, aValue3, aValue4) {
// 4 arguments: (R, G, B, A) or (H, S, B, A)
if (aValue1 !== undef && aValue2 !== undef && aValue3 !== undef && aValue4 !== undef) {
return color$4(aValue1, aValue2, aValue3, aValue4);
}
// 3 arguments: (R, G, B) or (H, S, B)
if (aValue1 !== undef && aValue2 !== undef && aValue3 !== undef) {
return color$4(aValue1, aValue2, aValue3, colorModeA);
}
// 2 arguments: (Color, A) or (Grayscale, A)
if (aValue1 !== undef && aValue2 !== undef) {
return color$2(aValue1, aValue2);
}
// 1 argument: (Grayscale) or (Color)
if (typeof aValue1 === "number") {
return color$1(aValue1);
}
// Default
return color$4(colorModeX, colorModeY, colorModeZ, colorModeA);
};
// Ease of use function to extract the colour bits into a string
p.color.toString = function(colorInt) {
return "rgba(" + ((colorInt & PConstants.RED_MASK) >>> 16) + "," + ((colorInt & PConstants.GREEN_MASK) >>> 8) +
"," + ((colorInt & PConstants.BLUE_MASK)) + "," + ((colorInt & PConstants.ALPHA_MASK) >>> 24) / 255 + ")";
};
// Easy of use function to pack rgba values into a single bit-shifted color int.
p.color.toInt = function(r, g, b, a) {
return (a << 24) & PConstants.ALPHA_MASK | (r << 16) & PConstants.RED_MASK | (g << 8) & PConstants.GREEN_MASK | b & PConstants.BLUE_MASK;
};
// Creates a simple array in [R, G, B, A] format, [255, 255, 255, 255]
p.color.toArray = function(colorInt) {
return [(colorInt & PConstants.RED_MASK) >>> 16, (colorInt & PConstants.GREEN_MASK) >>> 8,
colorInt & PConstants.BLUE_MASK, (colorInt & PConstants.ALPHA_MASK) >>> 24];
};
// Creates a WebGL color array in [R, G, B, A] format. WebGL wants the color ranges between 0 and 1, [1, 1, 1, 1]
p.color.toGLArray = function(colorInt) {
return [((colorInt & PConstants.RED_MASK) >>> 16) / 255, ((colorInt & PConstants.GREEN_MASK) >>> 8) / 255,
(colorInt & PConstants.BLUE_MASK) / 255, ((colorInt & PConstants.ALPHA_MASK) >>> 24) / 255];
};
// HSB conversion function from Mootools, MIT Licensed
p.color.toRGB = function(h, s, b) {
// Limit values greater than range
h = (h > colorModeX) ? colorModeX : h;
s = (s > colorModeY) ? colorModeY : s;
b = (b > colorModeZ) ? colorModeZ : b;
h = (h / colorModeX) * 360;
s = (s / colorModeY) * 100;
b = (b / colorModeZ) * 100;
var br = Math.round(b / 100 * 255);
if (s === 0) { // Grayscale
return [br, br, br];
}
var hue = h % 360;
var f = hue % 60;
var p = Math.round((b * (100 - s)) / 10000 * 255);
var q = Math.round((b * (6000 - s * f)) / 600000 * 255);
var t = Math.round((b * (6000 - s * (60 - f))) / 600000 * 255);
switch (Math.floor(hue / 60)) {
case 0:
return [br, t, p];
case 1:
return [q, br, p];
case 2:
return [p, br, t];
case 3:
return [p, q, br];
case 4:
return [t, p, br];
case 5:
return [br, p, q];
}
};
function colorToHSB(colorInt) {
var red, green, blue;
red = ((colorInt & PConstants.RED_MASK) >>> 16) / 255;
green = ((colorInt & PConstants.GREEN_MASK) >>> 8) / 255;
blue = (colorInt & PConstants.BLUE_MASK) / 255;
var max = p.max(p.max(red,green), blue),
min = p.min(p.min(red,green), blue),
hue, saturation;
if (min === max) {
return [0, 0, max*colorModeZ];
}
saturation = (max - min) / max;
if (red === max) {
hue = (green - blue) / (max - min);
} else if (green === max) {
hue = 2 + ((blue - red) / (max - min));
} else {
hue = 4 + ((red - green) / (max - min));
}
hue /= 6;
if (hue < 0) {
hue += 1;
} else if (hue > 1) {
hue -= 1;
}
return [hue*colorModeX, saturation*colorModeY, max*colorModeZ];
}
/**
* Extracts the brightness value from a color.
*
* @param {color} colInt any value of the color datatype
*
* @returns {float} The brightness color value.
*
* @see red
* @see green
* @see blue
* @see hue
* @see saturation
*/
p.brightness = function(colInt){
return colorToHSB(colInt)[2];
};
/**
* Extracts the saturation value from a color.
*
* @param {color} colInt any value of the color datatype
*
* @returns {float} The saturation color value.
*
* @see red
* @see green
* @see blue
* @see hue
* @see brightness
*/
p.saturation = function(colInt){
return colorToHSB(colInt)[1];
};
/**
* Extracts the hue value from a color.
*
* @param {color} colInt any value of the color datatype
*
* @returns {float} The hue color value.
*
* @see red
* @see green
* @see blue
* @see saturation
* @see brightness
*/
p.hue = function(colInt){
return colorToHSB(colInt)[0];
};
/**
* Extracts the red value from a color, scaled to match current colorMode().
* This value is always returned as a float so be careful not to assign it to an int value.
*
* @param {color} aColor any value of the color datatype
*
* @returns {float} The red color value.
*
* @see green
* @see blue
* @see alpha
* @see >> right shift
* @see hue
* @see saturation
* @see brightness
*/
p.red = function(aColor) {
return ((aColor & PConstants.RED_MASK) >>> 16) / 255 * colorModeX;
};
/**
* Extracts the green value from a color, scaled to match current colorMode().
* This value is always returned as a float so be careful not to assign it to an int value.
*
* @param {color} aColor any value of the color datatype
*
* @returns {float} The green color value.
*
* @see red
* @see blue
* @see alpha
* @see >> right shift
* @see hue
* @see saturation
* @see brightness
*/
p.green = function(aColor) {
return ((aColor & PConstants.GREEN_MASK) >>> 8) / 255 * colorModeY;
};
/**
* Extracts the blue value from a color, scaled to match current colorMode().
* This value is always returned as a float so be careful not to assign it to an int value.
*
* @param {color} aColor any value of the color datatype
*
* @returns {float} The blue color value.
*
* @see red
* @see green
* @see alpha
* @see >> right shift
* @see hue
* @see saturation
* @see brightness
*/
p.blue = function(aColor) {
return (aColor & PConstants.BLUE_MASK) / 255 * colorModeZ;
};
/**
* Extracts the alpha value from a color, scaled to match current colorMode().
* This value is always returned as a float so be careful not to assign it to an int value.
*
* @param {color} aColor any value of the color datatype
*
* @returns {float} The alpha color value.
*
* @see red
* @see green
* @see blue
* @see >> right shift
* @see hue
* @see saturation
* @see brightness
*/
p.alpha = function(aColor) {
return ((aColor & PConstants.ALPHA_MASK) >>> 24) / 255 * colorModeA;
};
/**
* Calculates a color or colors between two colors at a specific increment.
* The amt parameter is the amount to interpolate between the two values where 0.0
* equal to the first point, 0.1 is very near the first point, 0.5 is half-way in between, etc.
*
* @param {color} c1 interpolate from this color
* @param {color} c2 interpolate to this color
* @param {float} amt between 0.0 and 1.0
*
* @returns {float} The blended color.
*
* @see blendColor
* @see color
*/
p.lerpColor = function(c1, c2, amt) {
var r, g, b, a, r1, g1, b1, a1, r2, g2, b2, a2;
var hsb1, hsb2, rgb, h, s;
var colorBits1 = p.color(c1);
var colorBits2 = p.color(c2);
if (curColorMode === PConstants.HSB) {
// Special processing for HSB mode.
// Get HSB and Alpha values for Color 1 and 2
hsb1 = colorToHSB(colorBits1);
a1 = ((colorBits1 & PConstants.ALPHA_MASK) >>> 24) / colorModeA;
hsb2 = colorToHSB(colorBits2);
a2 = ((colorBits2 & PConstants.ALPHA_MASK) >>> 24) / colorModeA;
// Return lerp value for each channel, for HSB components
h = p.lerp(hsb1[0], hsb2[0], amt);
s = p.lerp(hsb1[1], hsb2[1], amt);
b = p.lerp(hsb1[2], hsb2[2], amt);
rgb = p.color.toRGB(h, s, b);
// ... and for Alpha-range
a = p.lerp(a1, a2, amt) * colorModeA;
return (a << 24) & PConstants.ALPHA_MASK |
(rgb[0] << 16) & PConstants.RED_MASK |
(rgb[1] << 8) & PConstants.GREEN_MASK |
rgb[2] & PConstants.BLUE_MASK;
}
// Get RGBA values for Color 1 to floats
r1 = (colorBits1 & PConstants.RED_MASK) >>> 16;
g1 = (colorBits1 & PConstants.GREEN_MASK) >>> 8;
b1 = (colorBits1 & PConstants.BLUE_MASK);
a1 = ((colorBits1 & PConstants.ALPHA_MASK) >>> 24) / colorModeA;
// Get RGBA values for Color 2 to floats
r2 = (colorBits2 & PConstants.RED_MASK) >>> 16;
g2 = (colorBits2 & PConstants.GREEN_MASK) >>> 8;
b2 = (colorBits2 & PConstants.BLUE_MASK);
a2 = ((colorBits2 & PConstants.ALPHA_MASK) >>> 24) / colorModeA;
// Return lerp value for each channel, INT for color, Float for Alpha-range
r = p.lerp(r1, r2, amt) | 0;
g = p.lerp(g1, g2, amt) | 0;
b = p.lerp(b1, b2, amt) | 0;
a = p.lerp(a1, a2, amt) * colorModeA;
return (a << 24) & PConstants.ALPHA_MASK |
(r << 16) & PConstants.RED_MASK |
(g << 8) & PConstants.GREEN_MASK |
b & PConstants.BLUE_MASK;
};
/**
* Changes the way Processing interprets color data. By default, fill(), stroke(), and background()
* colors are set by values between 0 and 255 using the RGB color model. It is possible to change the
* numerical range used for specifying colors and to switch color systems. For example, calling colorMode(RGB, 1.0)
* will specify that values are specified between 0 and 1. The limits for defining colors are altered by setting the
* parameters range1, range2, range3, and range 4.
*
* @param {MODE} mode Either RGB or HSB, corresponding to Red/Green/Blue and Hue/Saturation/Brightness
* @param {int|float} range range for all color elements
* @param {int|float} range1 range for the red or hue depending on the current color mode
* @param {int|float} range2 range for the green or saturation depending on the current color mode
* @param {int|float} range3 range for the blue or brightness depending on the current color mode
* @param {int|float} range4 range for the alpha
*
* @returns none
*
* @see background
* @see fill
* @see stroke
*/
p.colorMode = function() { // mode, range1, range2, range3, range4
curColorMode = arguments[0];
if (arguments.length > 1) {
colorModeX = arguments[1];
colorModeY = arguments[2] || arguments[1];
colorModeZ = arguments[3] || arguments[1];
colorModeA = arguments[4] || arguments[1];
}
};
/**
* Blends two color values together based on the blending mode given as the MODE parameter.
* The possible modes are described in the reference for the blend() function.
*
* @param {color} c1 color: the first color to blend
* @param {color} c2 color: the second color to blend
* @param {MODE} MODE Either BLEND, ADD, SUBTRACT, DARKEST, LIGHTEST, DIFFERENCE, EXCLUSION, MULTIPLY,
* SCREEN, OVERLAY, HARD_LIGHT, SOFT_LIGHT, DODGE, or BURN
*
* @returns {float} The blended color.
*
* @see blend
* @see color
*/
p.blendColor = function(c1, c2, mode) {
if (mode === PConstants.REPLACE) {
return p.modes.replace(c1, c2);
} else if (mode === PConstants.BLEND) {
return p.modes.blend(c1, c2);
} else if (mode === PConstants.ADD) {
return p.modes.add(c1, c2);
} else if (mode === PConstants.SUBTRACT) {
return p.modes.subtract(c1, c2);
} else if (mode === PConstants.LIGHTEST) {
return p.modes.lightest(c1, c2);
} else if (mode === PConstants.DARKEST) {
return p.modes.darkest(c1, c2);
} else if (mode === PConstants.DIFFERENCE) {
return p.modes.difference(c1, c2);
} else if (mode === PConstants.EXCLUSION) {
return p.modes.exclusion(c1, c2);
} else if (mode === PConstants.MULTIPLY) {
return p.modes.multiply(c1, c2);
} else if (mode === PConstants.SCREEN) {
return p.modes.screen(c1, c2);
} else if (mode === PConstants.HARD_LIGHT) {
return p.modes.hard_light(c1, c2);
} else if (mode === PConstants.SOFT_LIGHT) {
return p.modes.soft_light(c1, c2);
} else if (mode === PConstants.OVERLAY) {
return p.modes.overlay(c1, c2);
} else if (mode === PConstants.DODGE) {
return p.modes.dodge(c1, c2);
} else if (mode === PConstants.BURN) {
return p.modes.burn(c1, c2);
}
};
////////////////////////////////////////////////////////////////////////////
// Canvas-Matrix manipulation
////////////////////////////////////////////////////////////////////////////
function saveContext() {
curContext.save();
}
function restoreContext() {
curContext.restore();
isStrokeDirty = true;
isFillDirty = true;
}
/**
* Prints the current matrix to the text window.
*
* @returns none
*
* @see pushMatrix
* @see popMatrix
* @see resetMatrix
* @see applyMatrix
*/
p.printMatrix = function() {
modelView.print();
};
/**
* Specifies an amount to displace objects within the display window. The x parameter specifies left/right translation,
* the y parameter specifies up/down translation, and the z parameter specifies translations toward/away from the screen.
* Using this function with the z parameter requires using the P3D or OPENGL parameter in combination with size as shown
* in the above example. Transformations apply to everything that happens after and subsequent calls to the function
* accumulates the effect. For example, calling translate(50, 0) and then translate(20, 0) is the same as translate(70, 0).
* If translate() is called within draw(), the transformation is reset when the loop begins again.
* This function can be further controlled by the pushMatrix() and popMatrix().
*
* @param {int|float} x left/right translation
* @param {int|float} y up/down translation
* @param {int|float} z forward/back translation
*
* @returns none
*
* @see pushMatrix
* @see popMatrix
* @see scale
* @see rotate
* @see rotateX
* @see rotateY
* @see rotateZ
*/
Drawing2D.prototype.translate = function(x, y) {
modelView.translate(x, y);
modelViewInv.invTranslate(x, y);
curContext.translate(x, y);
};
Drawing3D.prototype.translate = function(x, y, z) {
modelView.translate(x, y, z);
modelViewInv.invTranslate(x, y, z);
};
/**
* Increases or decreases the size of a shape by expanding and contracting vertices. Objects always scale from their
* relative origin to the coordinate system. Scale values are specified as decimal percentages. For example, the
* function call scale(2.0) increases the dimension of a shape by 200%. Transformations apply to everything that
* happens after and subsequent calls to the function multiply the effect. For example, calling scale(2.0) and
* then scale(1.5) is the same as scale(3.0). If scale() is called within draw(), the transformation is reset when
* the loop begins again. Using this fuction with the z parameter requires passing P3D or OPENGL into the size()
* parameter as shown in the example above. This function can be further controlled by pushMatrix() and popMatrix().
*
* @param {int|float} size percentage to scale the object
* @param {int|float} x percentage to scale the object in the x-axis
* @param {int|float} y percentage to scale the object in the y-axis
* @param {int|float} z percentage to scale the object in the z-axis
*
* @returns none
*
* @see pushMatrix
* @see popMatrix
* @see translate
* @see rotate
* @see rotateX
* @see rotateY
* @see rotateZ
*/
Drawing2D.prototype.scale = function(x, y) {
modelView.scale(x, y);
modelViewInv.invScale(x, y);
curContext.scale(x, y || x);
};
Drawing3D.prototype.scale = function(x, y, z) {
modelView.scale(x, y, z);
modelViewInv.invScale(x, y, z);
};
/**
* Pushes the current transformation matrix onto the matrix stack. Understanding pushMatrix() and popMatrix()
* requires understanding the concept of a matrix stack. The pushMatrix() function saves the current coordinate
* system to the stack and popMatrix() restores the prior coordinate system. pushMatrix() and popMatrix() are
* used in conjuction with the other transformation methods and may be embedded to control the scope of
* the transformations.
*
* @returns none
*
* @see popMatrix
* @see translate
* @see rotate
* @see rotateX
* @see rotateY
* @see rotateZ
*/
Drawing2D.prototype.pushMatrix = function() {
userMatrixStack.load(modelView);
userReverseMatrixStack.load(modelViewInv);
saveContext();
};
Drawing3D.prototype.pushMatrix = function() {
userMatrixStack.load(modelView);
userReverseMatrixStack.load(modelViewInv);
};
/**
* Pops the current transformation matrix off the matrix stack. Understanding pushing and popping requires
* understanding the concept of a matrix stack. The pushMatrix() function saves the current coordinate system to
* the stack and popMatrix() restores the prior coordinate system. pushMatrix() and popMatrix() are used in
* conjuction with the other transformation methods and may be embedded to control the scope of the transformations.
*
* @returns none
*
* @see popMatrix
* @see pushMatrix
*/
Drawing2D.prototype.popMatrix = function() {
modelView.set(userMatrixStack.pop());
modelViewInv.set(userReverseMatrixStack.pop());
restoreContext();
};
Drawing3D.prototype.popMatrix = function() {
modelView.set(userMatrixStack.pop());
modelViewInv.set(userReverseMatrixStack.pop());
};
/**
* Replaces the current matrix with the identity matrix. The equivalent function in OpenGL is glLoadIdentity().
*
* @returns none
*
* @see popMatrix
* @see pushMatrix
* @see applyMatrix
* @see printMatrix
*/
Drawing2D.prototype.resetMatrix = function() {
modelView.reset();
modelViewInv.reset();
curContext.setTransform(1,0,0,1,0,0);
};
Drawing3D.prototype.resetMatrix = function() {
modelView.reset();
modelViewInv.reset();
};
/**
* Multiplies the current matrix by the one specified through the parameters. This is very slow because it will
* try to calculate the inverse of the transform, so avoid it whenever possible. The equivalent function
* in OpenGL is glMultMatrix().
*
* @param {int|float} n00-n15 numbers which define the 4x4 matrix to be multiplied
*
* @returns none
*
* @see popMatrix
* @see pushMatrix
* @see resetMatrix
* @see printMatrix
*/
DrawingShared.prototype.applyMatrix = function() {
var a = arguments;
modelView.apply(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]);
modelViewInv.invApply(a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9], a[10], a[11], a[12], a[13], a[14], a[15]);
};
Drawing2D.prototype.applyMatrix = function() {
var a = arguments;
for (var cnt = a.length; cnt < 16; cnt++) {
a[cnt] = 0;
}
a[10] = a[15] = 1;
DrawingShared.prototype.applyMatrix.apply(this, a);
};
/**
* Rotates a shape around the x-axis the amount specified by the angle parameter. Angles should be
* specified in radians (values from 0 to PI*2) or converted to radians with the radians() function.
* Objects are always rotated around their relative position to the origin and positive numbers
* rotate objects in a counterclockwise direction. Transformations apply to everything that happens
* after and subsequent calls to the function accumulates the effect. For example, calling rotateX(PI/2)
* and then rotateX(PI/2) is the same as rotateX(PI). If rotateX() is called within the draw(), the
* transformation is reset when the loop begins again. This function requires passing P3D or OPENGL
* into the size() parameter as shown in the example above.
*
* @param {int|float} angleInRadians angle of rotation specified in radians
*
* @returns none
*
* @see rotateY
* @see rotateZ
* @see rotate
* @see translate
* @see scale
* @see popMatrix
* @see pushMatrix
*/
p.rotateX = function(angleInRadians) {
modelView.rotateX(angleInRadians);
modelViewInv.invRotateX(angleInRadians);
};
/**
* Rotates a shape around the z-axis the amount specified by the angle parameter. Angles should be
* specified in radians (values from 0 to PI*2) or converted to radians with the radians() function.
* Objects are always rotated around their relative position to the origin and positive numbers
* rotate objects in a counterclockwise direction. Transformations apply to everything that happens
* after and subsequent calls to the function accumulates the effect. For example, calling rotateZ(PI/2)
* and then rotateZ(PI/2) is the same as rotateZ(PI). If rotateZ() is called within the draw(), the
* transformation is reset when the loop begins again. This function requires passing P3D or OPENGL
* into the size() parameter as shown in the example above.
*
* @param {int|float} angleInRadians angle of rotation specified in radians
*
* @returns none
*
* @see rotateX
* @see rotateY
* @see rotate
* @see translate
* @see scale
* @see popMatrix
* @see pushMatrix
*/
Drawing2D.prototype.rotateZ = function() {
throw "rotateZ() is not supported in 2D mode. Use rotate(float) instead.";
};
Drawing3D.prototype.rotateZ = function(angleInRadians) {
modelView.rotateZ(angleInRadians);
modelViewInv.invRotateZ(angleInRadians);
};
/**
* Rotates a shape around the y-axis the amount specified by the angle parameter. Angles should be
* specified in radians (values from 0 to PI*2) or converted to radians with the radians() function.
* Objects are always rotated around their relative position to the origin and positive numbers
* rotate objects in a counterclockwise direction. Transformations apply to everything that happens
* after and subsequent calls to the function accumulates the effect. For example, calling rotateY(PI/2)
* and then rotateY(PI/2) is the same as rotateY(PI). If rotateY() is called within the draw(), the
* transformation is reset when the loop begins again. This function requires passing P3D or OPENGL
* into the size() parameter as shown in the example above.
*
* @param {int|float} angleInRadians angle of rotation specified in radians
*
* @returns none
*
* @see rotateX
* @see rotateZ
* @see rotate
* @see translate
* @see scale
* @see popMatrix
* @see pushMatrix
*/
p.rotateY = function(angleInRadians) {
modelView.rotateY(angleInRadians);
modelViewInv.invRotateY(angleInRadians);
};
/**
* Rotates a shape the amount specified by the angle parameter. Angles should be specified in radians
* (values from 0 to TWO_PI) or converted to radians with the radians() function. Objects are always
* rotated around their relative position to the origin and positive numbers rotate objects in a
* clockwise direction. Transformations apply to everything that happens after and subsequent calls
* to the function accumulates the effect. For example, calling rotate(HALF_PI) and then rotate(HALF_PI)
* is the same as rotate(PI). All tranformations are reset when draw() begins again. Technically,
* rotate() multiplies the current transformation matrix by a rotation matrix. This function can be
* further controlled by the pushMatrix() and popMatrix().
*
* @param {int|float} angleInRadians angle of rotation specified in radians
*
* @returns none
*
* @see rotateX
* @see rotateY
* @see rotateZ
* @see rotate
* @see translate
* @see scale
* @see popMatrix
* @see pushMatrix
*/
Drawing2D.prototype.rotate = function(angleInRadians) {
modelView.rotateZ(angleInRadians);
modelViewInv.invRotateZ(angleInRadians);
// XXX(jeresig): Note, angleInRadians may be in degrees
// depending upon the angleMode
curContext.rotate(p.convertToRadians(angleInRadians));
};
Drawing3D.prototype.rotate = function(angleInRadians) {
p.rotateZ(angleInRadians);
};
/**
* The pushStyle() function saves the current style settings and popStyle() restores the prior settings.
* Note that these functions are always used together. They allow you to change the style settings and later
* return to what you had. When a new style is started with pushStyle(), it builds on the current style information.
* The pushStyle() and popStyle() functions can be embedded to provide more control (see the second example
* above for a demonstration.)
* The style information controlled by the following functions are included in the style: fill(), stroke(), tint(),
* strokeWeight(), strokeCap(), strokeJoin(), imageMode(), rectMode(), ellipseMode(), shapeMode(), colorMode(),
* textAlign(), textFont(), textMode(), textSize(), textLeading(), emissive(), specular(), shininess(), ambient()
*
* @returns none
*
* @see popStyle
*/
p.pushStyle = function() {
// Save the canvas state.
saveContext();
p.pushMatrix();
var newState = {
'doFill': doFill,
'currentFillColor': currentFillColor,
'doStroke': doStroke,
'currentStrokeColor': currentStrokeColor,
'curTint': curTint,
'curRectMode': curRectMode,
'curColorMode': curColorMode,
'colorModeX': colorModeX,
'colorModeZ': colorModeZ,
'colorModeY': colorModeY,
'colorModeA': colorModeA,
'curTextFont': curTextFont,
'horizontalTextAlignment': horizontalTextAlignment,
'verticalTextAlignment': verticalTextAlignment,
'textMode': textMode,
'curFontName': curFontName,
'curTextSize': curTextSize,
'curTextAscent': curTextAscent,
'curTextDescent': curTextDescent,
'curTextLeading': curTextLeading
};
styleArray.push(newState);
};
/**
* The pushStyle() function saves the current style settings and popStyle() restores the prior settings; these
* functions are always used together. They allow you to change the style settings and later return to what you had.
* When a new style is started with pushStyle(), it builds on the current style information. The pushStyle() and
* popStyle() functions can be embedded to provide more control (see the second example above for a demonstration.)
*
* @returns none
*
* @see pushStyle
*/
p.popStyle = function() {
var oldState = styleArray.pop();
if (oldState) {
restoreContext();
p.popMatrix();
doFill = oldState.doFill;
currentFillColor = oldState.currentFillColor;
doStroke = oldState.doStroke;
currentStrokeColor = oldState.currentStrokeColor;
curTint = oldState.curTint;
curRectMode = oldState.curRectmode;
curColorMode = oldState.curColorMode;
colorModeX = oldState.colorModeX;
colorModeZ = oldState.colorModeZ;
colorModeY = oldState.colorModeY;
colorModeA = oldState.colorModeA;
curTextFont = oldState.curTextFont;
curFontName = oldState.curFontName;
curTextSize = oldState.curTextSize;
horizontalTextAlignment = oldState.horizontalTextAlignment;
verticalTextAlignment = oldState.verticalTextAlignment;
textMode = oldState.textMode;
curTextAscent = oldState.curTextAscent;
curTextDescent = oldState.curTextDescent;
curTextLeading = oldState.curTextLeading;
} else {
throw "Too many popStyle() without enough pushStyle()";
}
};
////////////////////////////////////////////////////////////////////////////
// Time based functions
////////////////////////////////////////////////////////////////////////////
/**
* Processing communicates with the clock on your computer.
* The year() function returns the current year as an integer (2003, 2004, 2005, etc).
*
* @returns {float} The current year.
*
* @see millis
* @see second
* @see minute
* @see hour
* @see day
* @see month
*/
p.year = function() {
return new Date().getFullYear();
};
/**
* Processing communicates with the clock on your computer.
* The month() function returns the current month as a value from 1 - 12.
*
* @returns {float} The current month.
*
* @see millis
* @see second
* @see minute
* @see hour
* @see day
* @see year
*/
p.month = function() {
return new Date().getMonth() + 1;
};
/**
* Processing communicates with the clock on your computer.
* The day() function returns the current day as a value from 1 - 31.
*
* @returns {float} The current day.
*
* @see millis
* @see second
* @see minute
* @see hour
* @see month
* @see year
*/
p.day = function() {
return new Date().getDate();
};
/**
* Processing communicates with the clock on your computer.
* The hour() function returns the current hour as a value from 0 - 23.
*
* @returns {float} The current hour.
*
* @see millis
* @see second
* @see minute
* @see month
* @see day
* @see year
*/
p.hour = function() {
return new Date().getHours();
};
/**
* Processing communicates with the clock on your computer.
* The minute() function returns the current minute as a value from 0 - 59.
*
* @returns {float} The current minute.
*
* @see millis
* @see second
* @see month
* @see hour
* @see day
* @see year
*/
p.minute = function() {
return new Date().getMinutes();
};
/**
* Processing communicates with the clock on your computer.
* The second() function returns the current second as a value from 0 - 59.
*
* @returns {float} The current minute.
*
* @see millis
* @see month
* @see minute
* @see hour
* @see day
* @see year
*/
p.second = function() {
return new Date().getSeconds();
};
/**
* Returns the number of milliseconds (thousandths of a second) since starting a sketch.
* This information is often used for timing animation sequences.
*
* @returns {long} The number of milliseconds since starting the sketch.
*
* @see month
* @see second
* @see minute
* @see hour
* @see day
* @see year
*/
p.millis = function() {
return Date.now() - start;
};
/**
* Executes the code within draw() one time. This functions allows the program to update
* the display window only when necessary, for example when an event registered by
* mousePressed() or keyPressed() occurs.
* In structuring a program, it only makes sense to call redraw() within events such as
* mousePressed(). This is because redraw() does not run draw() immediately (it only sets
* a flag that indicates an update is needed).
* Calling redraw() within draw() has no effect because draw() is continuously called anyway.
*
* @returns none
*
* @see noLoop
* @see loop
*/
function redrawHelper() {
var sec = (Date.now() - timeSinceLastFPS) / 1000;
framesSinceLastFPS++;
var fps = framesSinceLastFPS / sec;
// recalculate FPS every half second for better accuracy.
if (sec > 0.5) {
timeSinceLastFPS = Date.now();
framesSinceLastFPS = 0;
p.__frameRate = fps;
}
p.frameCount++;
}
Drawing2D.prototype.redraw = function() {
redrawHelper();
curContext.lineWidth = lineWidth;
var pmouseXLastEvent = p.pmouseX,
pmouseYLastEvent = p.pmouseY;
p.pmouseX = pmouseXLastFrame;
p.pmouseY = pmouseYLastFrame;
saveContext();
p.draw();
restoreContext();
pmouseXLastFrame = p.mouseX;
pmouseYLastFrame = p.mouseY;
p.pmouseX = pmouseXLastEvent;
p.pmouseY = pmouseYLastEvent;
// Even if the user presses the mouse for less than the time of a single
// frame, we want mouseIsPressed to be true for a single frame when
// clicking, otherwise code that uses this boolean misses the click
// completely. (This is hard to reproduce on a real mouse, but easy on a
// trackpad with tap-to-click enabled.)
p.mouseIsPressed = p.__mousePressed;
};
Drawing3D.prototype.redraw = function() {
redrawHelper();
var pmouseXLastEvent = p.pmouseX,
pmouseYLastEvent = p.pmouseY;
p.pmouseX = pmouseXLastFrame;
p.pmouseY = pmouseYLastFrame;
// even if the color buffer isn't cleared with background(),
// the depth buffer needs to be cleared regardless.
curContext.clear(curContext.DEPTH_BUFFER_BIT);
curContextCache = { attributes: {}, locations: {} };
// Delete all the lighting states and the materials the
// user set in the last draw() call.
p.noLights();
p.lightFalloff(1, 0, 0);
p.shininess(1);
p.ambient(255, 255, 255);
p.specular(0, 0, 0);
p.emissive(0, 0, 0);
p.camera();
p.draw();
pmouseXLastFrame = p.mouseX;
pmouseYLastFrame = p.mouseY;
p.pmouseX = pmouseXLastEvent;
p.pmouseY = pmouseYLastEvent;
// (See comment about mouseIsPressed in Drawing2D.prototype.redraw)
p.mouseIsPressed = p.__mousePressed;
};
/**
* Stops Processing from continuously executing the code within draw(). If loop() is
* called, the code in draw() begin to run continuously again. If using noLoop() in
* setup(), it should be the last line inside the block.
* When noLoop() is used, it's not possible to manipulate or access the screen inside event
* handling functions such as mousePressed() or keyPressed(). Instead, use those functions
* to call redraw() or loop(), which will run draw(), which can update the screen properly.
* This means that when noLoop() has been called, no drawing can happen, and functions like
* saveFrame() or loadPixels() may not be used.
* Note that if the sketch is resized, redraw() will be called to update the sketch, even
* after noLoop() has been specified. Otherwise, the sketch would enter an odd state until
* loop() was called.
*
* @returns none
*
* @see redraw
* @see draw
* @see loop
*/
p.noLoop = function() {
doLoop = false;
loopStarted = false;
clearInterval(looping);
curSketch.onPause();
};
/**
* Causes Processing to continuously execute the code within draw(). If noLoop() is called,
* the code in draw() stops executing.
*
* @returns none
*
* @see noLoop
*/
p.loop = function() {
if (loopStarted) {
return;
}
timeSinceLastFPS = Date.now();
framesSinceLastFPS = 0;
looping = window.setInterval(function() {
try {
curSketch.onFrameStart();
p.redraw();
curSketch.onFrameEnd();
} catch(e_loop) {
window.clearInterval(looping);
throw e_loop;
}
}, curMsPerFrame);
doLoop = true;
loopStarted = true;
curSketch.onLoop();
};
/**
* Specifies the number of frames to be displayed every second. If the processor is not
* fast enough to maintain the specified rate, it will not be achieved. For example, the
* function call frameRate(30) will attempt to refresh 30 times a second. It is recommended
* to set the frame rate within setup(). The default rate is 60 frames per second.
*
* @param {int} aRate number of frames per second.
*
* @returns none
*
* @see delay
*/
p.frameRate = function(aRate) {
curFrameRate = aRate;
curMsPerFrame = 1000 / curFrameRate;
// clear and reset interval
if (doLoop) {
p.noLoop();
p.loop();
}
};
////////////////////////////////////////////////////////////////////////////
// JavaScript event binding and releasing
////////////////////////////////////////////////////////////////////////////
var eventHandlers = [];
function attachEventHandler(elem, type, fn) {
if (elem.addEventListener) {
elem.addEventListener(type, fn, false);
} else {
elem.attachEvent("on" + type, fn);
}
eventHandlers.push({elem: elem, type: type, fn: fn});
}
function detachEventHandler(eventHandler) {
var elem = eventHandler.elem,
type = eventHandler.type,
fn = eventHandler.fn;
if (elem.removeEventListener) {
elem.removeEventListener(type, fn, false);
} else if (elem.detachEvent) {
elem.detachEvent("on" + type, fn);
}
}
/**
* Quits/stops/exits the program. Programs without a draw() function exit automatically
* after the last line has run, but programs with draw() run continuously until the
* program is manually stopped or exit() is run.
* Rather than terminating immediately, exit() will cause the sketch to exit after draw()
* has completed (or after setup() completes if called during the setup() method).
*
* @returns none
*/
p.exit = function() {
window.clearInterval(looping);
removeInstance(p.externals.canvas.id);
// Step through the libraries to detach them
for (var lib in Processing.lib) {
if (Processing.lib.hasOwnProperty(lib)) {
if (Processing.lib[lib].hasOwnProperty("detach")) {
Processing.lib[lib].detach(p);
}
}
}
var i = eventHandlers.length;
while (i--) {
detachEventHandler(eventHandlers[i]);
}
curSketch.onExit();
};
////////////////////////////////////////////////////////////////////////////
// MISC functions
////////////////////////////////////////////////////////////////////////////
/**
* Sets the cursor to a predefined symbol, an image, or turns it on if already hidden.
* If you are trying to set an image as the cursor, it is recommended to make the size
* 16x16 or 32x32 pixels. It is not possible to load an image as the cursor if you are
* exporting your program for the Web. The values for parameters x and y must be less
* than the dimensions of the image.
*
* @param {MODE} MODE either ARROW, CROSS, HAND, MOVE, TEXT, WAIT
* @param {PImage} image any variable of type PImage
* @param {int} x the horizonal active spot of the cursor
* @param {int} y the vertical active spot of the cursor
*
* @returns none
*
* @see noCursor
*/
p.cursor = function() {
if (arguments.length > 1 || (arguments.length === 1 && arguments[0] instanceof p.PImage)) {
var image = arguments[0],
x, y;
if (arguments.length >= 3) {
x = arguments[1];
y = arguments[2];
if (x < 0 || y < 0 || y >= image.height || x >= image.width) {
throw "x and y must be non-negative and less than the dimensions of the image";
}
} else {
x = image.width >>> 1;
y = image.height >>> 1;
}
// see https://developer.mozilla.org/en/Using_URL_values_for_the_cursor_property
var imageDataURL = image.toDataURL();
var style = "url(\"" + imageDataURL + "\") " + x + " " + y + ", default";
curCursor = curElement.style.cursor = style;
} else if (arguments.length === 1) {
var mode = arguments[0];
curCursor = curElement.style.cursor = mode;
} else {
curCursor = curElement.style.cursor = oldCursor;
}
};
/**
* Hides the cursor from view.
*
* @returns none
*
* @see cursor
*/
p.noCursor = function() {
curCursor = curElement.style.cursor = PConstants.NOCURSOR;
};
/**
* Links to a webpage either in the same window or in a new window. The complete URL
* must be specified.
*
* @param {String} href complete url as a String in quotes
* @param {String} target name of the window to load the URL as a string in quotes
*
* @returns none
*/
p.link = function(href, target) {
if (target !== undef) {
window.open(href, target);
} else {
window.location = href;
}
};
// PGraphics methods
// These functions exist only for compatibility with P5
p.beginDraw = nop;
p.endDraw = nop;
/**
* This function takes content from a canvas and turns it into an ImageData object to be used with a PImage
*
* @returns {ImageData} ImageData object to attach to a PImage (1D array of pixel data)
*
* @see PImage
*/
Drawing2D.prototype.toImageData = function(x, y, w, h) {
x = x !== undef ? x : 0;
y = y !== undef ? y : 0;
w = w !== undef ? w : p.width;
h = h !== undef ? h : p.height;
return curContext.getImageData(x, y, w, h);
};
Drawing3D.prototype.toImageData = function(x, y, w, h) {
x = x !== undef ? x : 0;
y = y !== undef ? y : 0;
w = w !== undef ? w : p.width;
h = h !== undef ? h : p.height;
var c = document.createElement("canvas"),
ctx = c.getContext("2d"),
obj = ctx.createImageData(w, h),
uBuff = new Uint8Array(w * h * 4);
curContext.readPixels(x, y, w, h, curContext.RGBA, curContext.UNSIGNED_BYTE, uBuff);
for (var i=0, ul=uBuff.length, obj_data=obj.data; i < ul; i++) {
obj_data[i] = uBuff[(h - 1 - Math.floor(i / 4 / w)) * w * 4 + (i % (w * 4))];
}
return obj;
};
/**
* Displays message in the browser's status area. This is the text area in the lower
* left corner of the browser. The status() function will only work when the
* Processing program is running in a web browser.
*
* @param {String} text any valid String
*
* @returns none
*/
p.status = function(text) {
window.status = text;
};
////////////////////////////////////////////////////////////////////////////
// Binary Functions
////////////////////////////////////////////////////////////////////////////
/**
* Converts a byte, char, int, or color to a String containing the equivalent binary
* notation. For example color(0, 102, 153, 255) will convert to the String
* "11111111000000000110011010011001". This function can help make your geeky debugging
* sessions much happier.
*
* @param {byte|char|int|color} num byte, char, int, color: value to convert
* @param {int} numBits number of digits to return
*
* @returns {String}
*
* @see unhex
* @see hex
* @see unbinary
*/
p.binary = function(num, numBits) {
var bit;
if (numBits > 0) {
bit = numBits;
} else if(num instanceof Char) {
bit = 16;
num |= 0; // making it int
} else {
// autodetect, skipping zeros
bit = 32;
while (bit > 1 && !((num >>> (bit - 1)) & 1)) {
bit--;
}
}
var result = "";
while (bit > 0) {
result += ((num >>> (--bit)) & 1) ? "1" : "0";
}
return result;
};
/**
* Converts a String representation of a binary number to its equivalent integer value.
* For example, unbinary("00001000") will return 8.
*
* @param {String} binaryString String
*
* @returns {Int}
*
* @see hex
* @see binary
* @see unbinary
*/
p.unbinary = function(binaryString) {
var i = binaryString.length - 1, mask = 1, result = 0;
while (i >= 0) {
var ch = binaryString[i--];
if (ch !== '0' && ch !== '1') {
throw "the value passed into unbinary was not an 8 bit binary number";
}
if (ch === '1') {
result += mask;
}
mask <<= 1;
}
return result;
};
/**
* Number-to-String formatting function. Prepends "plus" or "minus" depending
* on whether the value is positive or negative, respectively, after padding
* the value with zeroes on the left and right, the number of zeroes used dictated
* by the values 'leftDigits' and 'rightDigits'. 'value' cannot be an array.
*
* @param {int|float} value the number to format
* @param {String} plus the prefix for positive numbers
* @param {String} minus the prefix for negative numbers
* @param {int} left number of digits to the left of the decimal point
* @param {int} right number of digits to the right of the decimal point
* @param {String} group string delimited for groups, such as the comma in "1,000"
*
* @returns {String or String[]}
*
* @see nfCore
*/
function nfCoreScalar(value, plus, minus, leftDigits, rightDigits, group) {
var sign = (value < 0) ? minus : plus;
var autoDetectDecimals = rightDigits === 0;
var rightDigitsOfDefault = (rightDigits === undef || rightDigits < 0) ? 0 : rightDigits;
var absValue = Math.abs(value);
if (autoDetectDecimals) {
rightDigitsOfDefault = 1;
absValue *= 10;
while (Math.abs(Math.round(absValue) - absValue) > 1e-6 && rightDigitsOfDefault < 7) {
++rightDigitsOfDefault;
absValue *= 10;
}
} else if (rightDigitsOfDefault !== 0) {
absValue *= Math.pow(10, rightDigitsOfDefault);
}
// Using Java's default rounding policy HALF_EVEN. This policy is based
// on the idea that 0.5 values round to the nearest even number, and
// everything else is rounded normally.
var number, doubled = absValue * 2;
if (Math.floor(absValue) === absValue) {
number = absValue;
} else if (Math.floor(doubled) === doubled) {
var floored = Math.floor(absValue);
number = floored + (floored % 2);
} else {
number = Math.round(absValue);
}
var buffer = "";
var totalDigits = leftDigits + rightDigitsOfDefault;
while (totalDigits > 0 || number > 0) {
totalDigits--;
buffer = "" + (number % 10) + buffer;
number = Math.floor(number / 10);
}
if (group !== undef) {
var i = buffer.length - 3 - rightDigitsOfDefault;
while(i > 0) {
buffer = buffer.substring(0,i) + group + buffer.substring(i);
i-=3;
}
}
if (rightDigitsOfDefault > 0) {
return sign + buffer.substring(0, buffer.length - rightDigitsOfDefault) +
"." + buffer.substring(buffer.length - rightDigitsOfDefault, buffer.length);
}
return sign + buffer;
}
/**
* Number-to-String formatting function. Prepends "plus" or "minus" depending
* on whether the value is positive or negative, respectively, after padding
* the value with zeroes on the left and right, the number of zeroes used dictated
* by the values 'leftDigits' and 'rightDigits'. 'value' can be an array;
* if the input is an array, each value in it is formatted separately, and
* an array with formatted values is returned.
*
* @param {int|int[]|float|float[]} value the number(s) to format
* @param {String} plus the prefix for positive numbers
* @param {String} minus the prefix for negative numbers
* @param {int} left number of digits to the left of the decimal point
* @param {int} right number of digits to the right of the decimal point
* @param {String} group string delimited for groups, such as the comma in "1,000"
*
* @returns {String or String[]}
*
* @see nfCoreScalar
*/
function nfCore(value, plus, minus, leftDigits, rightDigits, group) {
if (value instanceof Array) {
var arr = [];
for (var i = 0, len = value.length; i < len; i++) {
arr.push(nfCoreScalar(value[i], plus, minus, leftDigits, rightDigits, group));
}
return arr;
}
return nfCoreScalar(value, plus, minus, leftDigits, rightDigits, group);
}
/**
* Utility function for formatting numbers into strings. There are two versions, one for
* formatting floats and one for formatting ints. The values for the digits, left, and
* right parameters should always be positive integers.
* As shown in the above example, nf() is used to add zeros to the left and/or right
* of a number. This is typically for aligning a list of numbers. To remove digits from
* a floating-point number, use the int(), ceil(), floor(), or round() functions.
*
* @param {int|int[]|float|float[]} value the number(s) to format
* @param {int} left number of digits to the left of the decimal point
* @param {int} right number of digits to the right of the decimal point
*
* @returns {String or String[]}
*
* @see nfs
* @see nfp
* @see nfc
*/
p.nf = function(value, leftDigits, rightDigits) { return nfCore(value, "", "-", leftDigits, rightDigits); };
/**
* Utility function for formatting numbers into strings. Similar to nf() but leaves a blank space in front
* of positive numbers so they align with negative numbers in spite of the minus symbol. There are two
* versions, one for formatting floats and one for formatting ints. The values for the digits, left,
* and right parameters should always be positive integers.
*
* @param {int|int[]|float|float[]} value the number(s) to format
* @param {int} left number of digits to the left of the decimal point
* @param {int} right number of digits to the right of the decimal point
*
* @returns {String or String[]}
*
* @see nf
* @see nfp
* @see nfc
*/
p.nfs = function(value, leftDigits, rightDigits) { return nfCore(value, " ", "-", leftDigits, rightDigits); };
/**
* Utility function for formatting numbers into strings. Similar to nf() but puts a "+" in front of
* positive numbers and a "-" in front of negative numbers. There are two versions, one for formatting
* floats and one for formatting ints. The values for the digits, left, and right parameters should
* always be positive integers.
*
* @param {int|int[]|float|float[]} value the number(s) to format
* @param {int} left number of digits to the left of the decimal point
* @param {int} right number of digits to the right of the decimal point
*
* @returns {String or String[]}
*
* @see nfs
* @see nf
* @see nfc
*/
p.nfp = function(value, leftDigits, rightDigits) { return nfCore(value, "+", "-", leftDigits, rightDigits); };
/**
* Utility function for formatting numbers into strings and placing appropriate commas to mark
* units of 1000. There are two versions, one for formatting ints and one for formatting an array
* of ints. The value for the digits parameter should always be a positive integer.
*
* @param {int|int[]|float|float[]} value the number(s) to format
* @param {int} left number of digits to the left of the decimal point
* @param {int} right number of digits to the right of the decimal point
*
* @returns {String or String[]}
*
* @see nf
* @see nfs
* @see nfp
*/
p.nfc = function(value, leftDigits, rightDigits) { return nfCore(value, "", "-", leftDigits, rightDigits, ","); };
var decimalToHex = function(d, padding) {
//if there is no padding value added, default padding to 8 else go into while statement.
padding = (padding === undef || padding === null) ? padding = 8 : padding;
if (d < 0) {
d = 0xFFFFFFFF + d + 1;
}
var hex = Number(d).toString(16).toUpperCase();
while (hex.length < padding) {
hex = "0" + hex;
}
if (hex.length >= padding) {
hex = hex.substring(hex.length - padding, hex.length);
}
return hex;
};
// note: since we cannot keep track of byte, int types by default the returned string is 8 chars long
// if no 2nd argument is passed. closest compromise we can use to match java implementation Feb 5 2010
// also the char parser has issues with chars that are not digits or letters IE: !@#$%^&*
/**
* Converts a byte, char, int, or color to a String containing the equivalent hexadecimal notation.
* For example color(0, 102, 153, 255) will convert to the String "FF006699". This function can help
* make your geeky debugging sessions much happier.
*
* @param {byte|char|int|Color} value the value to turn into a hex string
* @param {int} digits the number of digits to return
*
* @returns {String}
*
* @see unhex
* @see binary
* @see unbinary
*/
p.hex = function(value, len) {
if (arguments.length === 1) {
if (value instanceof Char) {
len = 4;
} else { // int or byte, indistinguishable at the moment, default to 8
len = 8;
}
}
return decimalToHex(value, len);
};
function unhexScalar(hex) {
var value = parseInt("0x" + hex, 16);
// correct for int overflow java expectation
if (value > 2147483647) {
value -= 4294967296;
}
return value;
}
/**
* Converts a String representation of a hexadecimal number to its equivalent integer value.
*
* @param {String} hex the hex string to convert to an int
*
* @returns {int}
*
* @see hex
* @see binary
* @see unbinary
*/
p.unhex = function(hex) {
if (hex instanceof Array) {
var arr = [];
for (var i = 0; i < hex.length; i++) {
arr.push(unhexScalar(hex[i]));
}
return arr;
}
return unhexScalar(hex);
};
// Load a file or URL into strings
/**
* Reads the contents of a file or url and creates a String array of its individual lines.
* The filename parameter can also be a URL to a file found online. If the file is not available or an error occurs,
* null will be returned and an error message will be printed to the console. The error message does not halt
* the program.
*
* @param {String} filename name of the file or url to load
*
* @returns {String[]}
*
* @see loadBytes
* @see saveStrings
* @see saveBytes
*/
p.loadStrings = function(filename) {
if (localStorage[filename]) {
return localStorage[filename].split("\n");
}
var filecontent = ajax(filename);
if(typeof filecontent !== "string" || filecontent === "") {
return [];
}
// deal with the fact that Windows uses \r\n, Unix uses \n,
// Mac uses \r, and we actually expect \n
filecontent = filecontent.replace(/(\r\n?)/g,"\n").replace(/\n$/,"");
return filecontent.split("\n");
};
// Writes an array of strings to a file, one line per string
/**
* Writes an array of strings to a file, one line per string. This file is saved to the localStorage.
*
* @param {String} filename name of the file to save to localStorage
* @param {String[]} strings string array to be written
*
* @see loadBytes
* @see loadStrings
* @see saveBytes
*/
p.saveStrings = function(filename, strings) {
localStorage[filename] = strings.join('\n');
};
/**
* Reads the contents of a file or url and places it in a byte array. If a file is specified, it must be located in the localStorage.
* The filename parameter can also be a URL to a file found online.
*
* @param {String} filename name of a file in the localStorage or a URL.
*
* @returns {byte[]}
*
* @see loadStrings
* @see saveStrings
* @see saveBytes
*/
p.loadBytes = function(url) {
var string = ajax(url);
var ret = [];
for (var i = 0; i < string.length; i++) {
ret.push(string.charCodeAt(i));
}
return ret;
};
/**
* Removes the first argument from the arguments set -- shifts.
*
* @param {Arguments} args The Arguments object.
*
* @return {Object[]} Returns an array of arguments except first one.
*
* @see #match
*/
function removeFirstArgument(args) {
return Array.prototype.slice.call(args, 1);
}
////////////////////////////////////////////////////////////////////////////
// String Functions
////////////////////////////////////////////////////////////////////////////
/**
* The matchAll() function is identical to match(), except that it returns an array of all matches in
* the specified String, rather than just the first.
*
* @param {String} aString the String to search inside
* @param {String} aRegExp the regexp to be used for matching
*
* @return {String[]} returns an array of matches
*
* @see #match
*/
p.matchAll = function(aString, aRegExp) {
var results = [],
latest;
var regexp = new RegExp(aRegExp, "g");
while ((latest = regexp.exec(aString)) !== null) {
results.push(latest);
if (latest[0].length === 0) {
++regexp.lastIndex;
}
}
return results.length > 0 ? results : null;
};
/**
* The contains(string) function returns true if the string passed in the parameter
* is a substring of this string. It returns false if the string passed
* in the parameter is not a substring of this string.
*
* @param {String} The string to look for in the current string
*
* @return {boolean} returns true if this string contains
* the string passed as parameter. returns false, otherwise.
*
*/
p.__contains = function (subject, subStr) {
if (typeof subject !== "string") {
return subject.contains.apply(subject, removeFirstArgument(arguments));
}
//Parameter is not null AND
//The type of the parameter is the same as this object (string)
//The javascript function that finds a substring returns 0 or higher
return (
(subject !== null) &&
(subStr !== null) &&
(typeof subStr === "string") &&
(subject.indexOf(subStr) > -1)
);
};
/**
* The __replaceAll() function searches all matches between a substring (or regular expression) and a string,
* and replaces the matched substring with a new substring
*
* @param {String} subject a substring
* @param {String} regex a substring or a regular expression
* @param {String} replace the string to replace the found value
*
* @return {String} returns result
*
* @see #match
*/
p.__replaceAll = function(subject, regex, replacement) {
if (typeof subject !== "string") {
return subject.replaceAll.apply(subject, removeFirstArgument(arguments));
}
return subject.replace(new RegExp(regex, "g"), replacement);
};
/**
* The __replaceFirst() function searches first matche between a substring (or regular expression) and a string,
* and replaces the matched substring with a new substring
*
* @param {String} subject a substring
* @param {String} regex a substring or a regular expression
* @param {String} replace the string to replace the found value
*
* @return {String} returns result
*
* @see #match
*/
p.__replaceFirst = function(subject, regex, replacement) {
if (typeof subject !== "string") {
return subject.replaceFirst.apply(subject, removeFirstArgument(arguments));
}
return subject.replace(new RegExp(regex, ""), replacement);
};
/**
* The __replace() function searches all matches between a substring and a string,
* and replaces the matched substring with a new substring
*
* @param {String} subject a substring
* @param {String} what a substring to find
* @param {String} replacement the string to replace the found value
*
* @return {String} returns result
*/
p.__replace = function(subject, what, replacement) {
if (typeof subject !== "string") {
return subject.replace.apply(subject, removeFirstArgument(arguments));
}
if (what instanceof RegExp) {
return subject.replace(what, replacement);
}
if (typeof what !== "string") {
what = what.toString();
}
if (what === "") {
return subject;
}
var i = subject.indexOf(what);
if (i < 0) {
return subject;
}
var j = 0, result = "";
do {
result += subject.substring(j, i) + replacement;
j = i + what.length;
} while ( (i = subject.indexOf(what, j)) >= 0);
return result + subject.substring(j);
};
/**
* The __equals() function compares two strings (or objects) to see if they are the same.
* This method is necessary because it's not possible to compare strings using the equality operator (==).
* Returns true if the strings are the same and false if they are not.
*
* @param {String} subject a string used for comparison
* @param {String} other a string used for comparison with
*
* @return {boolean} true is the strings are the same false otherwise
*/
p.__equals = function(subject, other) {
if (subject.equals instanceof Function) {
return subject.equals.apply(subject, removeFirstArgument(arguments));
}
// TODO use virtEquals for HashMap here
return subject.valueOf() === other.valueOf();
};
/**
* The __equalsIgnoreCase() function compares two strings to see if they are the same.
* Returns true if the strings are the same, either when forced to all lower case or
* all upper case.
*
* @param {String} subject a string used for comparison
* @param {String} other a string used for comparison with
*
* @return {boolean} true is the strings are the same, ignoring case. false otherwise
*/
p.__equalsIgnoreCase = function(subject, other) {
if (typeof subject !== "string") {
return subject.equalsIgnoreCase.apply(subject, removeFirstArgument(arguments));
}
return subject.toLowerCase() === other.toLowerCase();
};
/**
* The __toCharArray() function splits the string into a char array.
*
* @param {String} subject The string
*
* @return {Char[]} a char array
*/
p.__toCharArray = function(subject) {
if (typeof subject !== "string") {
return subject.toCharArray.apply(subject, removeFirstArgument(arguments));
}
var chars = [];
for (var i = 0, len = subject.length; i < len; ++i) {
chars[i] = new Char(subject.charAt(i));
}
return chars;
};
/**
* The __split() function splits a string using the regex delimiter
* specified. If limit is specified, the resultant array will have number
* of elements equal to or less than the limit.
*
* @param {String} subject string to be split
* @param {String} regexp regex string used to split the subject
* @param {int} limit max number of tokens to be returned
*
* @return {String[]} an array of tokens from the split string
*/
p.__split = function(subject, regex, limit) {
if (typeof subject !== "string") {
return subject.split.apply(subject, removeFirstArgument(arguments));
}
var pattern = new RegExp(regex);
// If limit is not specified, use JavaScript's built-in String.split.
if ((limit === undef) || (limit < 1)) {
return subject.split(pattern);
}
// If limit is specified, JavaScript's built-in String.split has a
// different behaviour than Java's. A Java-compatible implementation is
// provided here.
var result = [], currSubject = subject, pos;
while (((pos = currSubject.search(pattern)) !== -1)
&& (result.length < (limit - 1))) {
var match = pattern.exec(currSubject).toString();
result.push(currSubject.substring(0, pos));
currSubject = currSubject.substring(pos + match.length);
}
if ((pos !== -1) || (currSubject !== "")) {
result.push(currSubject);
}
return result;
};
/**
* The codePointAt() function returns the unicode value of the character at a given index of a string.
*
* @param {int} idx the index of the character
*
* @return {String} code the String containing the unicode value of the character
*/
p.__codePointAt = function(subject, idx) {
var code = subject.charCodeAt(idx),
hi,
low;
if (0xD800 <= code && code <= 0xDBFF) {
hi = code;
low = subject.charCodeAt(idx + 1);
return ((hi - 0xD800) * 0x400) + (low - 0xDC00) + 0x10000;
}
return code;
};
/**
* The match() function matches a string with a regular expression, and returns the match as an
* array. The first index is the matching expression, and array elements
* [1] and higher represent each of the groups (sequences found in parens).
*
* @param {String} str the String to be searched
* @param {String} regexp the regexp to be used for matching
*
* @return {String[]} an array of matching strings
*/
p.match = function(str, regexp) {
return str.match(regexp);
};
/**
* The startsWith() function tests if a string starts with the specified prefix. If the prefix
* is the empty String or equal to the subject String, startsWith() will also return true.
*
* @param {String} prefix the String used to compare against the start of the subject String.
* @param {int} toffset (optional) an offset into the subject String where searching should begin.
*
* @return {boolean} true if the subject String starts with the prefix.
*/
p.__startsWith = function(subject, prefix, toffset) {
if (typeof subject !== "string") {
return subject.startsWith.apply(subject, removeFirstArgument(arguments));
}
toffset = toffset || 0;
if (toffset < 0 || toffset > subject.length) {
return false;
}
return (prefix === '' || prefix === subject) ? true : (subject.indexOf(prefix) === toffset);
};
/**
* The endsWith() function tests if a string ends with the specified suffix. If the suffix
* is the empty String, endsWith() will also return true.
*
* @param {String} suffix the String used to compare against the end of the subject String.
*
* @return {boolean} true if the subject String starts with the prefix.
*/
p.__endsWith = function(subject, suffix) {
if (typeof subject !== "string") {
return subject.endsWith.apply(subject, removeFirstArgument(arguments));
}
var suffixLen = suffix ? suffix.length : 0;
return (suffix === '' || suffix === subject) ? true :
(subject.indexOf(suffix) === subject.length - suffixLen);
};
////////////////////////////////////////////////////////////////////////////
// Other java specific functions
////////////////////////////////////////////////////////////////////////////
/**
* The returns hash code of the.
*
* @param {Object} subject The string
*
* @return {int} a hash code
*/
p.__hashCode = function(subject) {
if (subject.hashCode instanceof Function) {
return subject.hashCode.apply(subject, removeFirstArgument(arguments));
}
return virtHashCode(subject);
};
/**
* The __printStackTrace() prints stack trace to the console.
*
* @param {Exception} subject The error
*/
p.__printStackTrace = function(subject) {
p.println("Exception: " + subject.toString() );
};
/**
* Clears logs, if logger has been initialized
*/
p._clearLogs = function() {
if (Processing.logger.clear) {
Processing.logger.clear();
}
};
var logBuffer = [];
/**
* The println() function writes to the console area of the Processing environment.
* Each call to this function creates a new line of output. Individual elements can be separated with quotes ("") and joined with the string concatenation operator (+).
*
* @param {String} message the string to write to the console
*
* @see #join
* @see #print
*/
p.println = function(message) {
var bufferLen = logBuffer.length;
if (bufferLen) {
Processing.logger.log(logBuffer.join(""));
logBuffer.length = 0; // clear log buffer
}
if (arguments.length === 0 && bufferLen === 0) {
Processing.logger.log("");
} else if (arguments.length !== 0) {
Processing.logger.log(message);
}
};
/**
* The print() function writes to the console area of the Processing environment.
*
* @param {String} message the string to write to the console
*
* @see #join
*/
p.print = function(message) {
logBuffer.push(message);
};
// Alphanumeric chars arguments automatically converted to numbers when
// passed in, and will come out as numbers.
p.str = function(val) {
if (val instanceof Array) {
var arr = [];
for (var i = 0; i < val.length; i++) {
arr.push(val[i].toString() + "");
}
return arr;
}
return (val.toString() + "");
};
/**
* Remove whitespace characters from the beginning and ending
* of a String or a String array. Works like String.trim() but includes the
* unicode nbsp character as well. If an array is passed in the function will return a new array not effecting the array passed in.
*
* @param {String} str the string to trim
* @param {String[]} str the string array to trim
*
* @return {String|String[]} retrurns a string or an array will removed whitespaces
*/
p.trim = function(str) {
if (str instanceof Array) {
var arr = [];
for (var i = 0; i < str.length; i++) {
arr.push(str[i].replace(/^\s*/, '').replace(/\s*$/, '').replace(/\r*$/, ''));
}
return arr;
}
return str.replace(/^\s*/, '').replace(/\s*$/, '').replace(/\r*$/, '');
};
// Conversion
function booleanScalar(val) {
if (typeof val === 'number') {
return val !== 0;
}
if (typeof val === 'boolean') {
return val;
}
if (typeof val === 'string') {
return val.toLowerCase() === 'true';
}
if (val instanceof Char) {
// 1, T or t
return val.code === 49 || val.code === 84 || val.code === 116;
}
}
/**
* Converts the passed parameter to the function to its boolean value.
* It will return an array of booleans if an array is passed in.
*
* @param {int, byte, string} val the parameter to be converted to boolean
* @param {int[], byte[], string[]} val the array to be converted to boolean[]
*
* @return {boolean|boolean[]} returns a boolean or an array of booleans
*/
p.parseBoolean = function (val) {
if (val instanceof Array) {
var ret = [];
for (var i = 0; i < val.length; i++) {
ret.push(booleanScalar(val[i]));
}
return ret;
}
return booleanScalar(val);
};
/**
* Converts the passed parameter to the function to its byte value.
* A byte is a number between -128 and 127.
* It will return an array of bytes if an array is passed in.
*
* @param {int, char} what the parameter to be conveted to byte
* @param {int[], char[]} what the array to be converted to byte[]
*
* @return {byte|byte[]} returns a byte or an array of bytes
*/
p.parseByte = function(what) {
if (what instanceof Array) {
var bytes = [];
for (var i = 0; i < what.length; i++) {
bytes.push((0 - (what[i] & 0x80)) | (what[i] & 0x7F));
}
return bytes;
}
return (0 - (what & 0x80)) | (what & 0x7F);
};
/**
* Converts the passed parameter to the function to its char value.
* It will return an array of chars if an array is passed in.
*
* @param {int, byte} key the parameter to be conveted to char
* @param {int[], byte[]} key the array to be converted to char[]
*
* @return {char|char[]} returns a char or an array of chars
*/
p.parseChar = function(key) {
if (typeof key === "number") {
return new Char(String.fromCharCode(key & 0xFFFF));
}
if (key instanceof Array) {
var ret = [];
for (var i = 0; i < key.length; i++) {
ret.push(new Char(String.fromCharCode(key[i] & 0xFFFF)));
}
return ret;
}
throw "char() may receive only one argument of type int, byte, int[], or byte[].";
};
// Processing doc claims good argument types are: int, char, byte, boolean,
// String, int[], char[], byte[], boolean[], String[].
// floats should not work. However, floats with only zeroes right of the
// decimal will work because JS converts those to int.
function floatScalar(val) {
if (typeof val === 'number') {
return val;
}
if (typeof val === 'boolean') {
return val ? 1 : 0;
}
if (typeof val === 'string') {
return parseFloat(val);
}
if (val instanceof Char) {
return val.code;
}
}
/**
* Converts the passed parameter to the function to its float value.
* It will return an array of floats if an array is passed in.
*
* @param {int, char, boolean, string} val the parameter to be conveted to float
* @param {int[], char[], boolean[], string[]} val the array to be converted to float[]
*
* @return {float|float[]} returns a float or an array of floats
*/
p.parseFloat = function(val) {
if (val instanceof Array) {
var ret = [];
for (var i = 0; i < val.length; i++) {
ret.push(floatScalar(val[i]));
}
return ret;
}
return floatScalar(val);
};
function intScalar(val, radix) {
if (typeof val === 'number') {
return val & 0xFFFFFFFF;
}
if (typeof val === 'boolean') {
return val ? 1 : 0;
}
if (typeof val === 'string') {
var number = parseInt(val, radix || 10); // Default to decimal radix.
return number & 0xFFFFFFFF;
}
if (val instanceof Char) {
return val.code;
}
}
/**
* Converts the passed parameter to the function to its int value.
* It will return an array of ints if an array is passed in.
*
* @param {string, char, boolean, float} val the parameter to be conveted to int
* @param {string[], char[], boolean[], float[]} val the array to be converted to int[]
* @param {int} radix optional the radix of the number (for js compatibility)
*
* @return {int|int[]} returns a int or an array of ints
*/
p.parseInt = function(val, radix) {
if (val instanceof Array) {
var ret = [];
for (var i = 0; i < val.length; i++) {
if (typeof val[i] === 'string' && !/^\s*[+\-]?\d+\s*$/.test(val[i])) {
ret.push(0);
} else {
ret.push(intScalar(val[i], radix));
}
}
return ret;
}
return intScalar(val, radix);
};
p.__int_cast = function(val) {
return 0|val;
};
p.__instanceof = function(obj, type) {
if (typeof type !== "function") {
throw "Function is expected as type argument for instanceof operator";
}
if (typeof obj === "string") {
// special case for strings
return type === Object || type === String;
}
if (obj instanceof type) {
// fast check if obj is already of type instance
return true;
}
if (typeof obj !== "object" || obj === null) {
return false; // not an object or null
}
var objType = obj.constructor;
if (type.$isInterface) {
// expecting the interface
// queueing interfaces from type and its base classes
var interfaces = [];
while (objType) {
if (objType.$interfaces) {
interfaces = interfaces.concat(objType.$interfaces);
}
objType = objType.$base;
}
while (interfaces.length > 0) {
var i = interfaces.shift();
if (i === type) {
return true;
}
// wide search in base interfaces
if (i.$interfaces) {
interfaces = interfaces.concat(i.$interfaces);
}
}
return false;
}
while (objType.hasOwnProperty("$base")) {
objType = objType.$base;
if (objType === type) {
return true; // object was found
}
}
return false;
};
////////////////////////////////////////////////////////////////////////////
// Math functions
////////////////////////////////////////////////////////////////////////////
// Calculation
/**
* Calculates the absolute value (magnitude) of a number. The absolute value of a number is always positive.
*
* @param {int|float} value int or float
*
* @returns {int|float}
*/
p.abs = Math.abs;
/**
* Calculates the closest int value that is greater than or equal to the value of the parameter.
* For example, ceil(9.03) returns the value 10.
*
* @param {float} value float
*
* @returns {int}
*
* @see floor
* @see round
*/
p.ceil = Math.ceil;
/**
* Constrains a value to not exceed a maximum and minimum value.
*
* @param {int|float} value the value to constrain
* @param {int|float} value minimum limit
* @param {int|float} value maximum limit
*
* @returns {int|float}
*
* @see max
* @see min
*/
p.constrain = function(aNumber, aMin, aMax) {
return aNumber > aMax ? aMax : aNumber < aMin ? aMin : aNumber;
};
/**
* Calculates the distance between two points.
*
* @param {int|float} x1 int or float: x-coordinate of the first point
* @param {int|float} y1 int or float: y-coordinate of the first point
* @param {int|float} z1 int or float: z-coordinate of the first point
* @param {int|float} x2 int or float: x-coordinate of the second point
* @param {int|float} y2 int or float: y-coordinate of the second point
* @param {int|float} z2 int or float: z-coordinate of the second point
*
* @returns {float}
*/
p.dist = function() {
var dx, dy, dz;
if (arguments.length === 4) {
dx = arguments[0] - arguments[2];
dy = arguments[1] - arguments[3];
return Math.sqrt(dx * dx + dy * dy);
}
if (arguments.length === 6) {
dx = arguments[0] - arguments[3];
dy = arguments[1] - arguments[4];
dz = arguments[2] - arguments[5];
return Math.sqrt(dx * dx + dy * dy + dz * dz);
}
};
/**
* Returns Euler's number e (2.71828...) raised to the power of the value parameter.
*
* @param {int|float} value int or float: the exponent to raise e to
*
* @returns {float}
*/
p.exp = Math.exp;
/**
* Calculates the closest int value that is less than or equal to the value of the parameter.
*
* @param {int|float} value the value to floor
*
* @returns {int|float}
*
* @see ceil
* @see round
*/
p.floor = Math.floor;
/**
* Calculates a number between two numbers at a specific increment. The amt parameter is the
* amount to interpolate between the two values where 0.0 equal to the first point, 0.1 is very
* near the first point, 0.5 is half-way in between, etc. The lerp function is convenient for
* creating motion along a straight path and for drawing dotted lines.
*
* @param {int|float} value1 float or int: first value
* @param {int|float} value2 float or int: second value
* @param {int|float} amt float: between 0.0 and 1.0
*
* @returns {float}
*
* @see curvePoint
* @see bezierPoint
*/
p.lerp = function(value1, value2, amt) {
return ((value2 - value1) * amt) + value1;
};
/**
* Calculates the natural logarithm (the base-e logarithm) of a number. This function
* expects the values greater than 0.0.
*
* @param {int|float} value int or float: number must be greater then 0.0
*
* @returns {float}
*/
p.log = Math.log;
/**
* Calculates the magnitude (or length) of a vector. A vector is a direction in space commonly
* used in computer graphics and linear algebra. Because it has no "start" position, the magnitude
* of a vector can be thought of as the distance from coordinate (0,0) to its (x,y) value.
* Therefore, mag() is a shortcut for writing "dist(0, 0, x, y)".
*
* @param {int|float} a float or int: first value
* @param {int|float} b float or int: second value
* @param {int|float} c float or int: third value
*
* @returns {float}
*
* @see dist
*/
p.mag = function(a, b, c) {
if (c) {
return Math.sqrt(a * a + b * b + c * c);
}
return Math.sqrt(a * a + b * b);
};
/**
* Re-maps a number from one range to another. In the example above, the number '25' is converted from
* a value in the range 0..100 into a value that ranges from the left edge (0) to the right edge (width) of the screen.
* Numbers outside the range are not clamped to 0 and 1, because out-of-range values are often intentional and useful.
*
* @param {float} value The incoming value to be converted
* @param {float} istart Lower bound of the value's current range
* @param {float} istop Upper bound of the value's current range
* @param {float} ostart Lower bound of the value's target range
* @param {float} ostop Upper bound of the value's target range
*
* @returns {float}
*
* @see norm
* @see lerp
*/
p.map = function(value, istart, istop, ostart, ostop) {
return ostart + (ostop - ostart) * ((value - istart) / (istop - istart));
};
/**
* Determines the largest value in a sequence of numbers.
*
* @param {int|float} value1 int or float
* @param {int|float} value2 int or float
* @param {int|float} value3 int or float
* @param {int|float} array int or float array
*
* @returns {int|float}
*
* @see min
*/
p.max = function() {
if (arguments.length === 2) {
return arguments[0] < arguments[1] ? arguments[1] : arguments[0];
}
var numbers = arguments.length === 1 ? arguments[0] : arguments; // if single argument, array is used
if (! ("length" in numbers && numbers.length > 0)) {
throw "Non-empty array is expected";
}
var max = numbers[0],
count = numbers.length;
for (var i = 1; i < count; ++i) {
if (max < numbers[i]) {
max = numbers[i];
}
}
return max;
};
/**
* Determines the smallest value in a sequence of numbers.
*
* @param {int|float} value1 int or float
* @param {int|float} value2 int or float
* @param {int|float} value3 int or float
* @param {int|float} array int or float array
*
* @returns {int|float}
*
* @see max
*/
p.min = function() {
if (arguments.length === 2) {
return arguments[0] < arguments[1] ? arguments[0] : arguments[1];
}
var numbers = arguments.length === 1 ? arguments[0] : arguments; // if single argument, array is used
if (! ("length" in numbers && numbers.length > 0)) {
throw "Non-empty array is expected";
}
var min = numbers[0],
count = numbers.length;
for (var i = 1; i < count; ++i) {
if (min > numbers[i]) {
min = numbers[i];
}
}
return min;
};
/**
* Normalizes a number from another range into a value between 0 and 1.
* Identical to map(value, low, high, 0, 1);
* Numbers outside the range are not clamped to 0 and 1, because out-of-range
* values are often intentional and useful.
*
* @param {float} aNumber The incoming value to be converted
* @param {float} low Lower bound of the value's current range
* @param {float} high Upper bound of the value's current range
*
* @returns {float}
*
* @see map
* @see lerp
*/
p.norm = function(aNumber, low, high) {
return (aNumber - low) / (high - low);
};
/**
* Facilitates exponential expressions. The pow() function is an efficient way of
* multiplying numbers by themselves (or their reciprocal) in large quantities.
* For example, pow(3, 5) is equivalent to the expression 3*3*3*3*3 and pow(3, -5)
* is equivalent to 1 / 3*3*3*3*3.
*
* @param {int|float} num base of the exponential expression
* @param {int|float} exponent power of which to raise the base
*
* @returns {float}
*
* @see sqrt
*/
p.pow = Math.pow;
/**
* Calculates the integer closest to the value parameter. For example, round(9.2) returns the value 9.
*
* @param {float} value number to round
*
* @returns {int}
*
* @see floor
* @see ceil
*/
p.round = Math.round;
/**
* Squares a number (multiplies a number by itself). The result is always a positive number,
* as multiplying two negative numbers always yields a positive result. For example, -1 * -1 = 1.
*
* @param {float} value int or float
*
* @returns {float}
*
* @see sqrt
*/
p.sq = function(aNumber) {
return aNumber * aNumber;
};
/**
* Calculates the square root of a number. The square root of a number is always positive,
* even though there may be a valid negative root. The square root s of number a is such
* that s*s = a. It is the opposite of squaring.
*
* @param {float} value int or float, non negative
*
* @returns {float}
*
* @see pow
* @see sq
*/
p.sqrt = Math.sqrt;
// Trigonometry
p.convertToDegrees = function(angle) {
return p.angleMode === "degrees" ?
p.degrees(angle) :
angle;
};
p.convertToRadians = function(angle) {
return p.angleMode === "degrees" ?
p.radians(angle) :
angle;
};
var compose = function() {
var args = arguments;
return function() {
var ret = arguments;
for (var i = 0; i < args.length; i++) {
ret = [ args[i].apply(args[i], ret) ];
}
return ret[0];
};
};
/**
* The inverse of cos(), returns the arc cosine of a value. This function expects the
* values in the range of -1 to 1 and values are returned in the range 0 to PI (3.1415927).
*
* @param {float} value the value whose arc cosine is to be returned
*
* @returns {float}
*
* @see cos
* @see asin
* @see atan
*/
p.acos = compose(Math.acos, p.convertToDegrees);
/**
* The inverse of sin(), returns the arc sine of a value. This function expects the values
* in the range of -1 to 1 and values are returned in the range -PI/2 to PI/2.
*
* @param {float} value the value whose arc sine is to be returned
*
* @returns {float}
*
* @see sin
* @see acos
* @see atan
*/
p.asin = compose(Math.asin, p.convertToDegrees);
/**
* The inverse of tan(), returns the arc tangent of a value. This function expects the values
* in the range of -Infinity to Infinity (exclusive) and values are returned in the range -PI/2 to PI/2 .
*
* @param {float} value -Infinity to Infinity (exclusive)
*
* @returns {float}
*
* @see tan
* @see asin
* @see acos
*/
p.atan = compose(Math.atan, p.convertToDegrees);
/**
* Calculates the angle (in radians) from a specified point to the coordinate origin as measured from
* the positive x-axis. Values are returned as a float in the range from PI to -PI. The atan2() function
* is most often used for orienting geometry to the position of the cursor. Note: The y-coordinate of the
* point is the first parameter and the x-coordinate is the second due the the structure of calculating the tangent.
*
* @param {float} y y-coordinate of the point
* @param {float} x x-coordinate of the point
*
* @returns {float}
*
* @see tan
*/
p.atan2 = compose(Math.atan2, p.convertToDegrees);
/**
* Calculates the cosine of an angle. This function expects the values of the angle parameter to be provided
* in radians (values from 0 to PI*2). Values are returned in the range -1 to 1.
*
* @param {float} value an angle in radians
*
* @returns {float}
*
* @see tan
* @see sin
*/
p.cos = compose(p.convertToRadians, Math.cos);
/**
* Converts a radian measurement to its corresponding value in degrees. Radians and degrees are two ways of
* measuring the same thing. There are 360 degrees in a circle and 2*PI radians in a circle. For example,
* 90 degrees = PI/2 = 1.5707964. All trigonometric methods in Processing require their parameters to be specified in radians.
*
* @param {int|float} value an angle in radians
*
* @returns {float}
*
* @see radians
*/
p.degrees = function(aAngle) {
return (aAngle * 180) / Math.PI;
};
/**
* Converts a degree measurement to its corresponding value in radians. Radians and degrees are two ways of
* measuring the same thing. There are 360 degrees in a circle and 2*PI radians in a circle. For example,
* 90 degrees = PI/2 = 1.5707964. All trigonometric methods in Processing require their parameters to be specified in radians.
*
* @param {int|float} value an angle in radians
*
* @returns {float}
*
* @see degrees
*/
p.radians = function(aAngle) {
return (aAngle / 180) * Math.PI;
};
/**
* Calculates the sine of an angle. This function expects the values of the angle parameter to be provided in
* radians (values from 0 to 6.28). Values are returned in the range -1 to 1.
*
* @param {float} value an angle in radians
*
* @returns {float}
*
* @see cos
* @see radians
*/
p.sin = compose(p.convertToRadians, Math.sin);
/**
* Calculates the ratio of the sine and cosine of an angle. This function expects the values of the angle
* parameter to be provided in radians (values from 0 to PI*2). Values are returned in the range infinity to -infinity.
*
* @param {float} value an angle in radians
*
* @returns {float}
*
* @see cos
* @see sin
* @see radians
*/
p.tan = compose(p.convertToRadians, Math.tan);
// XXX(jeresig): Need to set these globals later as they
// use the new methods.
cameraFOV = (p.angleMode === "degrees" ? 60 : p.radians(60));
cameraZ = cameraY / p.tan(cameraFOV / 2);
var currentRandom = Math.random;
/**
* Generates random numbers. Each time the random() function is called, it returns an unexpected value within
* the specified range. If one parameter is passed to the function it will return a float between zero and the
* value of the high parameter. The function call random(5) returns values between 0 and 5 (starting at zero,
* up to but not including 5). If two parameters are passed, it will return a float with a value between the
* parameters. The function call random(-5, 10.2) returns values starting at -5 up to (but not including) 10.2.
* To convert a floating-point random number to an integer, use the int() function.
*
* @param {int|float} value1 if one parameter is used, the top end to random from, if two params the low end
* @param {int|float} value2 the top end of the random range
*
* @returns {float}
*
* @see randomSeed
* @see noise
*/
p.random = function() {
if(arguments.length === 0) {
return currentRandom();
}
if(arguments.length === 1) {
return currentRandom() * arguments[0];
}
var aMin = arguments[0], aMax = arguments[1];
return currentRandom() * (aMax - aMin) + aMin;
};
// Pseudo-random generator
function Marsaglia(i1, i2) {
// from http://www.math.uni-bielefeld.de/~sillke/ALGORITHMS/random/marsaglia-c
var z=i1 || 362436069, w= i2 || 521288629;
var nextInt = function() {
z=(36969*(z&65535)+(z>>>16)) & 0xFFFFFFFF;
w=(18000*(w&65535)+(w>>>16)) & 0xFFFFFFFF;
return (((z&0xFFFF)<<16) | (w&0xFFFF)) & 0xFFFFFFFF;
};
this.nextDouble = function() {
var i = nextInt() / 4294967296;
return i < 0 ? 1 + i : i;
};
this.nextInt = nextInt;
}
Marsaglia.createRandomized = function() {
var now = new Date();
return new Marsaglia((now / 60000) & 0xFFFFFFFF, now & 0xFFFFFFFF);
};
/**
* Sets the seed value for random(). By default, random() produces different results each time the
* program is run. Set the value parameter to a constant to return the same pseudo-random numbers
* each time the software is run.
*
* @param {int|float} seed int
*
* @see random
* @see noise
* @see noiseSeed
*/
p.randomSeed = function(seed) {
currentRandom = (new Marsaglia(seed)).nextDouble;
};
// Random
// We have two random()'s in the code... what does this do ? and which one is current ?
p.Random = function(seed) {
var haveNextNextGaussian = false, nextNextGaussian, random;
this.nextGaussian = function() {
if (haveNextNextGaussian) {
haveNextNextGaussian = false;
return nextNextGaussian;
}
var v1, v2, s;
do {
v1 = 2 * random() - 1; // between -1.0 and 1.0
v2 = 2 * random() - 1; // between -1.0 and 1.0
s = v1 * v1 + v2 * v2;
}
while (s >= 1 || s === 0);
var multiplier = Math.sqrt(-2 * Math.log(s) / s);
nextNextGaussian = v2 * multiplier;
haveNextNextGaussian = true;
return v1 * multiplier;
};
// by default use standard random, otherwise seeded
random = (seed === undef) ? Math.random : (new Marsaglia(seed)).nextDouble;
};
// Noise functions and helpers
function PerlinNoise(seed) {
var rnd = seed !== undef ? new Marsaglia(seed) : Marsaglia.createRandomized();
var i, j;
// http://www.noisemachine.com/talk1/17b.html
// http://mrl.nyu.edu/~perlin/noise/
// generate permutation
var perm = new Uint8Array(512);
for(i=0;i<256;++i) { perm[i] = i; }
for(i=0;i<256;++i) { var t = perm[j = rnd.nextInt() & 0xFF]; perm[j] = perm[i]; perm[i] = t; }
// copy to avoid taking mod in perm[0];
for(i=0;i<256;++i) { perm[i + 256] = perm[i]; }
function grad3d(i,x,y,z) {
var h = i & 15; // convert into 12 gradient directions
var u = h<8 ? x : y,
v = h<4 ? y : h===12||h===14 ? x : z;
return ((h&1) === 0 ? u : -u) + ((h&2) === 0 ? v : -v);
}
function grad2d(i,x,y) {
var v = (i & 1) === 0 ? x : y;
return (i&2) === 0 ? -v : v;
}
function grad1d(i,x) {
return (i&1) === 0 ? -x : x;
}
function lerp(t,a,b) { return a + t * (b - a); }
this.noise3d = function(x, y, z) {
var X = Math.floor(x)&255, Y = Math.floor(y)&255, Z = Math.floor(z)&255;
x -= Math.floor(x); y -= Math.floor(y); z -= Math.floor(z);
var fx = (3-2*x)*x*x, fy = (3-2*y)*y*y, fz = (3-2*z)*z*z;
var p0 = perm[X]+Y, p00 = perm[p0] + Z, p01 = perm[p0 + 1] + Z,
p1 = perm[X + 1] + Y, p10 = perm[p1] + Z, p11 = perm[p1 + 1] + Z;
return lerp(fz,
lerp(fy, lerp(fx, grad3d(perm[p00], x, y, z), grad3d(perm[p10], x-1, y, z)),
lerp(fx, grad3d(perm[p01], x, y-1, z), grad3d(perm[p11], x-1, y-1,z))),
lerp(fy, lerp(fx, grad3d(perm[p00 + 1], x, y, z-1), grad3d(perm[p10 + 1], x-1, y, z-1)),
lerp(fx, grad3d(perm[p01 + 1], x, y-1, z-1), grad3d(perm[p11 + 1], x-1, y-1,z-1))));
};
this.noise2d = function(x, y) {
var X = Math.floor(x)&255, Y = Math.floor(y)&255;
x -= Math.floor(x); y -= Math.floor(y);
var fx = (3-2*x)*x*x, fy = (3-2*y)*y*y;
var p0 = perm[X]+Y, p1 = perm[X + 1] + Y;
return lerp(fy,
lerp(fx, grad2d(perm[p0], x, y), grad2d(perm[p1], x-1, y)),
lerp(fx, grad2d(perm[p0 + 1], x, y-1), grad2d(perm[p1 + 1], x-1, y-1)));
};
this.noise1d = function(x) {
var X = Math.floor(x)&255;
x -= Math.floor(x);
var fx = (3-2*x)*x*x;
return lerp(fx, grad1d(perm[X], x), grad1d(perm[X+1], x-1));
};
}
// processing defaults
var noiseProfile = { generator: undef, octaves: 4, fallout: 0.5, seed: undef};
/**
* Returns the Perlin noise value at specified coordinates. Perlin noise is a random sequence
* generator producing a more natural ordered, harmonic succession of numbers compared to the
* standard random() function. It was invented by Ken Perlin in the 1980s and been used since
* in graphical applications to produce procedural textures, natural motion, shapes, terrains etc.
* The main difference to the random() function is that Perlin noise is defined in an infinite
* n-dimensional space where each pair of coordinates corresponds to a fixed semi-random value
* (fixed only for the lifespan of the program). The resulting value will always be between 0.0
* and 1.0. Processing can compute 1D, 2D and 3D noise, depending on the number of coordinates
* given. The noise value can be animated by moving through the noise space as demonstrated in
* the example above. The 2nd and 3rd dimension can also be interpreted as time.
* The actual noise is structured similar to an audio signal, in respect to the function's use
* of frequencies. Similar to the concept of harmonics in physics, perlin noise is computed over
* several octaves which are added together for the final result.
* Another way to adjust the character of the resulting sequence is the scale of the input
* coordinates. As the function works within an infinite space the value of the coordinates
* doesn't matter as such, only the distance between successive coordinates does (eg. when using
* noise() within a loop). As a general rule the smaller the difference between coordinates, the
* smoother the resulting noise sequence will be. Steps of 0.005-0.03 work best for most applications,
* but this will differ depending on use.
*
* @param {float} x x coordinate in noise space
* @param {float} y y coordinate in noise space
* @param {float} z z coordinate in noise space
*
* @returns {float}
*
* @see random
* @see noiseDetail
*/
p.noise = function(x, y, z) {
if(noiseProfile.generator === undef) {
// caching
noiseProfile.generator = new PerlinNoise(noiseProfile.seed);
}
var generator = noiseProfile.generator;
var effect = 1, k = 1, sum = 0;
for(var i=0; i<noiseProfile.octaves; ++i) {
effect *= noiseProfile.fallout;
switch (arguments.length) {
case 1:
sum += effect * (1 + generator.noise1d(k*x))/2; break;
case 2:
sum += effect * (1 + generator.noise2d(k*x, k*y))/2; break;
case 3:
sum += effect * (1 + generator.noise3d(k*x, k*y, k*z))/2; break;
}
k *= 2;
}
return sum;
};
/**
* Adjusts the character and level of detail produced by the Perlin noise function.
* Similar to harmonics in physics, noise is computed over several octaves. Lower octaves
* contribute more to the output signal and as such define the overal intensity of the noise,
* whereas higher octaves create finer grained details in the noise sequence. By default,
* noise is computed over 4 octaves with each octave contributing exactly half than its
* predecessor, starting at 50% strength for the 1st octave. This falloff amount can be
* changed by adding an additional function parameter. Eg. a falloff factor of 0.75 means
* each octave will now have 75% impact (25% less) of the previous lower octave. Any value
* between 0.0 and 1.0 is valid, however note that values greater than 0.5 might result in
* greater than 1.0 values returned by noise(). By changing these parameters, the signal
* created by the noise() function can be adapted to fit very specific needs and characteristics.
*
* @param {int} octaves number of octaves to be used by the noise() function
* @param {float} falloff falloff factor for each octave
*
* @see noise
*/
p.noiseDetail = function(octaves, fallout) {
noiseProfile.octaves = octaves;
if(fallout !== undef) {
noiseProfile.fallout = fallout;
}
};
/**
* Sets the seed value for noise(). By default, noise() produces different results each
* time the program is run. Set the value parameter to a constant to return the same
* pseudo-random numbers each time the software is run.
*
* @param {int} seed int
*
* @returns {float}
*
* @see random
* @see radomSeed
* @see noise
* @see noiseDetail
*/
p.noiseSeed = function(seed) {
noiseProfile.seed = seed;
noiseProfile.generator = undef;
};
/**
* Defines the dimension of the display window in units of pixels. The size() function must
* be the first line in setup(). If size() is not called, the default size of the window is
* 100x100 pixels. The system variables width and height are set by the parameters passed to
* the size() function.
*
* @param {int} aWidth width of the display window in units of pixels
* @param {int} aHeight height of the display window in units of pixels
* @param {MODE} aMode Either P2D, P3D, JAVA2D, or OPENGL
*
* @see createGraphics
* @see screen
*/
DrawingShared.prototype.size = function(aWidth, aHeight, aMode) {
if (doStroke) {
p.stroke(0);
}
if (doFill) {
p.fill(255);
}
// The default 2d context has already been created in the p.init() stage if
// a 3d context was not specified. This is so that a 2d context will be
// available if size() was not called.
var savedProperties = {
fillStyle: curContext.fillStyle,
strokeStyle: curContext.strokeStyle,
lineCap: curContext.lineCap,
lineJoin: curContext.lineJoin
};
// remove the style width and height properties to ensure that the canvas gets set to
// aWidth and aHeight coming in
if (curElement.style.length > 0 ) {
curElement.style.removeProperty("width");
curElement.style.removeProperty("height");
}
curElement.width = p.width = aWidth || 100;
curElement.height = p.height = aHeight || 100;
for (var prop in savedProperties) {
if (savedProperties.hasOwnProperty(prop)) {
curContext[prop] = savedProperties[prop];
}
}
// make sure to set the default font the first time round.
p.textFont(curTextFont);
// Set the background to whatever it was called last as if background() was called before size()
// If background() hasn't been called before, set background() to a light gray
p.background();
// set 5% for pixels to cache (or 1000)
maxPixelsCached = Math.max(1000, aWidth * aHeight * 0.05);
// Externalize the context
p.externals.context = curContext;
for (var i = 0; i < PConstants.SINCOS_LENGTH; i++) {
// XXX(jeresig)
sinLUT[i] = p.sin(p.angleMode === "degrees" ? i : p.radians(i));
cosLUT[i] = p.cos(p.angleMode === "degrees" ? i : p.radians(i));
}
};
Drawing2D.prototype.size = function(aWidth, aHeight, aMode) {
if (curContext === undef) {
// size() was called without p.init() default context, i.e. p.createGraphics()
curContext = curElement.getContext("2d");
userMatrixStack = new PMatrixStack();
userReverseMatrixStack = new PMatrixStack();
modelView = new PMatrix2D();
modelViewInv = new PMatrix2D();
}
DrawingShared.prototype.size.apply(this, arguments);
};
Drawing3D.prototype.size = (function() {
var size3DCalled = false;
return function size(aWidth, aHeight, aMode) {
if (size3DCalled) {
throw "Multiple calls to size() for 3D renders are not allowed.";
}
size3DCalled = true;
function getGLContext(canvas) {
var ctxNames = ['experimental-webgl', 'webgl', 'webkit-3d'],
gl;
for (var i=0, l=ctxNames.length; i<l; i++) {
gl = canvas.getContext(ctxNames[i], {antialias: false});
if (gl) {
break;
}
}
return gl;
}
// get the 3D rendering context
try {
// If the HTML <canvas> dimensions differ from the
// dimensions specified in the size() call in the sketch, for
// 3D sketches, browsers will either not render or render the
// scene incorrectly. To fix this, we need to adjust the
// width and height attributes of the canvas.
curElement.width = p.width = aWidth || 100;
curElement.height = p.height = aHeight || 100;
curContext = getGLContext(curElement);
canTex = curContext.createTexture(); // texture
textTex = curContext.createTexture(); // texture
} catch(e_size) {
Processing.debug(e_size);
}
if (!curContext) {
throw "WebGL context is not supported on this browser.";
}
// Set defaults
curContext.viewport(0, 0, curElement.width, curElement.height);
curContext.enable(curContext.DEPTH_TEST);
curContext.enable(curContext.BLEND);
curContext.blendFunc(curContext.SRC_ALPHA, curContext.ONE_MINUS_SRC_ALPHA);
// Create the program objects to render 2D (points, lines) and
// 3D (spheres, boxes) shapes. Because 2D shapes are not lit,
// lighting calculations could be ommitted from that program object.
programObject2D = createProgramObject(curContext, vertexShaderSource2D, fragmentShaderSource2D);
programObjectUnlitShape = createProgramObject(curContext, vShaderSrcUnlitShape, fShaderSrcUnlitShape);
// Set the default point and line width for the 2D and unlit shapes.
p.strokeWeight(1.0);
// Now that the programs have been compiled, we can set the default
// states for the lights.
programObject3D = createProgramObject(curContext, vertexShaderSource3D, fragmentShaderSource3D);
curContext.useProgram(programObject3D);
// assume we aren't using textures by default
uniformi("usingTexture3d", programObject3D, "usingTexture", usingTexture);
// assume that we arn't tinting by default
p.lightFalloff(1, 0, 0);
p.shininess(1);
p.ambient(255, 255, 255);
p.specular(0, 0, 0);
p.emissive(0, 0, 0);
// Create buffers for 3D primitives
boxBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, boxBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, boxVerts, curContext.STATIC_DRAW);
boxNormBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, boxNormBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, boxNorms, curContext.STATIC_DRAW);
boxOutlineBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, boxOutlineBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, boxOutlineVerts, curContext.STATIC_DRAW);
// used to draw the rectangle and the outline
rectBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, rectBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, rectVerts, curContext.STATIC_DRAW);
rectNormBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, rectNormBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, rectNorms, curContext.STATIC_DRAW);
// The sphere vertices are specified dynamically since the user
// can change the level of detail. Everytime the user does that
// using sphereDetail(), the new vertices are calculated.
sphereBuffer = curContext.createBuffer();
lineBuffer = curContext.createBuffer();
// Shape buffers
fillBuffer = curContext.createBuffer();
fillColorBuffer = curContext.createBuffer();
strokeColorBuffer = curContext.createBuffer();
shapeTexVBO = curContext.createBuffer();
pointBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, pointBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array([0, 0, 0]), curContext.STATIC_DRAW);
textBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, textBuffer );
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array([1,1,0,-1,1,0,-1,-1,0,1,-1,0]), curContext.STATIC_DRAW);
textureBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ARRAY_BUFFER, textureBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array([0,0,1,0,1,1,0,1]), curContext.STATIC_DRAW);
indexBuffer = curContext.createBuffer();
curContext.bindBuffer(curContext.ELEMENT_ARRAY_BUFFER, indexBuffer);
curContext.bufferData(curContext.ELEMENT_ARRAY_BUFFER, new Uint16Array([0,1,2,2,3,0]), curContext.STATIC_DRAW);
cam = new PMatrix3D();
cameraInv = new PMatrix3D();
modelView = new PMatrix3D();
modelViewInv = new PMatrix3D();
projection = new PMatrix3D();
p.camera();
p.perspective();
userMatrixStack = new PMatrixStack();
userReverseMatrixStack = new PMatrixStack();
// used by both curve and bezier, so just init here
curveBasisMatrix = new PMatrix3D();
curveToBezierMatrix = new PMatrix3D();
curveDrawMatrix = new PMatrix3D();
bezierDrawMatrix = new PMatrix3D();
bezierBasisInverse = new PMatrix3D();
bezierBasisMatrix = new PMatrix3D();
bezierBasisMatrix.set(-1, 3, -3, 1, 3, -6, 3, 0, -3, 3, 0, 0, 1, 0, 0, 0);
DrawingShared.prototype.size.apply(this, arguments);
};
}());
////////////////////////////////////////////////////////////////////////////
// Lights
////////////////////////////////////////////////////////////////////////////
/**
* Adds an ambient light. Ambient light doesn't come from a specific direction,
* the rays have light have bounced around so much that objects are evenly lit
* from all sides. Ambient lights are almost always used in combination with
* other types of lights. Lights need to be included in the <b>draw()</b> to
* remain persistent in a looping program. Placing them in the <b>setup()</b>
* of a looping program will cause them to only have an effect the first time
* through the loop. The effect of the parameters is determined by the current
* color mode.
*
* @param {int | float} r red or hue value
* @param {int | float} g green or hue value
* @param {int | float} b blue or hue value
*
* @param {int | float} x x position of light (used for falloff)
* @param {int | float} y y position of light (used for falloff)
* @param {int | float} z z position of light (used for falloff)
*
* @returns none
*
* @see lights
* @see directionalLight
* @see pointLight
* @see spotLight
*/
Drawing2D.prototype.ambientLight = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.ambientLight = function(r, g, b, x, y, z) {
if (lightCount === PConstants.MAX_LIGHTS) {
throw "can only create " + PConstants.MAX_LIGHTS + " lights";
}
var pos = new PVector(x, y, z);
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.mult(pos, pos);
// Instead of calling p.color, we do the calculations ourselves to
// reduce property lookups.
var col = color$4(r, g, b, 0);
var normalizedCol = [ ((col & PConstants.RED_MASK) >>> 16) / 255,
((col & PConstants.GREEN_MASK) >>> 8) / 255,
(col & PConstants.BLUE_MASK) / 255 ];
curContext.useProgram(programObject3D);
uniformf("lights.color.3d." + lightCount, programObject3D, "lights" + lightCount + ".color", normalizedCol);
uniformf("lights.position.3d." + lightCount, programObject3D, "lights" + lightCount + ".position", pos.array());
uniformi("lights.type.3d." + lightCount, programObject3D, "lights" + lightCount + ".type", 0);
uniformi("lightCount3d", programObject3D, "lightCount", ++lightCount);
};
/**
* Adds a directional light. Directional light comes from one direction and
* is stronger when hitting a surface squarely and weaker if it hits at a
* gentle angle. After hitting a surface, a directional lights scatters in
* all directions. Lights need to be included in the <b>draw()</b> to remain
* persistent in a looping program. Placing them in the <b>setup()</b> of a
* looping program will cause them to only have an effect the first time
* through the loop. The affect of the <br>r</b>, <br>g</b>, and <br>b</b>
* parameters is determined by the current color mode. The <b>nx</b>,
* <b>ny</b>, and <b>nz</b> parameters specify the direction the light is
* facing. For example, setting <b>ny</b> to -1 will cause the geometry to be
* lit from below (the light is facing directly upward).
*
* @param {int | float} r red or hue value
* @param {int | float} g green or hue value
* @param {int | float} b blue or hue value
*
* @param {int | float} nx direction along the x axis
* @param {int | float} ny direction along the y axis
* @param {int | float} nz direction along the z axis
*
* @returns none
*
* @see lights
* @see ambientLight
* @see pointLight
* @see spotLight
*/
Drawing2D.prototype.directionalLight = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.directionalLight = function(r, g, b, nx, ny, nz) {
if (lightCount === PConstants.MAX_LIGHTS) {
throw "can only create " + PConstants.MAX_LIGHTS + " lights";
}
curContext.useProgram(programObject3D);
var mvm = new PMatrix3D();
mvm.scale(1, -1, 1);
mvm.apply(modelView.array());
mvm = mvm.array();
// We need to multiply the direction by the model view matrix, but
// the mult function checks the w component of the vector, if it isn't
// present, it uses 1, so we manually multiply.
var dir = [
mvm[0] * nx + mvm[4] * ny + mvm[8] * nz,
mvm[1] * nx + mvm[5] * ny + mvm[9] * nz,
mvm[2] * nx + mvm[6] * ny + mvm[10] * nz
];
// Instead of calling p.color, we do the calculations ourselves to
// reduce property lookups.
var col = color$4(r, g, b, 0);
var normalizedCol = [ ((col & PConstants.RED_MASK) >>> 16) / 255,
((col & PConstants.GREEN_MASK) >>> 8) / 255,
(col & PConstants.BLUE_MASK) / 255 ];
uniformf("lights.color.3d." + lightCount, programObject3D, "lights" + lightCount + ".color", normalizedCol);
uniformf("lights.position.3d." + lightCount, programObject3D, "lights" + lightCount + ".position", dir);
uniformi("lights.type.3d." + lightCount, programObject3D, "lights" + lightCount + ".type", 1);
uniformi("lightCount3d", programObject3D, "lightCount", ++lightCount);
};
/**
* Sets the falloff rates for point lights, spot lights, and ambient lights.
* The parameters are used to determine the falloff with the following equation:
*
* d = distance from light position to vertex position
* falloff = 1 / (CONSTANT + d * LINEAR + (d*d) * QUADRATIC)
*
* Like <b>fill()</b>, it affects only the elements which are created after it in the
* code. The default value if <b>LightFalloff(1.0, 0.0, 0.0)</b>. Thinking about an
* ambient light with a falloff can be tricky. It is used, for example, if you
* wanted a region of your scene to be lit ambiently one color and another region
* to be lit ambiently by another color, you would use an ambient light with location
* and falloff. You can think of it as a point light that doesn't care which direction
* a surface is facing.
*
* @param {int | float} constant constant value for determining falloff
* @param {int | float} linear linear value for determining falloff
* @param {int | float} quadratic quadratic value for determining falloff
*
* @returns none
*
* @see lights
* @see ambientLight
* @see pointLight
* @see spotLight
* @see lightSpecular
*/
Drawing2D.prototype.lightFalloff = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.lightFalloff = function(constant, linear, quadratic) {
curContext.useProgram(programObject3D);
uniformf("falloff3d", programObject3D, "falloff", [constant, linear, quadratic]);
};
/**
* Sets the specular color for lights. Like <b>fill()</b>, it affects only the
* elements which are created after it in the code. Specular refers to light
* which bounces off a surface in a perferred direction (rather than bouncing
* in all directions like a diffuse light) and is used for creating highlights.
* The specular quality of a light interacts with the specular material qualities
* set through the <b>specular()</b> and <b>shininess()</b> functions.
*
* @param {int | float} r red or hue value
* @param {int | float} g green or hue value
* @param {int | float} b blue or hue value
*
* @returns none
*
* @see lights
* @see ambientLight
* @see pointLight
* @see spotLight
*/
Drawing2D.prototype.lightSpecular = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.lightSpecular = function(r, g, b) {
// Instead of calling p.color, we do the calculations ourselves to
// reduce property lookups.
var col = color$4(r, g, b, 0);
var normalizedCol = [ ((col & PConstants.RED_MASK) >>> 16) / 255,
((col & PConstants.GREEN_MASK) >>> 8) / 255,
(col & PConstants.BLUE_MASK) / 255 ];
curContext.useProgram(programObject3D);
uniformf("specular3d", programObject3D, "specular", normalizedCol);
};
/**
* Sets the default ambient light, directional light, falloff, and specular
* values. The defaults are ambientLight(128, 128, 128) and
* directionalLight(128, 128, 128, 0, 0, -1), lightFalloff(1, 0, 0), and
* lightSpecular(0, 0, 0). Lights need to be included in the draw() to remain
* persistent in a looping program. Placing them in the setup() of a looping
* program will cause them to only have an effect the first time through the
* loop.
*
* @returns none
*
* @see ambientLight
* @see directionalLight
* @see pointLight
* @see spotLight
* @see noLights
*
*/
p.lights = function() {
p.ambientLight(128, 128, 128);
p.directionalLight(128, 128, 128, 0, 0, -1);
p.lightFalloff(1, 0, 0);
p.lightSpecular(0, 0, 0);
};
/**
* Adds a point light. Lights need to be included in the <b>draw()</b> to remain
* persistent in a looping program. Placing them in the <b>setup()</b> of a
* looping program will cause them to only have an effect the first time through
* the loop. The affect of the <b>r</b>, <b>g</b>, and <b>b</b> parameters
* is determined by the current color mode. The <b>x</b>, <b>y</b>, and <b>z</b>
* parameters set the position of the light.
*
* @param {int | float} r red or hue value
* @param {int | float} g green or hue value
* @param {int | float} b blue or hue value
* @param {int | float} x x coordinate of the light
* @param {int | float} y y coordinate of the light
* @param {int | float} z z coordinate of the light
*
* @returns none
*
* @see lights
* @see directionalLight
* @see ambientLight
* @see spotLight
*/
Drawing2D.prototype.pointLight = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.pointLight = function(r, g, b, x, y, z) {
if (lightCount === PConstants.MAX_LIGHTS) {
throw "can only create " + PConstants.MAX_LIGHTS + " lights";
}
// Place the point in view space once instead of once per vertex
// in the shader.
var pos = new PVector(x, y, z);
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.mult(pos, pos);
// Instead of calling p.color, we do the calculations ourselves to
// reduce property lookups.
var col = color$4(r, g, b, 0);
var normalizedCol = [ ((col & PConstants.RED_MASK) >>> 16) / 255,
((col & PConstants.GREEN_MASK) >>> 8) / 255,
(col & PConstants.BLUE_MASK) / 255 ];
curContext.useProgram(programObject3D);
uniformf("lights.color.3d." + lightCount, programObject3D, "lights" + lightCount + ".color", normalizedCol);
uniformf("lights.position.3d." + lightCount, programObject3D, "lights" + lightCount + ".position", pos.array());
uniformi("lights.type.3d." + lightCount, programObject3D, "lights" + lightCount + ".type", 2);
uniformi("lightCount3d", programObject3D, "lightCount", ++lightCount);
};
/**
* Disable all lighting. Lighting is turned off by default and enabled with
* the lights() method. This function can be used to disable lighting so
* that 2D geometry (which does not require lighting) can be drawn after a
* set of lighted 3D geometry.
*
* @returns none
*
* @see lights
*/
Drawing2D.prototype.noLights = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.noLights = function() {
lightCount = 0;
curContext.useProgram(programObject3D);
uniformi("lightCount3d", programObject3D, "lightCount", lightCount);
};
/**
* Adds a spot light. Lights need to be included in the <b>draw()</b> to
* remain persistent in a looping program. Placing them in the <b>setup()</b>
* of a looping program will cause them to only have an effect the first time
* through the loop. The affect of the <b>r</b>, <b>g</b>, and <b>b</b> parameters
* is determined by the current color mode. The <b>x</b>, <b>y</b>, and <b>z</b>
* parameters specify the position of the light and <b>nx</b>, <b>ny</b>, <b>nz</b>
* specify the direction or light. The angle parameter affects <b>angle</b> of the
* spotlight cone.
*
* @param {int | float} r red or hue value
* @param {int | float} g green or hue value
* @param {int | float} b blue or hue value
* @param {int | float} x coordinate of the light
* @param {int | float} y coordinate of the light
* @param {int | float} z coordinate of the light
* @param {int | float} nx direction along the x axis
* @param {int | float} ny direction along the y axis
* @param {int | float} nz direction along the z axis
* @param {float} angle angle of the spotlight cone
* @param {float} concentration exponent determining the center bias of the cone
*
* @returns none
*
* @see lights
* @see directionalLight
* @see ambientLight
* @see pointLight
*/
Drawing2D.prototype.spotLight = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.spotLight = function(r, g, b, x, y, z, nx, ny, nz, angle, concentration) {
if (lightCount === PConstants.MAX_LIGHTS) {
throw "can only create " + PConstants.MAX_LIGHTS + " lights";
}
curContext.useProgram(programObject3D);
// multiply the position and direction by the model view matrix
// once per object rather than once per vertex.
var pos = new PVector(x, y, z);
var mvm = new PMatrix3D();
mvm.scale(1, -1, 1);
mvm.apply(modelView.array());
mvm.mult(pos, pos);
// Convert to array since we need to directly access the elements.
mvm = mvm.array();
// We need to multiply the direction by the model view matrix, but
// the mult function checks the w component of the vector, if it isn't
// present, it uses 1, so we use a very small value as a work around.
var dir = [
mvm[0] * nx + mvm[4] * ny + mvm[8] * nz,
mvm[1] * nx + mvm[5] * ny + mvm[9] * nz,
mvm[2] * nx + mvm[6] * ny + mvm[10] * nz
];
// Instead of calling p.color, we do the calculations ourselves to
// reduce property lookups.
var col = color$4(r, g, b, 0);
var normalizedCol = [ ((col & PConstants.RED_MASK) >>> 16) / 255,
((col & PConstants.GREEN_MASK) >>> 8) / 255,
(col & PConstants.BLUE_MASK) / 255 ];
uniformf("lights.color.3d." + lightCount, programObject3D, "lights" + lightCount + ".color", normalizedCol);
uniformf("lights.position.3d." + lightCount, programObject3D, "lights" + lightCount + ".position", pos.array());
uniformf("lights.direction.3d." + lightCount, programObject3D, "lights" + lightCount + ".direction", dir);
uniformf("lights.concentration.3d." + lightCount, programObject3D, "lights" + lightCount + ".concentration", concentration);
uniformf("lights.angle.3d." + lightCount, programObject3D, "lights" + lightCount + ".angle", angle);
uniformi("lights.type.3d." + lightCount, programObject3D, "lights" + lightCount + ".type", 3);
uniformi("lightCount3d", programObject3D, "lightCount", ++lightCount);
};
////////////////////////////////////////////////////////////////////////////
// Camera functions
////////////////////////////////////////////////////////////////////////////
/**
* The <b>beginCamera()</b> and <b>endCamera()</b> functions enable advanced customization of the camera space.
* The functions are useful if you want to more control over camera movement, however for most users, the <b>camera()</b>
* function will be sufficient.<br /><br />The camera functions will replace any transformations (such as <b>rotate()</b>
* or <b>translate()</b>) that occur before them in <b>draw()</b>, but they will not automatically replace the camera
* transform itself. For this reason, camera functions should be placed at the beginning of <b>draw()</b> (so that
* transformations happen afterwards), and the <b>camera()</b> function can be used after <b>beginCamera()</b> if
* you want to reset the camera before applying transformations.<br /><br />This function sets the matrix mode to the
* camera matrix so calls such as <b>translate()</b>, <b>rotate()</b>, applyMatrix() and resetMatrix() affect the camera.
* <b>beginCamera()</b> should always be used with a following <b>endCamera()</b> and pairs of <b>beginCamera()</b> and
* <b>endCamera()</b> cannot be nested.
*
* @see camera
* @see endCamera
* @see applyMatrix
* @see resetMatrix
* @see translate
* @see rotate
* @see scale
*/
Drawing2D.prototype.beginCamera = function() {
throw ("beginCamera() is not available in 2D mode");
};
Drawing3D.prototype.beginCamera = function() {
if (manipulatingCamera) {
throw ("You cannot call beginCamera() again before calling endCamera()");
}
manipulatingCamera = true;
modelView = cameraInv;
modelViewInv = cam;
};
/**
* The <b>beginCamera()</b> and <b>endCamera()</b> functions enable advanced customization of the camera space.
* Please see the reference for <b>beginCamera()</b> for a description of how the functions are used.
*
* @see beginCamera
*/
Drawing2D.prototype.endCamera = function() {
throw ("endCamera() is not available in 2D mode");
};
Drawing3D.prototype.endCamera = function() {
if (!manipulatingCamera) {
throw ("You cannot call endCamera() before calling beginCamera()");
}
modelView.set(cam);
modelViewInv.set(cameraInv);
manipulatingCamera = false;
};
/**
* Sets the position of the camera through setting the eye position, the center of the scene, and which axis is facing
* upward. Moving the eye position and the direction it is pointing (the center of the scene) allows the images to be
* seen from different angles. The version without any parameters sets the camera to the default position, pointing to
* the center of the display window with the Y axis as up. The default values are camera(width/2.0, height/2.0,
* (height/2.0) / tan(PI*60.0 / 360.0), width/2.0, height/2.0, 0, 0, 1, 0). This function is similar to gluLookAt()
* in OpenGL, but it first clears the current camera settings.
*
* @param {float} eyeX x-coordinate for the eye
* @param {float} eyeY y-coordinate for the eye
* @param {float} eyeZ z-coordinate for the eye
* @param {float} centerX x-coordinate for the center of the scene
* @param {float} centerY y-coordinate for the center of the scene
* @param {float} centerZ z-coordinate for the center of the scene
* @param {float} upX usually 0.0, 1.0, -1.0
* @param {float} upY usually 0.0, 1.0, -1.0
* @param {float} upZ usually 0.0, 1.0, -1.0
*
* @see beginCamera
* @see endCamera
* @see frustum
*/
p.camera = function(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
if (eyeX === undef) {
// Workaround if createGraphics is used.
cameraX = p.width / 2;
cameraY = p.height / 2;
// XXX(jeresig)
cameraZ = cameraY / p.tan(cameraFOV / 2);
eyeX = cameraX;
eyeY = cameraY;
eyeZ = cameraZ;
centerX = cameraX;
centerY = cameraY;
centerZ = 0;
upX = 0;
upY = 1;
upZ = 0;
}
var z = new PVector(eyeX - centerX, eyeY - centerY, eyeZ - centerZ);
var y = new PVector(upX, upY, upZ);
z.normalize();
var x = PVector.cross(y, z);
y = PVector.cross(z, x);
x.normalize();
y.normalize();
var xX = x.x,
xY = x.y,
xZ = x.z;
var yX = y.x,
yY = y.y,
yZ = y.z;
var zX = z.x,
zY = z.y,
zZ = z.z;
cam.set(xX, xY, xZ, 0, yX, yY, yZ, 0, zX, zY, zZ, 0, 0, 0, 0, 1);
cam.translate(-eyeX, -eyeY, -eyeZ);
cameraInv.reset();
cameraInv.invApply(xX, xY, xZ, 0, yX, yY, yZ, 0, zX, zY, zZ, 0, 0, 0, 0, 1);
cameraInv.translate(eyeX, eyeY, eyeZ);
modelView.set(cam);
modelViewInv.set(cameraInv);
};
/**
* Sets a perspective projection applying foreshortening, making distant objects appear smaller than closer ones. The
* parameters define a viewing volume with the shape of truncated pyramid. Objects near to the front of the volume appear
* their actual size, while farther objects appear smaller. This projection simulates the perspective of the world more
* accurately than orthographic projection. The version of perspective without parameters sets the default perspective and
* the version with four parameters allows the programmer to set the area precisely. The default values are:
* perspective(PI/3.0, width/height, cameraZ/10.0, cameraZ*10.0) where cameraZ is ((height/2.0) / tan(PI*60.0/360.0));
*
* @param {float} fov field-of-view angle (in radians) for vertical direction
* @param {float} aspect ratio of width to height
* @param {float} zNear z-position of nearest clipping plane
* @param {float} zFar z-positions of farthest clipping plane
*/
p.perspective = function(fov, aspect, near, far) {
if (arguments.length === 0) {
//in case canvas is resized
cameraY = curElement.height / 2;
// XXX(jeresig)
cameraZ = cameraY / p.tan(cameraFOV / 2);
cameraNear = cameraZ / 10;
cameraFar = cameraZ * 10;
cameraAspect = p.width / p.height;
fov = cameraFOV;
aspect = cameraAspect;
near = cameraNear;
far = cameraFar;
}
var yMax, yMin, xMax, xMin;
// XXX(jeresig)
yMax = near * p.tan(fov / 2);
yMin = -yMax;
xMax = yMax * aspect;
xMin = yMin * aspect;
p.frustum(xMin, xMax, yMin, yMax, near, far);
};
/**
* Sets a perspective matrix defined through the parameters. Works like glFrustum, except it wipes out the current
* perspective matrix rather than muliplying itself with it.
*
* @param {float} left left coordinate of the clipping plane
* @param {float} right right coordinate of the clipping plane
* @param {float} bottom bottom coordinate of the clipping plane
* @param {float} top top coordinate of the clipping plane
* @param {float} near near coordinate of the clipping plane
* @param {float} far far coordinate of the clipping plane
*
* @see beginCamera
* @see camera
* @see endCamera
* @see perspective
*/
Drawing2D.prototype.frustum = function() {
throw("Processing.js: frustum() is not supported in 2D mode");
};
Drawing3D.prototype.frustum = function(left, right, bottom, top, near, far) {
frustumMode = true;
projection = new PMatrix3D();
projection.set((2 * near) / (right - left), 0, (right + left) / (right - left),
0, 0, (2 * near) / (top - bottom), (top + bottom) / (top - bottom),
0, 0, 0, -(far + near) / (far - near), -(2 * far * near) / (far - near),
0, 0, -1, 0);
var proj = new PMatrix3D();
proj.set(projection);
proj.transpose();
curContext.useProgram(programObject2D);
uniformMatrix("projection2d", programObject2D, "projection", false, proj.array());
curContext.useProgram(programObject3D);
uniformMatrix("projection3d", programObject3D, "projection", false, proj.array());
curContext.useProgram(programObjectUnlitShape);
uniformMatrix("uProjectionUS", programObjectUnlitShape, "uProjection", false, proj.array());
};
/**
* Sets an orthographic projection and defines a parallel clipping volume. All objects with the same dimension appear
* the same size, regardless of whether they are near or far from the camera. The parameters to this function specify
* the clipping volume where left and right are the minimum and maximum x values, top and bottom are the minimum and
* maximum y values, and near and far are the minimum and maximum z values. If no parameters are given, the default
* is used: ortho(0, width, 0, height, -10, 10).
*
* @param {float} left left plane of the clipping volume
* @param {float} right right plane of the clipping volume
* @param {float} bottom bottom plane of the clipping volume
* @param {float} top top plane of the clipping volume
* @param {float} near maximum distance from the origin to the viewer
* @param {float} far maximum distance from the origin away from the viewer
*/
p.ortho = function(left, right, bottom, top, near, far) {
if (arguments.length === 0) {
left = 0;
right = p.width;
bottom = 0;
top = p.height;
near = -10;
far = 10;
}
var x = 2 / (right - left);
var y = 2 / (top - bottom);
var z = -2 / (far - near);
var tx = -(right + left) / (right - left);
var ty = -(top + bottom) / (top - bottom);
var tz = -(far + near) / (far - near);
projection = new PMatrix3D();
projection.set(x, 0, 0, tx, 0, y, 0, ty, 0, 0, z, tz, 0, 0, 0, 1);
var proj = new PMatrix3D();
proj.set(projection);
proj.transpose();
curContext.useProgram(programObject2D);
uniformMatrix("projection2d", programObject2D, "projection", false, proj.array());
curContext.useProgram(programObject3D);
uniformMatrix("projection3d", programObject3D, "projection", false, proj.array());
curContext.useProgram(programObjectUnlitShape);
uniformMatrix("uProjectionUS", programObjectUnlitShape, "uProjection", false, proj.array());
frustumMode = false;
};
/**
* The printProjection() prints the current projection matrix to the text window.
*/
p.printProjection = function() {
projection.print();
};
/**
* The printCamera() function prints the current camera matrix.
*/
p.printCamera = function() {
cam.print();
};
////////////////////////////////////////////////////////////////////////////
// Shapes
////////////////////////////////////////////////////////////////////////////
/**
* The box() function renders a box. A box is an extruded rectangle. A box with equal dimension on all sides is a cube.
* Calling this function with only one parameter will create a cube.
*
* @param {int|float} w dimension of the box in the x-dimension
* @param {int|float} h dimension of the box in the y-dimension
* @param {int|float} d dimension of the box in the z-dimension
*/
Drawing2D.prototype.box = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.box = function(w, h, d) {
// user can uniformly scale the box by
// passing in only one argument.
if (!h || !d) {
h = d = w;
}
// Modeling transformation
var model = new PMatrix3D();
model.scale(w, h, d);
// viewing transformation needs to have Y flipped
// becuase that's what Processing does.
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
if (doFill) {
curContext.useProgram(programObject3D);
uniformMatrix("model3d", programObject3D, "model", false, model.array());
uniformMatrix("view3d", programObject3D, "view", false, view.array());
// fix stitching problems. (lines get occluded by triangles
// since they share the same depth values). This is not entirely
// working, but it's a start for drawing the outline. So
// developers can start playing around with styles.
curContext.enable(curContext.POLYGON_OFFSET_FILL);
curContext.polygonOffset(1, 1);
uniformf("color3d", programObject3D, "color", fillStyle);
// Calculating the normal matrix can be expensive, so only
// do it if it's necessary
if(lightCount > 0){
// Create the normal transformation matrix
var v = new PMatrix3D();
v.set(view);
var m = new PMatrix3D();
m.set(model);
v.mult(m);
var normalMatrix = new PMatrix3D();
normalMatrix.set(v);
normalMatrix.invert();
normalMatrix.transpose();
uniformMatrix("normalTransform3d", programObject3D, "normalTransform", false, normalMatrix.array());
vertexAttribPointer("normal3d", programObject3D, "Normal", 3, boxNormBuffer);
}
else{
disableVertexAttribPointer("normal3d", programObject3D, "Normal");
}
vertexAttribPointer("vertex3d", programObject3D, "Vertex", 3, boxBuffer);
// Turn off per vertex colors
disableVertexAttribPointer("aColor3d", programObject3D, "aColor");
disableVertexAttribPointer("aTexture3d", programObject3D, "aTexture");
curContext.drawArrays(curContext.TRIANGLES, 0, boxVerts.length / 3);
curContext.disable(curContext.POLYGON_OFFSET_FILL);
}
if (lineWidth > 0 && doStroke) {
curContext.useProgram(programObject2D);
uniformMatrix("model2d", programObject2D, "model", false, model.array());
uniformMatrix("view2d", programObject2D, "view", false, view.array());
uniformf("color2d", programObject2D, "color", strokeStyle);
uniformi("picktype2d", programObject2D, "picktype", 0);
vertexAttribPointer("vertex2d", programObject2D, "Vertex", 3, boxOutlineBuffer);
disableVertexAttribPointer("aTextureCoord2d", programObject2D, "aTextureCoord");
curContext.drawArrays(curContext.LINES, 0, boxOutlineVerts.length / 3);
}
};
/**
* The initSphere() function is a helper function used by <b>sphereDetail()</b>
* This function creates and stores sphere vertices every time the user changes sphere detail.
*
* @see #sphereDetail
*/
var initSphere = function() {
var i;
sphereVerts = [];
for (i = 0; i < sphereDetailU; i++) {
sphereVerts.push(0);
sphereVerts.push(-1);
sphereVerts.push(0);
sphereVerts.push(sphereX[i]);
sphereVerts.push(sphereY[i]);
sphereVerts.push(sphereZ[i]);
}
sphereVerts.push(0);
sphereVerts.push(-1);
sphereVerts.push(0);
sphereVerts.push(sphereX[0]);
sphereVerts.push(sphereY[0]);
sphereVerts.push(sphereZ[0]);
var v1, v11, v2;
// middle rings
var voff = 0;
for (i = 2; i < sphereDetailV; i++) {
v1 = v11 = voff;
voff += sphereDetailU;
v2 = voff;
for (var j = 0; j < sphereDetailU; j++) {
sphereVerts.push(sphereX[v1]);
sphereVerts.push(sphereY[v1]);
sphereVerts.push(sphereZ[v1++]);
sphereVerts.push(sphereX[v2]);
sphereVerts.push(sphereY[v2]);
sphereVerts.push(sphereZ[v2++]);
}
// close each ring
v1 = v11;
v2 = voff;
sphereVerts.push(sphereX[v1]);
sphereVerts.push(sphereY[v1]);
sphereVerts.push(sphereZ[v1]);
sphereVerts.push(sphereX[v2]);
sphereVerts.push(sphereY[v2]);
sphereVerts.push(sphereZ[v2]);
}
// add the northern cap
for (i = 0; i < sphereDetailU; i++) {
v2 = voff + i;
sphereVerts.push(sphereX[v2]);
sphereVerts.push(sphereY[v2]);
sphereVerts.push(sphereZ[v2]);
sphereVerts.push(0);
sphereVerts.push(1);
sphereVerts.push(0);
}
sphereVerts.push(sphereX[voff]);
sphereVerts.push(sphereY[voff]);
sphereVerts.push(sphereZ[voff]);
sphereVerts.push(0);
sphereVerts.push(1);
sphereVerts.push(0);
//set the buffer data
curContext.bindBuffer(curContext.ARRAY_BUFFER, sphereBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(sphereVerts), curContext.STATIC_DRAW);
};
/**
* The sphereDetail() function controls the detail used to render a sphere by adjusting the number of
* vertices of the sphere mesh. The default resolution is 30, which creates
* a fairly detailed sphere definition with vertices every 360/30 = 12
* degrees. If you're going to render a great number of spheres per frame,
* it is advised to reduce the level of detail using this function.
* The setting stays active until <b>sphereDetail()</b> is called again with
* a new parameter and so should <i>not</i> be called prior to every
* <b>sphere()</b> statement, unless you wish to render spheres with
* different settings, e.g. using less detail for smaller spheres or ones
* further away from the camera. To control the detail of the horizontal
* and vertical resolution independently, use the version of the functions
* with two parameters. Calling this function with one parameter sets the number of segments
*(minimum of 3) used per full circle revolution. This is equivalent to calling the function with
* two identical values.
*
* @param {int} ures number of segments used horizontally (longitudinally) per full circle revolution
* @param {int} vres number of segments used vertically (latitudinally) from top to bottom
*
* @see #sphere()
*/
p.sphereDetail = function(ures, vres) {
var i;
if (arguments.length === 1) {
ures = vres = arguments[0];
}
if (ures < 3) {
ures = 3;
} // force a minimum res
if (vres < 2) {
vres = 2;
} // force a minimum res
// if it hasn't changed do nothing
if ((ures === sphereDetailU) && (vres === sphereDetailV)) {
return;
}
var delta = PConstants.SINCOS_LENGTH / ures;
var cx = new Float32Array(ures);
var cz = new Float32Array(ures);
// calc unit circle in XZ plane
for (i = 0; i < ures; i++) {
cx[i] = cosLUT[((i * delta) % PConstants.SINCOS_LENGTH) | 0];
cz[i] = sinLUT[((i * delta) % PConstants.SINCOS_LENGTH) | 0];
}
// computing vertexlist
// vertexlist starts at south pole
var vertCount = ures * (vres - 1) + 2;
var currVert = 0;
// re-init arrays to store vertices
sphereX = new Float32Array(vertCount);
sphereY = new Float32Array(vertCount);
sphereZ = new Float32Array(vertCount);
var angle_step = (PConstants.SINCOS_LENGTH * 0.5) / vres;
var angle = angle_step;
// step along Y axis
for (i = 1; i < vres; i++) {
var curradius = sinLUT[(angle % PConstants.SINCOS_LENGTH) | 0];
var currY = -cosLUT[(angle % PConstants.SINCOS_LENGTH) | 0];
for (var j = 0; j < ures; j++) {
sphereX[currVert] = cx[j] * curradius;
sphereY[currVert] = currY;
sphereZ[currVert++] = cz[j] * curradius;
}
angle += angle_step;
}
sphereDetailU = ures;
sphereDetailV = vres;
// make the sphere verts and norms
initSphere();
};
/**
* The sphere() function draws a sphere with radius r centered at coordinate 0, 0, 0.
* A sphere is a hollow ball made from tessellated triangles.
*
* @param {int|float} r the radius of the sphere
*/
Drawing2D.prototype.sphere = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.sphere = function() {
var sRad = arguments[0];
if ((sphereDetailU < 3) || (sphereDetailV < 2)) {
p.sphereDetail(30);
}
// Modeling transformation
var model = new PMatrix3D();
model.scale(sRad, sRad, sRad);
// viewing transformation needs to have Y flipped
// becuase that's what Processing does.
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
if (doFill) {
// Calculating the normal matrix can be expensive, so only
// do it if it's necessary
if(lightCount > 0){
// Create a normal transformation matrix
var v = new PMatrix3D();
v.set(view);
var m = new PMatrix3D();
m.set(model);
v.mult(m);
var normalMatrix = new PMatrix3D();
normalMatrix.set(v);
normalMatrix.invert();
normalMatrix.transpose();
uniformMatrix("normalTransform3d", programObject3D, "normalTransform", false, normalMatrix.array());
vertexAttribPointer("normal3d", programObject3D, "Normal", 3, sphereBuffer);
}
else{
disableVertexAttribPointer("normal3d", programObject3D, "Normal");
}
curContext.useProgram(programObject3D);
disableVertexAttribPointer("aTexture3d", programObject3D, "aTexture");
uniformMatrix("model3d", programObject3D, "model", false, model.array());
uniformMatrix("view3d", programObject3D, "view", false, view.array());
vertexAttribPointer("vertex3d", programObject3D, "Vertex", 3, sphereBuffer);
// Turn off per vertex colors
disableVertexAttribPointer("aColor3d", programObject3D, "aColor");
// fix stitching problems. (lines get occluded by triangles
// since they share the same depth values). This is not entirely
// working, but it's a start for drawing the outline. So
// developers can start playing around with styles.
curContext.enable(curContext.POLYGON_OFFSET_FILL);
curContext.polygonOffset(1, 1);
uniformf("color3d", programObject3D, "color", fillStyle);
curContext.drawArrays(curContext.TRIANGLE_STRIP, 0, sphereVerts.length / 3);
curContext.disable(curContext.POLYGON_OFFSET_FILL);
}
if (lineWidth > 0 && doStroke) {
curContext.useProgram(programObject2D);
uniformMatrix("model2d", programObject2D, "model", false, model.array());
uniformMatrix("view2d", programObject2D, "view", false, view.array());
vertexAttribPointer("vertex2d", programObject2D, "Vertex", 3, sphereBuffer);
disableVertexAttribPointer("aTextureCoord2d", programObject2D, "aTextureCoord");
uniformf("color2d", programObject2D, "color", strokeStyle);
uniformi("picktype2d", programObject2D, "picktype", 0);
curContext.drawArrays(curContext.LINE_STRIP, 0, sphereVerts.length / 3);
}
};
////////////////////////////////////////////////////////////////////////////
// Coordinates
////////////////////////////////////////////////////////////////////////////
/**
* Returns the three-dimensional X, Y, Z position in model space. This returns
* the X value for a given coordinate based on the current set of transformations
* (scale, rotate, translate, etc.) The X value can be used to place an object
* in space relative to the location of the original point once the transformations
* are no longer in use.<br />
* <br />
*
* @param {int | float} x 3D x coordinate to be mapped
* @param {int | float} y 3D y coordinate to be mapped
* @param {int | float} z 3D z coordinate to be mapped
*
* @returns {float}
*
* @see modelY
* @see modelZ
*/
p.modelX = function(x, y, z) {
var mv = modelView.array();
var ci = cameraInv.array();
var ax = mv[0] * x + mv[1] * y + mv[2] * z + mv[3];
var ay = mv[4] * x + mv[5] * y + mv[6] * z + mv[7];
var az = mv[8] * x + mv[9] * y + mv[10] * z + mv[11];
var aw = mv[12] * x + mv[13] * y + mv[14] * z + mv[15];
var ox = ci[0] * ax + ci[1] * ay + ci[2] * az + ci[3] * aw;
var ow = ci[12] * ax + ci[13] * ay + ci[14] * az + ci[15] * aw;
return (ow !== 0) ? ox / ow : ox;
};
/**
* Returns the three-dimensional X, Y, Z position in model space. This returns
* the Y value for a given coordinate based on the current set of transformations
* (scale, rotate, translate, etc.) The Y value can be used to place an object in
* space relative to the location of the original point once the transformations
* are no longer in use.<br />
* <br />
*
* @param {int | float} x 3D x coordinate to be mapped
* @param {int | float} y 3D y coordinate to be mapped
* @param {int | float} z 3D z coordinate to be mapped
*
* @returns {float}
*
* @see modelX
* @see modelZ
*/
p.modelY = function(x, y, z) {
var mv = modelView.array();
var ci = cameraInv.array();
var ax = mv[0] * x + mv[1] * y + mv[2] * z + mv[3];
var ay = mv[4] * x + mv[5] * y + mv[6] * z + mv[7];
var az = mv[8] * x + mv[9] * y + mv[10] * z + mv[11];
var aw = mv[12] * x + mv[13] * y + mv[14] * z + mv[15];
var oy = ci[4] * ax + ci[5] * ay + ci[6] * az + ci[7] * aw;
var ow = ci[12] * ax + ci[13] * ay + ci[14] * az + ci[15] * aw;
return (ow !== 0) ? oy / ow : oy;
};
/**
* Returns the three-dimensional X, Y, Z position in model space. This returns
* the Z value for a given coordinate based on the current set of transformations
* (scale, rotate, translate, etc.) The Z value can be used to place an object in
* space relative to the location of the original point once the transformations
* are no longer in use.
*
* @param {int | float} x 3D x coordinate to be mapped
* @param {int | float} y 3D y coordinate to be mapped
* @param {int | float} z 3D z coordinate to be mapped
*
* @returns {float}
*
* @see modelX
* @see modelY
*/
p.modelZ = function(x, y, z) {
var mv = modelView.array();
var ci = cameraInv.array();
var ax = mv[0] * x + mv[1] * y + mv[2] * z + mv[3];
var ay = mv[4] * x + mv[5] * y + mv[6] * z + mv[7];
var az = mv[8] * x + mv[9] * y + mv[10] * z + mv[11];
var aw = mv[12] * x + mv[13] * y + mv[14] * z + mv[15];
var oz = ci[8] * ax + ci[9] * ay + ci[10] * az + ci[11] * aw;
var ow = ci[12] * ax + ci[13] * ay + ci[14] * az + ci[15] * aw;
return (ow !== 0) ? oz / ow : oz;
};
////////////////////////////////////////////////////////////////////////////
// Material Properties
////////////////////////////////////////////////////////////////////////////
/**
* Sets the ambient reflectance for shapes drawn to the screen. This is
* combined with the ambient light component of environment. The color
* components set through the parameters define the reflectance. For example in
* the default color mode, setting v1=255, v2=126, v3=0, would cause all the
* red light to reflect and half of the green light to reflect. Used in combination
* with <b>emissive()</b>, <b>specular()</b>, and <b>shininess()</b> in setting
* the materal properties of shapes.
*
* @param {int | float} gray
*
* @returns none
*
* @see emissive
* @see specular
* @see shininess
*/
Drawing2D.prototype.ambient = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.ambient = function(v1, v2, v3) {
curContext.useProgram(programObject3D);
uniformi("usingMat3d", programObject3D, "usingMat", true);
var col = p.color(v1, v2, v3);
uniformf("mat_ambient3d", programObject3D, "mat_ambient", p.color.toGLArray(col).slice(0, 3));
};
/**
* Sets the emissive color of the material used for drawing shapes
* drawn to the screen. Used in combination with ambient(), specular(),
* and shininess() in setting the material properties of shapes.
*
* Can be called in the following ways:
*
* emissive(gray)
* @param {int | float} gray number specifying value between white and black
*
* emissive(color)
* @param {color} color any value of the color datatype
*
* emissive(v1, v2, v3)
* @param {int | float} v1 red or hue value
* @param {int | float} v2 green or saturation value
* @param {int | float} v3 blue or brightness value
*
* @returns none
*
* @see ambient
* @see specular
* @see shininess
*/
Drawing2D.prototype.emissive = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.emissive = function(v1, v2, v3) {
curContext.useProgram(programObject3D);
uniformi("usingMat3d", programObject3D, "usingMat", true);
var col = p.color(v1, v2, v3);
uniformf("mat_emissive3d", programObject3D, "mat_emissive", p.color.toGLArray(col).slice(0, 3));
};
/**
* Sets the amount of gloss in the surface of shapes. Used in combination with
* <b>ambient()</b>, <b>specular()</b>, and <b>emissive()</b> in setting the
* material properties of shapes.
*
* @param {float} shine degree of shininess
*
* @returns none
*/
Drawing2D.prototype.shininess = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.shininess = function(shine) {
curContext.useProgram(programObject3D);
uniformi("usingMat3d", programObject3D, "usingMat", true);
uniformf("shininess3d", programObject3D, "shininess", shine);
};
/**
* Sets the specular color of the materials used for shapes drawn to the screen,
* which sets the color of hightlights. Specular refers to light which bounces
* off a surface in a perferred direction (rather than bouncing in all directions
* like a diffuse light). Used in combination with emissive(), ambient(), and
* shininess() in setting the material properties of shapes.
*
* Can be called in the following ways:
*
* specular(gray)
* @param {int | float} gray number specifying value between white and black
*
* specular(gray, alpha)
* @param {int | float} gray number specifying value between white and black
* @param {int | float} alpha opacity
*
* specular(color)
* @param {color} color any value of the color datatype
*
* specular(v1, v2, v3)
* @param {int | float} v1 red or hue value
* @param {int | float} v2 green or saturation value
* @param {int | float} v3 blue or brightness value
*
* specular(v1, v2, v3, alpha)
* @param {int | float} v1 red or hue value
* @param {int | float} v2 green or saturation value
* @param {int | float} v3 blue or brightness value
* @param {int | float} alpha opacity
*
* @returns none
*
* @see ambient
* @see emissive
* @see shininess
*/
Drawing2D.prototype.specular = DrawingShared.prototype.a3DOnlyFunction;
Drawing3D.prototype.specular = function(v1, v2, v3) {
curContext.useProgram(programObject3D);
uniformi("usingMat3d", programObject3D, "usingMat", true);
var col = p.color(v1, v2, v3);
uniformf("mat_specular3d", programObject3D, "mat_specular", p.color.toGLArray(col).slice(0, 3));
};
////////////////////////////////////////////////////////////////////////////
// Coordinates
////////////////////////////////////////////////////////////////////////////
/**
* Takes a three-dimensional X, Y, Z position and returns the X value for
* where it will appear on a (two-dimensional) screen.
*
* @param {int | float} x 3D x coordinate to be mapped
* @param {int | float} y 3D y coordinate to be mapped
* @param {int | float} z 3D z optional coordinate to be mapped
*
* @returns {float}
*
* @see screenY
* @see screenZ
*/
p.screenX = function( x, y, z ) {
var mv = modelView.array();
if( mv.length === 16 )
{
var ax = mv[ 0]*x + mv[ 1]*y + mv[ 2]*z + mv[ 3];
var ay = mv[ 4]*x + mv[ 5]*y + mv[ 6]*z + mv[ 7];
var az = mv[ 8]*x + mv[ 9]*y + mv[10]*z + mv[11];
var aw = mv[12]*x + mv[13]*y + mv[14]*z + mv[15];
var pj = projection.array();
var ox = pj[ 0]*ax + pj[ 1]*ay + pj[ 2]*az + pj[ 3]*aw;
var ow = pj[12]*ax + pj[13]*ay + pj[14]*az + pj[15]*aw;
if ( ow !== 0 ){
ox /= ow;
}
return p.width * ( 1 + ox ) / 2.0;
}
// We assume that we're in 2D
return modelView.multX(x, y);
};
/**
* Takes a three-dimensional X, Y, Z position and returns the Y value for
* where it will appear on a (two-dimensional) screen.
*
* @param {int | float} x 3D x coordinate to be mapped
* @param {int | float} y 3D y coordinate to be mapped
* @param {int | float} z 3D z optional coordinate to be mapped
*
* @returns {float}
*
* @see screenX
* @see screenZ
*/
p.screenY = function screenY( x, y, z ) {
var mv = modelView.array();
if( mv.length === 16 ) {
var ax = mv[ 0]*x + mv[ 1]*y + mv[ 2]*z + mv[ 3];
var ay = mv[ 4]*x + mv[ 5]*y + mv[ 6]*z + mv[ 7];
var az = mv[ 8]*x + mv[ 9]*y + mv[10]*z + mv[11];
var aw = mv[12]*x + mv[13]*y + mv[14]*z + mv[15];
var pj = projection.array();
var oy = pj[ 4]*ax + pj[ 5]*ay + pj[ 6]*az + pj[ 7]*aw;
var ow = pj[12]*ax + pj[13]*ay + pj[14]*az + pj[15]*aw;
if ( ow !== 0 ){
oy /= ow;
}
return p.height * ( 1 + oy ) / 2.0;
}
// We assume that we're in 2D
return modelView.multY(x, y);
};
/**
* Takes a three-dimensional X, Y, Z position and returns the Z value for
* where it will appear on a (two-dimensional) screen.
*
* @param {int | float} x 3D x coordinate to be mapped
* @param {int | float} y 3D y coordinate to be mapped
* @param {int | float} z 3D z coordinate to be mapped
*
* @returns {float}
*
* @see screenX
* @see screenY
*/
p.screenZ = function screenZ( x, y, z ) {
var mv = modelView.array();
if( mv.length !== 16 ) {
return 0;
}
var pj = projection.array();
var ax = mv[ 0]*x + mv[ 1]*y + mv[ 2]*z + mv[ 3];
var ay = mv[ 4]*x + mv[ 5]*y + mv[ 6]*z + mv[ 7];
var az = mv[ 8]*x + mv[ 9]*y + mv[10]*z + mv[11];
var aw = mv[12]*x + mv[13]*y + mv[14]*z + mv[15];
var oz = pj[ 8]*ax + pj[ 9]*ay + pj[10]*az + pj[11]*aw;
var ow = pj[12]*ax + pj[13]*ay + pj[14]*az + pj[15]*aw;
if ( ow !== 0 ) {
oz /= ow;
}
return ( oz + 1 ) / 2.0;
};
////////////////////////////////////////////////////////////////////////////
// Style functions
////////////////////////////////////////////////////////////////////////////
/**
* The fill() function sets the color used to fill shapes. For example, if you run <b>fill(204, 102, 0)</b>, all subsequent shapes will be filled with orange.
* This color is either specified in terms of the RGB or HSB color depending on the current <b>colorMode()</b>
*(the default color space is RGB, with each value in the range from 0 to 255).
* <br><br>When using hexadecimal notation to specify a color, use "#" or "0x" before the values (e.g. #CCFFAA, 0xFFCCFFAA).
* The # syntax uses six digits to specify a color (the way colors are specified in HTML and CSS). When using the hexadecimal notation starting with "0x",
* the hexadecimal value must be specified with eight characters; the first two characters define the alpha component and the remainder the red, green, and blue components.
* <br><br>The value for the parameter "gray" must be less than or equal to the current maximum value as specified by <b>colorMode()</b>. The default maximum value is 255.
* <br><br>To change the color of an image (or a texture), use tint().
*
* @param {int|float} gray number specifying value between white and black
* @param {int|float} value1 red or hue value
* @param {int|float} value2 green or saturation value
* @param {int|float} value3 blue or brightness value
* @param {int|float} alpha opacity of the fill
* @param {Color} color any value of the color datatype
* @param {int} hex color value in hexadecimal notation (i.e. #FFCC00 or 0xFFFFCC00)
*
* @see #noFill()
* @see #stroke()
* @see #tint()
* @see #background()
* @see #colorMode()
*/
DrawingShared.prototype.fill = function() {
var color = p.color(arguments[0], arguments[1], arguments[2], arguments[3]);
if(color === currentFillColor && doFill) {
return;
}
doFill = true;
currentFillColor = color;
};
Drawing2D.prototype.fill = function() {
DrawingShared.prototype.fill.apply(this, arguments);
isFillDirty = true;
};
Drawing3D.prototype.fill = function() {
DrawingShared.prototype.fill.apply(this, arguments);
fillStyle = p.color.toGLArray(currentFillColor);
};
function executeContextFill() {
if(doFill) {
if(isFillDirty) {
curContext.fillStyle = p.color.toString(currentFillColor);
isFillDirty = false;
}
curContext.fill();
}
}
/**
* The noFill() function disables filling geometry. If both <b>noStroke()</b> and <b>noFill()</b>
* are called, no shapes will be drawn to the screen.
*
* @see #fill()
*
*/
p.noFill = function() {
doFill = false;
};
/**
* The stroke() function sets the color used to draw lines and borders around shapes. This color
* is either specified in terms of the RGB or HSB color depending on the
* current <b>colorMode()</b> (the default color space is RGB, with each
* value in the range from 0 to 255).
* <br><br>When using hexadecimal notation to specify a color, use "#" or
* "0x" before the values (e.g. #CCFFAA, 0xFFCCFFAA). The # syntax uses six
* digits to specify a color (the way colors are specified in HTML and CSS).
* When using the hexadecimal notation starting with "0x", the hexadecimal
* value must be specified with eight characters; the first two characters
* define the alpha component and the remainder the red, green, and blue
* components.
* <br><br>The value for the parameter "gray" must be less than or equal
* to the current maximum value as specified by <b>colorMode()</b>.
* The default maximum value is 255.
*
* @param {int|float} gray number specifying value between white and black
* @param {int|float} value1 red or hue value
* @param {int|float} value2 green or saturation value
* @param {int|float} value3 blue or brightness value
* @param {int|float} alpha opacity of the stroke
* @param {Color} color any value of the color datatype
* @param {int} hex color value in hexadecimal notation (i.e. #FFCC00 or 0xFFFFCC00)
*
* @see #fill()
* @see #noStroke()
* @see #tint()
* @see #background()
* @see #colorMode()
*/
DrawingShared.prototype.stroke = function() {
var color = p.color(arguments[0], arguments[1], arguments[2], arguments[3]);
if(color === currentStrokeColor && doStroke) {
return;
}
doStroke = true;
currentStrokeColor = color;
};
Drawing2D.prototype.stroke = function() {
DrawingShared.prototype.stroke.apply(this, arguments);
isStrokeDirty = true;
};
Drawing3D.prototype.stroke = function() {
DrawingShared.prototype.stroke.apply(this, arguments);
strokeStyle = p.color.toGLArray(currentStrokeColor);
};
function executeContextStroke() {
if(doStroke) {
if(isStrokeDirty) {
curContext.strokeStyle = p.color.toString(currentStrokeColor);
isStrokeDirty = false;
}
curContext.stroke();
}
}
/**
* The noStroke() function disables drawing the stroke (outline). If both <b>noStroke()</b> and
* <b>noFill()</b> are called, no shapes will be drawn to the screen.
*
* @see #stroke()
*/
p.noStroke = function() {
doStroke = false;
};
/**
* The strokeWeight() function sets the width of the stroke used for lines, points, and the border around shapes.
* All widths are set in units of pixels.
*
* @param {int|float} w the weight (in pixels) of the stroke
*/
DrawingShared.prototype.strokeWeight = function(w) {
lineWidth = w;
};
Drawing2D.prototype.strokeWeight = function(w) {
DrawingShared.prototype.strokeWeight.apply(this, arguments);
curContext.lineWidth = w;
};
Drawing3D.prototype.strokeWeight = function(w) {
DrawingShared.prototype.strokeWeight.apply(this, arguments);
// Processing groups the weight of points and lines under this one function,
// but for WebGL, we need to set a uniform for points and call a function for line.
curContext.useProgram(programObject2D);
uniformf("pointSize2d", programObject2D, "pointSize", w);
curContext.useProgram(programObjectUnlitShape);
uniformf("pointSizeUnlitShape", programObjectUnlitShape, "pointSize", w);
curContext.lineWidth(w);
};
/**
* The strokeCap() function sets the style for rendering line endings. These ends are either squared, extended, or rounded and
* specified with the corresponding parameters SQUARE, PROJECT, and ROUND. The default cap is ROUND.
* This function is not available with the P2D, P3D, or OPENGL renderers
*
* @param {int} value Either SQUARE, PROJECT, or ROUND
*/
p.strokeCap = function(value) {
drawing.$ensureContext().lineCap = value;
};
/**
* The strokeJoin() function sets the style of the joints which connect line segments.
* These joints are either mitered, beveled, or rounded and specified with the corresponding parameters MITER, BEVEL, and ROUND. The default joint is MITER.
* This function is not available with the P2D, P3D, or OPENGL renderers
*
* @param {int} value Either SQUARE, PROJECT, or ROUND
*/
p.strokeJoin = function(value) {
drawing.$ensureContext().lineJoin = value;
};
/**
* The smooth() function draws all geometry with smooth (anti-aliased) edges. This will slow down the frame rate of the application,
* but will enhance the visual refinement. <br/><br/>
* Note that smooth() will also improve image quality of resized images, and noSmooth() will disable image (and font) smoothing altogether.
*
* @see #noSmooth()
* @see #hint()
* @see #size()
*/
Drawing2D.prototype.smooth = function() {
renderSmooth = true;
var style = curElement.style;
style.setProperty("image-rendering", "optimizeQuality", "important");
style.setProperty("-ms-interpolation-mode", "bicubic", "important");
if (curContext.hasOwnProperty("mozImageSmoothingEnabled")) {
curContext.mozImageSmoothingEnabled = true;
}
};
Drawing3D.prototype.smooth = nop;
/**
* The noSmooth() function draws all geometry with jagged (aliased) edges.
*
* @see #smooth()
*/
Drawing2D.prototype.noSmooth = function() {
renderSmooth = false;
var style = curElement.style;
style.setProperty("image-rendering", "optimizeSpeed", "important");
style.setProperty("image-rendering", "-moz-crisp-edges", "important");
style.setProperty("image-rendering", "-webkit-optimize-contrast", "important");
style.setProperty("image-rendering", "optimize-contrast", "important");
style.setProperty("-ms-interpolation-mode", "nearest-neighbor", "important");
if (curContext.hasOwnProperty("mozImageSmoothingEnabled")) {
curContext.mozImageSmoothingEnabled = false;
}
};
Drawing3D.prototype.noSmooth = nop;
////////////////////////////////////////////////////////////////////////////
// Vector drawing functions
////////////////////////////////////////////////////////////////////////////
/**
* The point() function draws a point, a coordinate in space at the dimension of one pixel.
* The first parameter is the horizontal value for the point, the second
* value is the vertical value for the point, and the optional third value
* is the depth value. Drawing this shape in 3D using the <b>z</b>
* parameter requires the P3D or OPENGL parameter in combination with
* size as shown in the above example.
*
* @param {int|float} x x-coordinate of the point
* @param {int|float} y y-coordinate of the point
* @param {int|float} z z-coordinate of the point
*
* @see #beginShape()
*/
Drawing2D.prototype.point = function(x, y) {
if (!doStroke) {
return;
}
if (!renderSmooth) {
x = Math.round(x);
y = Math.round(y);
}
curContext.fillStyle = p.color.toString(currentStrokeColor);
isFillDirty = true;
// Draw a circle for any point larger than 1px
if (lineWidth > 1) {
curContext.beginPath();
curContext.arc(x, y, lineWidth / 2, 0, PConstants.TWO_PI, false);
curContext.fill();
} else {
curContext.fillRect(x, y, 1, 1);
}
};
Drawing3D.prototype.point = function(x, y, z) {
var model = new PMatrix3D();
// move point to position
model.translate(x, y, z || 0);
model.transpose();
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
curContext.useProgram(programObject2D);
uniformMatrix("model2d", programObject2D, "model", false, model.array());
uniformMatrix("view2d", programObject2D, "view", false, view.array());
if (lineWidth > 0 && doStroke) {
// this will be replaced with the new bit shifting color code
uniformf("color2d", programObject2D, "color", strokeStyle);
uniformi("picktype2d", programObject2D, "picktype", 0);
vertexAttribPointer("vertex2d", programObject2D, "Vertex", 3, pointBuffer);
disableVertexAttribPointer("aTextureCoord2d", programObject2D, "aTextureCoord");
curContext.drawArrays(curContext.POINTS, 0, 1);
}
};
/**
* Using the <b>beginShape()</b> and <b>endShape()</b> functions allow creating more complex forms.
* <b>beginShape()</b> begins recording vertices for a shape and <b>endShape()</b> stops recording.
* The value of the <b>MODE</b> parameter tells it which types of shapes to create from the provided vertices.
* With no mode specified, the shape can be any irregular polygon. After calling the <b>beginShape()</b> function,
* a series of <b>vertex()</b> commands must follow. To stop drawing the shape, call <b>endShape()</b>.
* The <b>vertex()</b> function with two parameters specifies a position in 2D and the <b>vertex()</b>
* function with three parameters specifies a position in 3D. Each shape will be outlined with the current
* stroke color and filled with the fill color.
*
* @param {int} MODE either POINTS, LINES, TRIANGLES, TRIANGLE_FAN, TRIANGLE_STRIP, QUADS, and QUAD_STRIP.
*
* @see endShape
* @see vertex
* @see curveVertex
* @see bezierVertex
*/
p.beginShape = function(type) {
curShape = type;
curvePoints = [];
vertArray = [];
};
/**
* All shapes are constructed by connecting a series of vertices. <b>vertex()</b> is used to specify the vertex
* coordinates for points, lines, triangles, quads, and polygons and is used exclusively within the <b>beginShape()</b>
* and <b>endShape()</b> function. <br /><br />Drawing a vertex in 3D using the <b>z</b> parameter requires the P3D or
* OPENGL parameter in combination with size as shown in the above example.<br /><br />This function is also used to map a
* texture onto the geometry. The <b>texture()</b> function declares the texture to apply to the geometry and the <b>u</b>
* and <b>v</b> coordinates set define the mapping of this texture to the form. By default, the coordinates used for
* <b>u</b> and <b>v</b> are specified in relation to the image's size in pixels, but this relation can be changed with
* <b>textureMode()</b>.
*
* @param {int | float} x x-coordinate of the vertex
* @param {int | float} y y-coordinate of the vertex
* @param {int | float} z z-coordinate of the vertex
* @param {int | float} u horizontal coordinate for the texture mapping
* @param {int | float} v vertical coordinate for the texture mapping
*
* @see beginShape
* @see endShape
* @see bezierVertex
* @see curveVertex
* @see texture
*/
Drawing2D.prototype.vertex = function(x, y, u, v) {
var vert = [];
if (firstVert) { firstVert = false; }
vert["isVert"] = true;
vert[0] = x;
vert[1] = y;
vert[2] = 0;
vert[3] = u;
vert[4] = v;
// fill and stroke color
vert[5] = currentFillColor;
vert[6] = currentStrokeColor;
vertArray.push(vert);
};
Drawing3D.prototype.vertex = function(x, y, z, u, v) {
var vert = [];
if (firstVert) { firstVert = false; }
vert["isVert"] = true;
if (v === undef && usingTexture) {
v = u;
u = z;
z = 0;
}
// Convert u and v to normalized coordinates
if (u !== undef && v !== undef) {
if (curTextureMode === PConstants.IMAGE) {
u /= curTexture.width;
v /= curTexture.height;
}
u = u > 1 ? 1 : u;
u = u < 0 ? 0 : u;
v = v > 1 ? 1 : v;
v = v < 0 ? 0 : v;
}
vert[0] = x;
vert[1] = y;
vert[2] = z || 0;
vert[3] = u || 0;
vert[4] = v || 0;
// fill rgba
vert[5] = fillStyle[0];
vert[6] = fillStyle[1];
vert[7] = fillStyle[2];
vert[8] = fillStyle[3];
// stroke rgba
vert[9] = strokeStyle[0];
vert[10] = strokeStyle[1];
vert[11] = strokeStyle[2];
vert[12] = strokeStyle[3];
//normals
vert[13] = normalX;
vert[14] = normalY;
vert[15] = normalZ;
vertArray.push(vert);
};
/**
* @private
* Renders 3D points created from calls to vertex and beginShape/endShape
*
* @param {Array} vArray an array of vertex coordinate
* @param {Array} cArray an array of colours used for the vertices
*
* @see beginShape
* @see endShape
* @see vertex
*/
var point3D = function(vArray, cArray){
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
curContext.useProgram(programObjectUnlitShape);
uniformMatrix("uViewUS", programObjectUnlitShape, "uView", false, view.array());
vertexAttribPointer("aVertexUS", programObjectUnlitShape, "aVertex", 3, pointBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(vArray), curContext.STREAM_DRAW);
vertexAttribPointer("aColorUS", programObjectUnlitShape, "aColor", 4, fillColorBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(cArray), curContext.STREAM_DRAW);
curContext.drawArrays(curContext.POINTS, 0, vArray.length/3);
};
/**
* @private
* Renders 3D lines created from calls to beginShape/vertex/endShape - based on the mode specified LINES, LINE_LOOP, etc.
*
* @param {Array} vArray an array of vertex coordinate
* @param {String} mode either LINES, LINE_LOOP, or LINE_STRIP
* @param {Array} cArray an array of colours used for the vertices
*
* @see beginShape
* @see endShape
* @see vertex
*/
var line3D = function(vArray, mode, cArray){
var ctxMode;
if (mode === "LINES"){
ctxMode = curContext.LINES;
}
else if(mode === "LINE_LOOP"){
ctxMode = curContext.LINE_LOOP;
}
else{
ctxMode = curContext.LINE_STRIP;
}
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
curContext.useProgram(programObjectUnlitShape);
uniformMatrix("uViewUS", programObjectUnlitShape, "uView", false, view.array());
vertexAttribPointer("aVertexUS", programObjectUnlitShape, "aVertex", 3, lineBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(vArray), curContext.STREAM_DRAW);
vertexAttribPointer("aColorUS", programObjectUnlitShape, "aColor", 4, strokeColorBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(cArray), curContext.STREAM_DRAW);
curContext.drawArrays(ctxMode, 0, vArray.length/3);
};
/**
* @private
* Render filled shapes created from calls to beginShape/vertex/endShape - based on the mode specified TRIANGLES, etc.
*
* @param {Array} vArray an array of vertex coordinate
* @param {String} mode either LINES, LINE_LOOP, or LINE_STRIP
* @param {Array} cArray an array of colours used for the vertices
* @param {Array} tArray an array of u,v coordinates for textures
*
* @see beginShape
* @see endShape
* @see vertex
*/
var fill3D = function(vArray, mode, cArray, tArray){
var ctxMode;
if (mode === "TRIANGLES") {
ctxMode = curContext.TRIANGLES;
} else if(mode === "TRIANGLE_FAN") {
ctxMode = curContext.TRIANGLE_FAN;
} else {
ctxMode = curContext.TRIANGLE_STRIP;
}
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
curContext.useProgram( programObject3D );
uniformMatrix("model3d", programObject3D, "model", false, [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1] );
uniformMatrix("view3d", programObject3D, "view", false, view.array() );
curContext.enable( curContext.POLYGON_OFFSET_FILL );
curContext.polygonOffset( 1, 1 );
uniformf("color3d", programObject3D, "color", [-1,0,0,0]);
vertexAttribPointer("vertex3d", programObject3D, "Vertex", 3, fillBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(vArray), curContext.STREAM_DRAW);
// if we are using a texture and a tint, then overwrite the
// contents of the color buffer with the current tint
if (usingTexture && curTint !== null){
curTint3d(cArray);
}
vertexAttribPointer("aColor3d", programObject3D, "aColor", 4, fillColorBuffer);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(cArray), curContext.STREAM_DRAW);
// No support for lights....yet
disableVertexAttribPointer("normal3d", programObject3D, "Normal");
if (usingTexture) {
uniformi("usingTexture3d", programObject3D, "usingTexture", usingTexture);
vertexAttribPointer("aTexture3d", programObject3D, "aTexture", 2, shapeTexVBO);
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(tArray), curContext.STREAM_DRAW);
}
curContext.drawArrays( ctxMode, 0, vArray.length/3 );
curContext.disable( curContext.POLYGON_OFFSET_FILL );
};
/**
* this series of three operations is used a lot in Drawing2D.prototype.endShape
* and has been split off as its own function, to tighten the code and allow for
* fewer bugs.
*/
function fillStrokeClose() {
executeContextFill();
executeContextStroke();
curContext.closePath();
}
/**
* The endShape() function is the companion to beginShape() and may only be called after beginShape().
* When endshape() is called, all of image data defined since the previous call to beginShape() is written
* into the image buffer.
*
* @param {int} MODE Use CLOSE to close the shape
*
* @see beginShape
*/
Drawing2D.prototype.endShape = function(mode) {
// Duplicated in Drawing3D; too many variables used
if (vertArray.length === 0) { return; }
var closeShape = mode === PConstants.CLOSE;
// if the shape is closed, the first element is also the last element
if (closeShape) {
vertArray.push(vertArray[0]);
}
var lineVertArray = [];
var fillVertArray = [];
var colorVertArray = [];
var strokeVertArray = [];
var texVertArray = [];
var cachedVertArray;
firstVert = true;
var i, j, k;
var vertArrayLength = vertArray.length;
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
fillVertArray.push(cachedVertArray[j]);
}
}
// 5,6,7,8
// R,G,B,A - fill colour
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 5; j < 9; j++) {
colorVertArray.push(cachedVertArray[j]);
}
}
// 9,10,11,12
// R, G, B, A - stroke colour
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 9; j < 13; j++) {
strokeVertArray.push(cachedVertArray[j]);
}
}
// texture u,v
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
texVertArray.push(cachedVertArray[3]);
texVertArray.push(cachedVertArray[4]);
}
// curveVertex
if ( isCurve && (curShape === PConstants.POLYGON || curShape === undef) ) {
if (vertArrayLength > 3) {
var b = [],
s = 1 - curTightness;
curContext.beginPath();
curContext.moveTo(vertArray[1][0], vertArray[1][1]);
/*
* Matrix to convert from Catmull-Rom to cubic Bezier
* where t = curTightness
* |0 1 0 0 |
* |(t-1)/6 1 (1-t)/6 0 |
* |0 (1-t)/6 1 (t-1)/6 |
* |0 0 0 0 |
*/
for (i = 1; (i+2) < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
b[0] = [cachedVertArray[0], cachedVertArray[1]];
b[1] = [cachedVertArray[0] + (s * vertArray[i+1][0] - s * vertArray[i-1][0]) / 6,
cachedVertArray[1] + (s * vertArray[i+1][1] - s * vertArray[i-1][1]) / 6];
b[2] = [vertArray[i+1][0] + (s * vertArray[i][0] - s * vertArray[i+2][0]) / 6,
vertArray[i+1][1] + (s * vertArray[i][1] - s * vertArray[i+2][1]) / 6];
b[3] = [vertArray[i+1][0], vertArray[i+1][1]];
curContext.bezierCurveTo(b[1][0], b[1][1], b[2][0], b[2][1], b[3][0], b[3][1]);
}
fillStrokeClose();
}
}
// bezierVertex
else if ( isBezier && (curShape === PConstants.POLYGON || curShape === undef) ) {
curContext.beginPath();
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
if (vertArray[i]["isVert"]) { //if it is a vertex move to the position
if (vertArray[i]["moveTo"]) {
curContext.moveTo(cachedVertArray[0], cachedVertArray[1]);
} else {
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
}
} else { //otherwise continue drawing bezier
curContext.bezierCurveTo(vertArray[i][0], vertArray[i][1], vertArray[i][2], vertArray[i][3], vertArray[i][4], vertArray[i][5]);
}
}
fillStrokeClose();
}
// render the vertices provided
else {
if (curShape === PConstants.POINTS) {
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
if (doStroke) {
p.stroke(cachedVertArray[6]);
}
p.point(cachedVertArray[0], cachedVertArray[1]);
}
} else if (curShape === PConstants.LINES) {
for (i = 0; (i + 1) < vertArrayLength; i+=2) {
cachedVertArray = vertArray[i];
if (doStroke) {
p.stroke(vertArray[i+1][6]);
}
p.line(cachedVertArray[0], cachedVertArray[1], vertArray[i+1][0], vertArray[i+1][1]);
}
} else if (curShape === PConstants.TRIANGLES) {
for (i = 0; (i + 2) < vertArrayLength; i+=3) {
cachedVertArray = vertArray[i];
curContext.beginPath();
curContext.moveTo(cachedVertArray[0], cachedVertArray[1]);
curContext.lineTo(vertArray[i+1][0], vertArray[i+1][1]);
curContext.lineTo(vertArray[i+2][0], vertArray[i+2][1]);
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
if (doFill) {
p.fill(vertArray[i+2][5]);
executeContextFill();
}
if (doStroke) {
p.stroke(vertArray[i+2][6]);
executeContextStroke();
}
curContext.closePath();
}
} else if (curShape === PConstants.TRIANGLE_STRIP) {
for (i = 0; (i+1) < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
curContext.beginPath();
curContext.moveTo(vertArray[i+1][0], vertArray[i+1][1]);
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
if (doStroke) {
p.stroke(vertArray[i+1][6]);
}
if (doFill) {
p.fill(vertArray[i+1][5]);
}
if (i + 2 < vertArrayLength) {
curContext.lineTo(vertArray[i+2][0], vertArray[i+2][1]);
if (doStroke) {
p.stroke(vertArray[i+2][6]);
}
if (doFill) {
p.fill(vertArray[i+2][5]);
}
}
fillStrokeClose();
}
} else if (curShape === PConstants.TRIANGLE_FAN) {
if (vertArrayLength > 2) {
curContext.beginPath();
curContext.moveTo(vertArray[0][0], vertArray[0][1]);
curContext.lineTo(vertArray[1][0], vertArray[1][1]);
curContext.lineTo(vertArray[2][0], vertArray[2][1]);
if (doFill) {
p.fill(vertArray[2][5]);
executeContextFill();
}
if (doStroke) {
p.stroke(vertArray[2][6]);
executeContextStroke();
}
curContext.closePath();
for (i = 3; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
curContext.beginPath();
curContext.moveTo(vertArray[0][0], vertArray[0][1]);
curContext.lineTo(vertArray[i-1][0], vertArray[i-1][1]);
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
if (doFill) {
p.fill(cachedVertArray[5]);
executeContextFill();
}
if (doStroke) {
p.stroke(cachedVertArray[6]);
executeContextStroke();
}
curContext.closePath();
}
}
} else if (curShape === PConstants.QUADS) {
for (i = 0; (i + 3) < vertArrayLength; i+=4) {
cachedVertArray = vertArray[i];
curContext.beginPath();
curContext.moveTo(cachedVertArray[0], cachedVertArray[1]);
for (j = 1; j < 4; j++) {
curContext.lineTo(vertArray[i+j][0], vertArray[i+j][1]);
}
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
if (doFill) {
p.fill(vertArray[i+3][5]);
executeContextFill();
}
if (doStroke) {
p.stroke(vertArray[i+3][6]);
executeContextStroke();
}
curContext.closePath();
}
} else if (curShape === PConstants.QUAD_STRIP) {
if (vertArrayLength > 3) {
for (i = 0; (i+1) < vertArrayLength; i+=2) {
cachedVertArray = vertArray[i];
curContext.beginPath();
if (i+3 < vertArrayLength) {
curContext.moveTo(vertArray[i+2][0], vertArray[i+2][1]);
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
curContext.lineTo(vertArray[i+1][0], vertArray[i+1][1]);
curContext.lineTo(vertArray[i+3][0], vertArray[i+3][1]);
if (doFill) {
p.fill(vertArray[i+3][5]);
}
if (doStroke) {
p.stroke(vertArray[i+3][6]);
}
} else {
curContext.moveTo(cachedVertArray[0], cachedVertArray[1]);
curContext.lineTo(vertArray[i+1][0], vertArray[i+1][1]);
}
fillStrokeClose();
}
}
} else {
curContext.beginPath();
curContext.moveTo(vertArray[0][0], vertArray[0][1]);
for (i = 1; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
if (cachedVertArray["isVert"]) { //if it is a vertex move to the position
if (cachedVertArray["moveTo"]) {
curContext.moveTo(cachedVertArray[0], cachedVertArray[1]);
} else {
curContext.lineTo(cachedVertArray[0], cachedVertArray[1]);
}
}
}
fillStrokeClose();
}
}
// Reset some settings
isCurve = false;
isBezier = false;
curveVertArray = [];
curveVertCount = 0;
// If the shape is closed, the first element was added as last element.
// We must remove it again to prevent the list of vertices from growing
// over successive calls to endShape(CLOSE)
if (closeShape) {
vertArray.pop();
}
};
Drawing3D.prototype.endShape = function(mode) {
// Duplicated in Drawing3D; too many variables used
if (vertArray.length === 0) { return; }
var closeShape = mode === PConstants.CLOSE;
var lineVertArray = [];
var fillVertArray = [];
var colorVertArray = [];
var strokeVertArray = [];
var texVertArray = [];
var cachedVertArray;
firstVert = true;
var i, j, k;
var vertArrayLength = vertArray.length;
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
fillVertArray.push(cachedVertArray[j]);
}
}
// 5,6,7,8
// R,G,B,A - fill colour
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 5; j < 9; j++) {
colorVertArray.push(cachedVertArray[j]);
}
}
// 9,10,11,12
// R, G, B, A - stroke colour
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 9; j < 13; j++) {
strokeVertArray.push(cachedVertArray[j]);
}
}
// texture u,v
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
texVertArray.push(cachedVertArray[3]);
texVertArray.push(cachedVertArray[4]);
}
// if shape is closed, push the first point into the last point (including colours)
if (closeShape) {
fillVertArray.push(vertArray[0][0]);
fillVertArray.push(vertArray[0][1]);
fillVertArray.push(vertArray[0][2]);
for (i = 5; i < 9; i++) {
colorVertArray.push(vertArray[0][i]);
}
for (i = 9; i < 13; i++) {
strokeVertArray.push(vertArray[0][i]);
}
texVertArray.push(vertArray[0][3]);
texVertArray.push(vertArray[0][4]);
}
// End duplication
// curveVertex
if ( isCurve && (curShape === PConstants.POLYGON || curShape === undef) ) {
lineVertArray = fillVertArray;
if (doStroke) {
line3D(lineVertArray, null, strokeVertArray);
}
if (doFill) {
fill3D(fillVertArray, null, colorVertArray);
}
}
// bezierVertex
else if ( isBezier && (curShape === PConstants.POLYGON || curShape === undef) ) {
lineVertArray = fillVertArray;
lineVertArray.splice(lineVertArray.length - 3);
strokeVertArray.splice(strokeVertArray.length - 4);
if (doStroke) {
line3D(lineVertArray, null, strokeVertArray);
}
if (doFill) {
fill3D(fillVertArray, "TRIANGLES", colorVertArray);
}
}
// render the vertices provided
else {
if (curShape === PConstants.POINTS) { // if POINTS was the specified parameter in beginShape
for (i = 0; i < vertArrayLength; i++) { // loop through and push the point location information to the array
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
lineVertArray.push(cachedVertArray[j]);
}
}
point3D(lineVertArray, strokeVertArray); // render function for points
} else if (curShape === PConstants.LINES) { // if LINES was the specified parameter in beginShape
for (i = 0; i < vertArrayLength; i++) { // loop through and push the point location information to the array
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
lineVertArray.push(cachedVertArray[j]);
}
}
for (i = 0; i < vertArrayLength; i++) { // loop through and push the color information to the array
cachedVertArray = vertArray[i];
for (j = 5; j < 9; j++) {
colorVertArray.push(cachedVertArray[j]);
}
}
line3D(lineVertArray, "LINES", strokeVertArray); // render function for lines
} else if (curShape === PConstants.TRIANGLES) { // if TRIANGLES was the specified parameter in beginShape
if (vertArrayLength > 2) {
for (i = 0; (i+2) < vertArrayLength; i+=3) { // loop through the array per triangle
fillVertArray = [];
texVertArray = [];
lineVertArray = [];
colorVertArray = [];
strokeVertArray = [];
for (j = 0; j < 3; j++) {
for (k = 0; k < 3; k++) { // loop through and push
lineVertArray.push(vertArray[i+j][k]); // the line point location information
fillVertArray.push(vertArray[i+j][k]); // and fill point location information
}
}
for (j = 0; j < 3; j++) { // loop through and push the texture information
for (k = 3; k < 5; k++) {
texVertArray.push(vertArray[i+j][k]);
}
}
for (j = 0; j < 3; j++) {
for (k = 5; k < 9; k++) { // loop through and push
colorVertArray.push(vertArray[i+j][k]); // the colour information
strokeVertArray.push(vertArray[i+j][k+4]);// and the stroke information
}
}
if (doStroke) {
line3D(lineVertArray, "LINE_LOOP", strokeVertArray ); // line render function
}
if (doFill || usingTexture) {
fill3D(fillVertArray, "TRIANGLES", colorVertArray, texVertArray); // fill shape render function
}
}
}
} else if (curShape === PConstants.TRIANGLE_STRIP) { // if TRIANGLE_STRIP was the specified parameter in beginShape
if (vertArrayLength > 2) {
for (i = 0; (i+2) < vertArrayLength; i++) {
lineVertArray = [];
fillVertArray = [];
strokeVertArray = [];
colorVertArray = [];
texVertArray = [];
for (j = 0; j < 3; j++) {
for (k = 0; k < 3; k++) {
lineVertArray.push(vertArray[i+j][k]);
fillVertArray.push(vertArray[i+j][k]);
}
}
for (j = 0; j < 3; j++) {
for (k = 3; k < 5; k++) {
texVertArray.push(vertArray[i+j][k]);
}
}
for (j = 0; j < 3; j++) {
for (k = 5; k < 9; k++) {
strokeVertArray.push(vertArray[i+j][k+4]);
colorVertArray.push(vertArray[i+j][k]);
}
}
if (doFill || usingTexture) {
fill3D(fillVertArray, "TRIANGLE_STRIP", colorVertArray, texVertArray);
}
if (doStroke) {
line3D(lineVertArray, "LINE_LOOP", strokeVertArray);
}
}
}
} else if (curShape === PConstants.TRIANGLE_FAN) {
if (vertArrayLength > 2) {
for (i = 0; i < 3; i++) {
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
lineVertArray.push(cachedVertArray[j]);
}
}
for (i = 0; i < 3; i++) {
cachedVertArray = vertArray[i];
for (j = 9; j < 13; j++) {
strokeVertArray.push(cachedVertArray[j]);
}
}
if (doStroke) {
line3D(lineVertArray, "LINE_LOOP", strokeVertArray);
}
for (i = 2; (i+1) < vertArrayLength; i++) {
lineVertArray = [];
strokeVertArray = [];
lineVertArray.push(vertArray[0][0]);
lineVertArray.push(vertArray[0][1]);
lineVertArray.push(vertArray[0][2]);
strokeVertArray.push(vertArray[0][9]);
strokeVertArray.push(vertArray[0][10]);
strokeVertArray.push(vertArray[0][11]);
strokeVertArray.push(vertArray[0][12]);
for (j = 0; j < 2; j++) {
for (k = 0; k < 3; k++) {
lineVertArray.push(vertArray[i+j][k]);
}
}
for (j = 0; j < 2; j++) {
for (k = 9; k < 13; k++) {
strokeVertArray.push(vertArray[i+j][k]);
}
}
if (doStroke) {
line3D(lineVertArray, "LINE_STRIP",strokeVertArray);
}
}
if (doFill || usingTexture) {
fill3D(fillVertArray, "TRIANGLE_FAN", colorVertArray, texVertArray);
}
}
} else if (curShape === PConstants.QUADS) {
for (i = 0; (i + 3) < vertArrayLength; i+=4) {
lineVertArray = [];
for (j = 0; j < 4; j++) {
cachedVertArray = vertArray[i+j];
for (k = 0; k < 3; k++) {
lineVertArray.push(cachedVertArray[k]);
}
}
if (doStroke) {
line3D(lineVertArray, "LINE_LOOP",strokeVertArray);
}
if (doFill) {
fillVertArray = [];
colorVertArray = [];
texVertArray = [];
for (j = 0; j < 3; j++) {
fillVertArray.push(vertArray[i][j]);
}
for (j = 5; j < 9; j++) {
colorVertArray.push(vertArray[i][j]);
}
for (j = 0; j < 3; j++) {
fillVertArray.push(vertArray[i+1][j]);
}
for (j = 5; j < 9; j++) {
colorVertArray.push(vertArray[i+1][j]);
}
for (j = 0; j < 3; j++) {
fillVertArray.push(vertArray[i+3][j]);
}
for (j = 5; j < 9; j++) {
colorVertArray.push(vertArray[i+3][j]);
}
for (j = 0; j < 3; j++) {
fillVertArray.push(vertArray[i+2][j]);
}
for (j = 5; j < 9; j++) {
colorVertArray.push(vertArray[i+2][j]);
}
if (usingTexture) {
texVertArray.push(vertArray[i+0][3]);
texVertArray.push(vertArray[i+0][4]);
texVertArray.push(vertArray[i+1][3]);
texVertArray.push(vertArray[i+1][4]);
texVertArray.push(vertArray[i+3][3]);
texVertArray.push(vertArray[i+3][4]);
texVertArray.push(vertArray[i+2][3]);
texVertArray.push(vertArray[i+2][4]);
}
fill3D(fillVertArray, "TRIANGLE_STRIP", colorVertArray, texVertArray);
}
}
} else if (curShape === PConstants.QUAD_STRIP) {
var tempArray = [];
if (vertArrayLength > 3) {
for (i = 0; i < 2; i++) {
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
lineVertArray.push(cachedVertArray[j]);
}
}
for (i = 0; i < 2; i++) {
cachedVertArray = vertArray[i];
for (j = 9; j < 13; j++) {
strokeVertArray.push(cachedVertArray[j]);
}
}
line3D(lineVertArray, "LINE_STRIP", strokeVertArray);
if (vertArrayLength > 4 && vertArrayLength % 2 > 0) {
tempArray = fillVertArray.splice(fillVertArray.length - 3);
vertArray.pop();
}
for (i = 0; (i+3) < vertArrayLength; i+=2) {
lineVertArray = [];
strokeVertArray = [];
for (j = 0; j < 3; j++) {
lineVertArray.push(vertArray[i+1][j]);
}
for (j = 0; j < 3; j++) {
lineVertArray.push(vertArray[i+3][j]);
}
for (j = 0; j < 3; j++) {
lineVertArray.push(vertArray[i+2][j]);
}
for (j = 0; j < 3; j++) {
lineVertArray.push(vertArray[i+0][j]);
}
for (j = 9; j < 13; j++) {
strokeVertArray.push(vertArray[i+1][j]);
}
for (j = 9; j < 13; j++) {
strokeVertArray.push(vertArray[i+3][j]);
}
for (j = 9; j < 13; j++) {
strokeVertArray.push(vertArray[i+2][j]);
}
for (j = 9; j < 13; j++) {
strokeVertArray.push(vertArray[i+0][j]);
}
if (doStroke) {
line3D(lineVertArray, "LINE_STRIP", strokeVertArray);
}
}
if (doFill || usingTexture) {
fill3D(fillVertArray, "TRIANGLE_LIST", colorVertArray, texVertArray);
}
}
}
// If the user didn't specify a type (LINES, TRIANGLES, etc)
else {
// If only one vertex was specified, it must be a point
if (vertArrayLength === 1) {
for (j = 0; j < 3; j++) {
lineVertArray.push(vertArray[0][j]);
}
for (j = 9; j < 13; j++) {
strokeVertArray.push(vertArray[0][j]);
}
point3D(lineVertArray,strokeVertArray);
} else {
for (i = 0; i < vertArrayLength; i++) {
cachedVertArray = vertArray[i];
for (j = 0; j < 3; j++) {
lineVertArray.push(cachedVertArray[j]);
}
for (j = 5; j < 9; j++) {
strokeVertArray.push(cachedVertArray[j]);
}
}
if (doStroke && closeShape) {
line3D(lineVertArray, "LINE_LOOP", strokeVertArray);
} else if (doStroke && !closeShape) {
line3D(lineVertArray, "LINE_STRIP", strokeVertArray);
}
// fill is ignored if textures are used
if (doFill || usingTexture) {
fill3D(fillVertArray, "TRIANGLE_FAN", colorVertArray, texVertArray);
}
}
}
// everytime beginShape is followed by a call to
// texture(), texturing it turned back on. We do this to
// figure out if the shape should be textured or filled
// with a color.
usingTexture = false;
curContext.useProgram(programObject3D);
uniformi("usingTexture3d", programObject3D, "usingTexture", usingTexture);
}
// Reset some settings
isCurve = false;
isBezier = false;
curveVertArray = [];
curveVertCount = 0;
};
/**
* The function splineForward() setup forward-differencing matrix to be used for speedy
* curve rendering. It's based on using a specific number
* of curve segments and just doing incremental adds for each
* vertex of the segment, rather than running the mathematically
* expensive cubic equation. This function is used by both curveDetail and bezierDetail.
*
* @param {int} segments number of curve segments to use when drawing
* @param {PMatrix3D} matrix target object for the new matrix
*/
var splineForward = function(segments, matrix) {
var f = 1.0 / segments;
var ff = f * f;
var fff = ff * f;
matrix.set(0, 0, 0, 1, fff, ff, f, 0, 6 * fff, 2 * ff, 0, 0, 6 * fff, 0, 0, 0);
};
/**
* The curveInit() function set the number of segments to use when drawing a Catmull-Rom
* curve, and setting the s parameter, which defines how tightly
* the curve fits to each vertex. Catmull-Rom curves are actually
* a subset of this curve type where the s is set to zero.
* This in an internal function used by curveDetail() and curveTightness().
*/
var curveInit = function() {
// allocate only if/when used to save startup time
if (!curveDrawMatrix) {
curveBasisMatrix = new PMatrix3D();
curveDrawMatrix = new PMatrix3D();
curveInited = true;
}
var s = curTightness;
curveBasisMatrix.set((s - 1) / 2, (s + 3) / 2, (-3 - s) / 2, (1 - s) / 2,
(1 - s), (-5 - s) / 2, (s + 2), (s - 1) / 2,
(s - 1) / 2, 0, (1 - s) / 2, 0, 0, 1, 0, 0);
splineForward(curveDet, curveDrawMatrix);
if (!bezierBasisInverse) {
//bezierBasisInverse = bezierBasisMatrix.get();
//bezierBasisInverse.invert();
curveToBezierMatrix = new PMatrix3D();
}
// TODO only needed for PGraphicsJava2D? if so, move it there
// actually, it's generally useful for other renderers, so keep it
// or hide the implementation elsewhere.
curveToBezierMatrix.set(curveBasisMatrix);
curveToBezierMatrix.preApply(bezierBasisInverse);
// multiply the basis and forward diff matrices together
// saves much time since this needn't be done for each curve
curveDrawMatrix.apply(curveBasisMatrix);
};
/**
* Specifies vertex coordinates for Bezier curves. Each call to <b>bezierVertex()</b> defines the position of two control
* points and one anchor point of a Bezier curve, adding a new segment to a line or shape. The first time
* <b>bezierVertex()</b> is used within a <b>beginShape()</b> call, it must be prefaced with a call to <b>vertex()</b>
* to set the first anchor point. This function must be used between <b>beginShape()</b> and <b>endShape()</b> and only
* when there is no MODE parameter specified to <b>beginShape()</b>. Using the 3D version of requires rendering with P3D
* or OPENGL (see the Environment reference for more information). <br /> <br /> <b>NOTE: </b> Fill does not work properly yet.
*
* @param {float | int} cx1 The x-coordinate of 1st control point
* @param {float | int} cy1 The y-coordinate of 1st control point
* @param {float | int} cz1 The z-coordinate of 1st control point
* @param {float | int} cx2 The x-coordinate of 2nd control point
* @param {float | int} cy2 The y-coordinate of 2nd control point
* @param {float | int} cz2 The z-coordinate of 2nd control point
* @param {float | int} x The x-coordinate of the anchor point
* @param {float | int} y The y-coordinate of the anchor point
* @param {float | int} z The z-coordinate of the anchor point
*
* @see curveVertex
* @see vertex
* @see bezier
*/
Drawing2D.prototype.bezierVertex = function() {
isBezier = true;
var vert = [];
if (firstVert) {
throw ("vertex() must be used at least once before calling bezierVertex()");
}
for (var i = 0; i < arguments.length; i++) {
vert[i] = arguments[i];
}
vertArray.push(vert);
vertArray[vertArray.length -1]["isVert"] = false;
};
Drawing3D.prototype.bezierVertex = function() {
isBezier = true;
var vert = [];
if (firstVert) {
throw ("vertex() must be used at least once before calling bezierVertex()");
}
if (arguments.length === 9) {
if (bezierDrawMatrix === undef) {
bezierDrawMatrix = new PMatrix3D();
}
// setup matrix for forward differencing to speed up drawing
var lastPoint = vertArray.length - 1;
splineForward( bezDetail, bezierDrawMatrix );
bezierDrawMatrix.apply( bezierBasisMatrix );
var draw = bezierDrawMatrix.array();
var x1 = vertArray[lastPoint][0],
y1 = vertArray[lastPoint][1],
z1 = vertArray[lastPoint][2];
var xplot1 = draw[4] * x1 + draw[5] * arguments[0] + draw[6] * arguments[3] + draw[7] * arguments[6];
var xplot2 = draw[8] * x1 + draw[9] * arguments[0] + draw[10]* arguments[3] + draw[11]* arguments[6];
var xplot3 = draw[12]* x1 + draw[13]* arguments[0] + draw[14]* arguments[3] + draw[15]* arguments[6];
var yplot1 = draw[4] * y1 + draw[5] * arguments[1] + draw[6] * arguments[4] + draw[7] * arguments[7];
var yplot2 = draw[8] * y1 + draw[9] * arguments[1] + draw[10]* arguments[4] + draw[11]* arguments[7];
var yplot3 = draw[12]* y1 + draw[13]* arguments[1] + draw[14]* arguments[4] + draw[15]* arguments[7];
var zplot1 = draw[4] * z1 + draw[5] * arguments[2] + draw[6] * arguments[5] + draw[7] * arguments[8];
var zplot2 = draw[8] * z1 + draw[9] * arguments[2] + draw[10]* arguments[5] + draw[11]* arguments[8];
var zplot3 = draw[12]* z1 + draw[13]* arguments[2] + draw[14]* arguments[5] + draw[15]* arguments[8];
for (var j = 0; j < bezDetail; j++) {
x1 += xplot1; xplot1 += xplot2; xplot2 += xplot3;
y1 += yplot1; yplot1 += yplot2; yplot2 += yplot3;
z1 += zplot1; zplot1 += zplot2; zplot2 += zplot3;
p.vertex(x1, y1, z1);
}
p.vertex(arguments[6], arguments[7], arguments[8]);
}
};
/**
* Sets a texture to be applied to vertex points. The <b>texture()</b> function
* must be called between <b>beginShape()</b> and <b>endShape()</b> and before
* any calls to vertex().
*
* When textures are in use, the fill color is ignored. Instead, use tint() to
* specify the color of the texture as it is applied to the shape.
*
* @param {PImage} pimage the texture to apply
*
* @returns none
*
* @see textureMode
* @see beginShape
* @see endShape
* @see vertex
*/
p.texture = function(pimage) {
var curContext = drawing.$ensureContext();
if (pimage.__texture) {
curContext.bindTexture(curContext.TEXTURE_2D, pimage.__texture);
} else if (pimage.localName === "canvas") {
curContext.bindTexture(curContext.TEXTURE_2D, canTex);
curContext.texImage2D(curContext.TEXTURE_2D, 0, curContext.RGBA, curContext.RGBA, curContext.UNSIGNED_BYTE, pimage);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_MAG_FILTER, curContext.LINEAR);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_MIN_FILTER, curContext.LINEAR);
curContext.generateMipmap(curContext.TEXTURE_2D);
curTexture.width = pimage.width;
curTexture.height = pimage.height;
} else {
var texture = curContext.createTexture(),
cvs = document.createElement('canvas'),
cvsTextureCtx = cvs.getContext('2d'),
pot;
// WebGL requires power of two textures
if (pimage.width & (pimage.width-1) === 0) {
cvs.width = pimage.width;
} else {
pot = 1;
while (pot < pimage.width) {
pot *= 2;
}
cvs.width = pot;
}
if (pimage.height & (pimage.height-1) === 0) {
cvs.height = pimage.height;
} else {
pot = 1;
while (pot < pimage.height) {
pot *= 2;
}
cvs.height = pot;
}
cvsTextureCtx.drawImage(pimage.sourceImg, 0, 0, pimage.width, pimage.height, 0, 0, cvs.width, cvs.height);
curContext.bindTexture(curContext.TEXTURE_2D, texture);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_MIN_FILTER, curContext.LINEAR_MIPMAP_LINEAR);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_MAG_FILTER, curContext.LINEAR);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_WRAP_T, curContext.CLAMP_TO_EDGE);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_WRAP_S, curContext.CLAMP_TO_EDGE);
curContext.texImage2D(curContext.TEXTURE_2D, 0, curContext.RGBA, curContext.RGBA, curContext.UNSIGNED_BYTE, cvs);
curContext.generateMipmap(curContext.TEXTURE_2D);
pimage.__texture = texture;
curTexture.width = pimage.width;
curTexture.height = pimage.height;
}
usingTexture = true;
curContext.useProgram(programObject3D);
uniformi("usingTexture3d", programObject3D, "usingTexture", usingTexture);
};
/**
* Sets the coordinate space for texture mapping. There are two options, IMAGE,
* which refers to the actual coordinates of the image, and NORMALIZED, which
* refers to a normalized space of values ranging from 0 to 1. The default mode
* is IMAGE. In IMAGE, if an image is 100 x 200 pixels, mapping the image onto
* the entire size of a quad would require the points (0,0) (0,100) (100,200) (0,200).
* The same mapping in NORMAL_SPACE is (0,0) (0,1) (1,1) (0,1).
*
* @param MODE either IMAGE or NORMALIZED
*
* @returns none
*
* @see texture
*/
p.textureMode = function(mode){
curTextureMode = mode;
};
/**
* The curveVertexSegment() function handle emitting a specific segment of Catmull-Rom curve. Internal helper function used by <b>curveVertex()</b>.
*/
var curveVertexSegment = function(x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4) {
var x0 = x2;
var y0 = y2;
var z0 = z2;
var draw = curveDrawMatrix.array();
var xplot1 = draw[4] * x1 + draw[5] * x2 + draw[6] * x3 + draw[7] * x4;
var xplot2 = draw[8] * x1 + draw[9] * x2 + draw[10] * x3 + draw[11] * x4;
var xplot3 = draw[12] * x1 + draw[13] * x2 + draw[14] * x3 + draw[15] * x4;
var yplot1 = draw[4] * y1 + draw[5] * y2 + draw[6] * y3 + draw[7] * y4;
var yplot2 = draw[8] * y1 + draw[9] * y2 + draw[10] * y3 + draw[11] * y4;
var yplot3 = draw[12] * y1 + draw[13] * y2 + draw[14] * y3 + draw[15] * y4;
var zplot1 = draw[4] * z1 + draw[5] * z2 + draw[6] * z3 + draw[7] * z4;
var zplot2 = draw[8] * z1 + draw[9] * z2 + draw[10] * z3 + draw[11] * z4;
var zplot3 = draw[12] * z1 + draw[13] * z2 + draw[14] * z3 + draw[15] * z4;
p.vertex(x0, y0, z0);
for (var j = 0; j < curveDet; j++) {
x0 += xplot1; xplot1 += xplot2; xplot2 += xplot3;
y0 += yplot1; yplot1 += yplot2; yplot2 += yplot3;
z0 += zplot1; zplot1 += zplot2; zplot2 += zplot3;
p.vertex(x0, y0, z0);
}
};
/**
* Specifies vertex coordinates for curves. This function may only be used between <b>beginShape()</b> and
* <b>endShape()</b> and only when there is no MODE parameter specified to <b>beginShape()</b>. The first and last points
* in a series of <b>curveVertex()</b> lines will be used to guide the beginning and end of a the curve. A minimum of four
* points is required to draw a tiny curve between the second and third points. Adding a fifth point with
* <b>curveVertex()</b> will draw the curve between the second, third, and fourth points. The <b>curveVertex()</b> function
* is an implementation of Catmull-Rom splines. Using the 3D version of requires rendering with P3D or OPENGL (see the
* Environment reference for more information). <br /> <br /><b>NOTE: </b> Fill does not work properly yet.
*
* @param {float | int} x The x-coordinate of the vertex
* @param {float | int} y The y-coordinate of the vertex
* @param {float | int} z The z-coordinate of the vertex
*
* @see curve
* @see beginShape
* @see endShape
* @see vertex
* @see bezierVertex
*/
Drawing2D.prototype.curveVertex = function(x, y) {
isCurve = true;
p.vertex(x, y);
};
Drawing3D.prototype.curveVertex = function(x, y, z) {
isCurve = true;
if (!curveInited) {
curveInit();
}
var vert = [];
vert[0] = x;
vert[1] = y;
vert[2] = z;
curveVertArray.push(vert);
curveVertCount++;
if (curveVertCount > 3) {
curveVertexSegment( curveVertArray[curveVertCount-4][0],
curveVertArray[curveVertCount-4][1],
curveVertArray[curveVertCount-4][2],
curveVertArray[curveVertCount-3][0],
curveVertArray[curveVertCount-3][1],
curveVertArray[curveVertCount-3][2],
curveVertArray[curveVertCount-2][0],
curveVertArray[curveVertCount-2][1],
curveVertArray[curveVertCount-2][2],
curveVertArray[curveVertCount-1][0],
curveVertArray[curveVertCount-1][1],
curveVertArray[curveVertCount-1][2] );
}
};
/**
* The curve() function draws a curved line on the screen. The first and second parameters
* specify the beginning control point and the last two parameters specify
* the ending control point. The middle parameters specify the start and
* stop of the curve. Longer curves can be created by putting a series of
* <b>curve()</b> functions together or using <b>curveVertex()</b>.
* An additional function called <b>curveTightness()</b> provides control
* for the visual quality of the curve. The <b>curve()</b> function is an
* implementation of Catmull-Rom splines. Using the 3D version of requires
* rendering with P3D or OPENGL (see the Environment reference for more
* information).
*
* @param {int|float} x1 coordinates for the beginning control point
* @param {int|float} y1 coordinates for the beginning control point
* @param {int|float} z1 coordinates for the beginning control point
* @param {int|float} x2 coordinates for the first point
* @param {int|float} y2 coordinates for the first point
* @param {int|float} z2 coordinates for the first point
* @param {int|float} x3 coordinates for the second point
* @param {int|float} y3 coordinates for the second point
* @param {int|float} z3 coordinates for the second point
* @param {int|float} x4 coordinates for the ending control point
* @param {int|float} y4 coordinates for the ending control point
* @param {int|float} z4 coordinates for the ending control point
*
* @see #curveVertex()
* @see #curveTightness()
* @see #bezier()
*/
Drawing2D.prototype.curve = function() {
if (arguments.length === 8) { // curve(x1, y1, x2, y2, x3, y3, x4, y4)
p.beginShape();
p.curveVertex(arguments[0], arguments[1]);
p.curveVertex(arguments[2], arguments[3]);
p.curveVertex(arguments[4], arguments[5]);
p.curveVertex(arguments[6], arguments[7]);
p.endShape();
}
};
Drawing3D.prototype.curve = function() {
if (arguments.length === 12) { // curve( x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4);
p.beginShape();
p.curveVertex(arguments[0], arguments[1], arguments[2]);
p.curveVertex(arguments[3], arguments[4], arguments[5]);
p.curveVertex(arguments[6], arguments[7], arguments[8]);
p.curveVertex(arguments[9], arguments[10], arguments[11]);
p.endShape();
}
};
/**
* The curveTightness() function modifies the quality of forms created with <b>curve()</b> and
* <b>curveVertex()</b>. The parameter <b>squishy</b> determines how the
* curve fits to the vertex points. The value 0.0 is the default value for
* <b>squishy</b> (this value defines the curves to be Catmull-Rom splines)
* and the value 1.0 connects all the points with straight lines.
* Values within the range -5.0 and 5.0 will deform the curves but
* will leave them recognizable and as values increase in magnitude,
* they will continue to deform.
*
* @param {float} tightness amount of deformation from the original vertices
*
* @see #curve()
* @see #curveVertex()
*
*/
p.curveTightness = function(tightness) {
curTightness = tightness;
};
/**
* The curveDetail() function sets the resolution at which curves display. The default value is 20.
* This function is only useful when using the P3D or OPENGL renderer.
*
* @param {int} detail resolution of the curves
*
* @see curve()
* @see curveVertex()
* @see curveTightness()
*/
p.curveDetail = function(detail) {
curveDet = detail;
curveInit();
};
/**
* Modifies the location from which rectangles draw. The default mode is rectMode(CORNER), which
* specifies the location to be the upper left corner of the shape and uses the third and fourth
* parameters of rect() to specify the width and height. The syntax rectMode(CORNERS) uses the
* first and second parameters of rect() to set the location of one corner and uses the third and
* fourth parameters to set the opposite corner. The syntax rectMode(CENTER) draws the image from
* its center point and uses the third and forth parameters of rect() to specify the image's width
* and height. The syntax rectMode(RADIUS) draws the image from its center point and uses the third
* and forth parameters of rect() to specify half of the image's width and height. The parameter must
* be written in ALL CAPS because Processing is a case sensitive language. Note: In version 125, the
* mode named CENTER_RADIUS was shortened to RADIUS.
*
* @param {MODE} MODE Either CORNER, CORNERS, CENTER, or RADIUS
*
* @see rect
*/
p.rectMode = function(aRectMode) {
curRectMode = aRectMode;
};
/**
* Modifies the location from which images draw. The default mode is imageMode(CORNER), which specifies
* the location to be the upper left corner and uses the fourth and fifth parameters of image() to set
* the image's width and height. The syntax imageMode(CORNERS) uses the second and third parameters of
* image() to set the location of one corner of the image and uses the fourth and fifth parameters to
* set the opposite corner. Use imageMode(CENTER) to draw images centered at the given x and y position.
* The parameter to imageMode() must be written in ALL CAPS because Processing is a case sensitive language.
*
* @param {MODE} MODE Either CORNER, CORNERS, or CENTER
*
* @see loadImage
* @see PImage
* @see image
* @see background
*/
p.imageMode = function(mode) {
switch (mode) {
case PConstants.CORNER:
imageModeConvert = imageModeCorner;
break;
case PConstants.CORNERS:
imageModeConvert = imageModeCorners;
break;
case PConstants.CENTER:
imageModeConvert = imageModeCenter;
break;
default:
throw "Invalid imageMode";
}
};
/**
* The origin of the ellipse is modified by the ellipseMode() function. The default configuration is
* ellipseMode(CENTER), which specifies the location of the ellipse as the center of the shape. The RADIUS
* mode is the same, but the width and height parameters to ellipse() specify the radius of the ellipse,
* rather than the diameter. The CORNER mode draws the shape from the upper-left corner of its bounding box.
* The CORNERS mode uses the four parameters to ellipse() to set two opposing corners of the ellipse's bounding
* box. The parameter must be written in "ALL CAPS" because Processing is a case sensitive language.
*
* @param {MODE} MODE Either CENTER, RADIUS, CORNER, or CORNERS.
*
* @see ellipse
*/
p.ellipseMode = function(aEllipseMode) {
curEllipseMode = aEllipseMode;
};
/**
* The arc() function draws an arc in the display window.
* Arcs are drawn along the outer edge of an ellipse defined by the
* <b>x</b>, <b>y</b>, <b>width</b> and <b>height</b> parameters.
* The origin or the arc's ellipse may be changed with the
* <b>ellipseMode()</b> function.
* The <b>start</b> and <b>stop</b> parameters specify the angles
* at which to draw the arc.
*
* @param {float} a x-coordinate of the arc's ellipse
* @param {float} b y-coordinate of the arc's ellipse
* @param {float} c width of the arc's ellipse
* @param {float} d height of the arc's ellipse
* @param {float} start angle to start the arc, specified in radians
* @param {float} stop angle to stop the arc, specified in radians
*
* @see #ellipseMode()
* @see #ellipse()
*/
p.arc = function(x, y, width, height, start, stop) {
if (width <= 0 || stop < start) { return; }
// XXX(jeresig)
start = p.convertToRadians(start);
stop = p.convertToRadians(stop);
if (curEllipseMode === PConstants.CORNERS) {
width = width - x;
height = height - y;
} else if (curEllipseMode === PConstants.RADIUS) {
x = x - width;
y = y - height;
width = width * 2;
height = height * 2;
} else if (curEllipseMode === PConstants.CENTER) {
x = x - width/2;
y = y - height/2;
}
// make sure that we're starting at a useful point
while (start < 0) {
start += PConstants.TWO_PI;
stop += PConstants.TWO_PI;
}
if (stop - start > PConstants.TWO_PI) {
start = 0;
stop = PConstants.TWO_PI;
}
var hr = width / 2;
var vr = height / 2;
var centerX = x + hr;
var centerY = y + vr;
// XXX(jeresig): Removed * 2 from these lines
// seems to have been a mistake.
var startLUT = 0 | (-0.5 + start * p.RAD_TO_DEG);
var stopLUT = 0 | (0.5 + stop * p.RAD_TO_DEG);
var i, j;
if (doFill) {
// shut off stroke for a minute
var savedStroke = doStroke;
doStroke = false;
p.beginShape();
p.vertex(centerX, centerY);
for (i = startLUT; i <= stopLUT; i++) {
j = i % PConstants.SINCOS_LENGTH;
p.vertex(centerX + cosLUT[j] * hr, centerY + sinLUT[j] * vr);
}
p.endShape(PConstants.CLOSE);
doStroke = savedStroke;
}
if (doStroke) {
// and doesn't include the first (center) vertex.
var savedFill = doFill;
doFill = false;
p.beginShape();
for (i = startLUT; i <= stopLUT; i++) {
j = i % PConstants.SINCOS_LENGTH;
p.vertex(centerX + cosLUT[j] * hr, centerY + sinLUT[j] * vr);
}
p.endShape();
doFill = savedFill;
}
};
/**
* Draws a line (a direct path between two points) to the screen. The version of line() with four parameters
* draws the line in 2D. To color a line, use the stroke() function. A line cannot be filled, therefore the
* fill() method will not affect the color of a line. 2D lines are drawn with a width of one pixel by default,
* but this can be changed with the strokeWeight() function. The version with six parameters allows the line
* to be placed anywhere within XYZ space. Drawing this shape in 3D using the z parameter requires the P3D or
* OPENGL parameter in combination with size.
*
* @param {int|float} x1 x-coordinate of the first point
* @param {int|float} y1 y-coordinate of the first point
* @param {int|float} z1 z-coordinate of the first point
* @param {int|float} x2 x-coordinate of the second point
* @param {int|float} y2 y-coordinate of the second point
* @param {int|float} z2 z-coordinate of the second point
*
* @see strokeWeight
* @see strokeJoin
* @see strokeCap
* @see beginShape
*/
Drawing2D.prototype.line = function(x1, y1, x2, y2) {
if (!doStroke) {
return;
}
if (!renderSmooth) {
x1 = Math.round(x1);
x2 = Math.round(x2);
y1 = Math.round(y1);
y2 = Math.round(y2);
}
// A line is only defined if it has different start and end coordinates.
// If they are the same, we call point instead.
if (x1 === x2 && y1 === y2) {
p.point(x1, y1);
return;
}
var swap = undef,
lineCap = undef,
drawCrisp = true,
currentModelView = modelView.array(),
identityMatrix = [1, 0, 0, 0, 1, 0];
// Test if any transformations have been applied to the sketch
for (var i = 0; i < 6 && drawCrisp; i++) {
drawCrisp = currentModelView[i] === identityMatrix[i];
}
/* Draw crisp lines if the line is vertical or horizontal with the following method
* If any transformations have been applied to the sketch, don't make the line crisp
* If the line is directed up or to the left, reverse it by swapping x1/x2 or y1/y2
* Make the line 1 pixel longer to work around cross-platform canvas implementations
* If the lineWidth is odd, translate the line by 0.5 in the perpendicular direction
* Even lineWidths do not need to be translated because the canvas will draw them on pixel boundaries
* Change the cap to butt-end to work around cross-platform canvas implementations
* Reverse the translate and lineCap canvas state changes after drawing the line
*/
if (drawCrisp) {
if (x1 === x2) {
if (y1 > y2) {
swap = y1;
y1 = y2;
y2 = swap;
}
y2++;
if (lineWidth % 2 === 1) {
curContext.translate(0.5, 0.0);
}
} else if (y1 === y2) {
if (x1 > x2) {
swap = x1;
x1 = x2;
x2 = swap;
}
x2++;
if (lineWidth % 2 === 1) {
curContext.translate(0.0, 0.5);
}
}
if (lineWidth === 1) {
lineCap = curContext.lineCap;
curContext.lineCap = 'butt';
}
}
curContext.beginPath();
curContext.moveTo(x1 || 0, y1 || 0);
curContext.lineTo(x2 || 0, y2 || 0);
executeContextStroke();
if (drawCrisp) {
if (x1 === x2 && lineWidth % 2 === 1) {
curContext.translate(-0.5, 0.0);
} else if (y1 === y2 && lineWidth % 2 === 1) {
curContext.translate(0.0, -0.5);
}
if (lineWidth === 1) {
curContext.lineCap = lineCap;
}
}
};
Drawing3D.prototype.line = function(x1, y1, z1, x2, y2, z2) {
if (y2 === undef || z2 === undef) { // 2D line called in 3D context
z2 = 0;
y2 = x2;
x2 = z1;
z1 = 0;
}
// a line is only defined if it has different start and end coordinates.
// If they are the same, we call point instead.
if (x1===x2 && y1===y2 && z1===z2) {
p.point(x1,y1,z1);
return;
}
var lineVerts = [x1, y1, z1, x2, y2, z2];
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
if (lineWidth > 0 && doStroke) {
curContext.useProgram(programObject2D);
uniformMatrix("model2d", programObject2D, "model", false, [1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1]);
uniformMatrix("view2d", programObject2D, "view", false, view.array());
uniformf("color2d", programObject2D, "color", strokeStyle);
uniformi("picktype2d", programObject2D, "picktype", 0);
vertexAttribPointer("vertex2d", programObject2D, "Vertex", 3, lineBuffer);
disableVertexAttribPointer("aTextureCoord2d", programObject2D, "aTextureCoord");
curContext.bufferData(curContext.ARRAY_BUFFER, new Float32Array(lineVerts), curContext.STREAM_DRAW);
curContext.drawArrays(curContext.LINES, 0, 2);
}
};
/**
* Draws a Bezier curve on the screen. These curves are defined by a series of anchor and control points. The first
* two parameters specify the first anchor point and the last two parameters specify the other anchor point. The
* middle parameters specify the control points which define the shape of the curve. Bezier curves were developed
* by French engineer Pierre Bezier. Using the 3D version of requires rendering with P3D or OPENGL (see the
* Environment reference for more information).
*
* @param {int | float} x1,y1,z1 coordinates for the first anchor point
* @param {int | float} cx1,cy1,cz1 coordinates for the first control point
* @param {int | float} cx2,cy2,cz2 coordinates for the second control point
* @param {int | float} x2,y2,z2 coordinates for the second anchor point
*
* @see bezierVertex
* @see curve
*/
Drawing2D.prototype.bezier = function() {
if (arguments.length !== 8) {
throw("You must use 8 parameters for bezier() in 2D mode");
}
p.beginShape();
p.vertex( arguments[0], arguments[1] );
p.bezierVertex( arguments[2], arguments[3],
arguments[4], arguments[5],
arguments[6], arguments[7] );
p.endShape();
};
Drawing3D.prototype.bezier = function() {
if (arguments.length !== 12) {
throw("You must use 12 parameters for bezier() in 3D mode");
}
p.beginShape();
p.vertex( arguments[0], arguments[1], arguments[2] );
p.bezierVertex( arguments[3], arguments[4], arguments[5],
arguments[6], arguments[7], arguments[8],
arguments[9], arguments[10], arguments[11] );
p.endShape();
};
/**
* Sets the resolution at which Beziers display. The default value is 20. This function is only useful when using the P3D
* or OPENGL renderer as the default (JAVA2D) renderer does not use this information.
*
* @param {int} detail resolution of the curves
*
* @see curve
* @see curveVertex
* @see curveTightness
*/
p.bezierDetail = function( detail ){
bezDetail = detail;
};
/**
* The bezierPoint() function evalutes quadratic bezier at point t for points a, b, c, d.
* The parameter t varies between 0 and 1. The a and d parameters are the
* on-curve points, b and c are the control points. To make a two-dimensional
* curve, call this function once with the x coordinates and a second time
* with the y coordinates to get the location of a bezier curve at t.
*
* @param {float} a coordinate of first point on the curve
* @param {float} b coordinate of first control point
* @param {float} c coordinate of second control point
* @param {float} d coordinate of second point on the curve
* @param {float} t value between 0 and 1
*
* @see #bezier()
* @see #bezierVertex()
* @see #curvePoint()
*/
p.bezierPoint = function(a, b, c, d, t) {
return (1 - t) * (1 - t) * (1 - t) * a + 3 * (1 - t) * (1 - t) * t * b + 3 * (1 - t) * t * t * c + t * t * t * d;
};
/**
* The bezierTangent() function calculates the tangent of a point on a Bezier curve. There is a good
* definition of "tangent" at Wikipedia: <a href="http://en.wikipedia.org/wiki/Tangent" target="new">http://en.wikipedia.org/wiki/Tangent</a>
*
* @param {float} a coordinate of first point on the curve
* @param {float} b coordinate of first control point
* @param {float} c coordinate of second control point
* @param {float} d coordinate of second point on the curve
* @param {float} t value between 0 and 1
*
* @see #bezier()
* @see #bezierVertex()
* @see #curvePoint()
*/
p.bezierTangent = function(a, b, c, d, t) {
return (3 * t * t * (-a + 3 * b - 3 * c + d) + 6 * t * (a - 2 * b + c) + 3 * (-a + b));
};
/**
* The curvePoint() function evalutes the Catmull-Rom curve at point t for points a, b, c, d. The
* parameter t varies between 0 and 1, a and d are points on the curve,
* and b and c are the control points. This can be done once with the x
* coordinates and a second time with the y coordinates to get the
* location of a curve at t.
*
* @param {int|float} a coordinate of first point on the curve
* @param {int|float} b coordinate of second point on the curve
* @param {int|float} c coordinate of third point on the curve
* @param {int|float} d coordinate of fourth point on the curve
* @param {float} t value between 0 and 1
*
* @see #curve()
* @see #curveVertex()
* @see #bezierPoint()
*/
p.curvePoint = function(a, b, c, d, t) {
return 0.5 * ((2 * b) + (-a + c) * t + (2 * a - 5 * b + 4 * c - d) * t * t + (-a + 3 * b - 3 * c + d) * t * t * t);
};
/**
* The curveTangent() function calculates the tangent of a point on a Catmull-Rom curve.
* There is a good definition of "tangent" at Wikipedia: <a href="http://en.wikipedia.org/wiki/Tangent" target="new">http://en.wikipedia.org/wiki/Tangent</a>.
*
* @param {int|float} a coordinate of first point on the curve
* @param {int|float} b coordinate of first control point
* @param {int|float} c coordinate of second control point
* @param {int|float} d coordinate of second point on the curve
* @param {float} t value between 0 and 1
*
* @see #curve()
* @see #curveVertex()
* @see #curvePoint()
* @see #bezierTangent()
*/
p.curveTangent = function(a, b, c, d, t) {
return 0.5 * ((-a + c) + 2 * (2 * a - 5 * b + 4 * c - d) * t + 3 * (-a + 3 * b - 3 * c + d) * t * t);
};
/**
* A triangle is a plane created by connecting three points. The first two arguments specify the first point,
* the middle two arguments specify the second point, and the last two arguments specify the third point.
*
* @param {int | float} x1 x-coordinate of the first point
* @param {int | float} y1 y-coordinate of the first point
* @param {int | float} x2 x-coordinate of the second point
* @param {int | float} y2 y-coordinate of the second point
* @param {int | float} x3 x-coordinate of the third point
* @param {int | float} y3 y-coordinate of the third point
*/
p.triangle = function(x1, y1, x2, y2, x3, y3) {
p.beginShape(PConstants.TRIANGLES);
p.vertex(x1, y1, 0);
p.vertex(x2, y2, 0);
p.vertex(x3, y3, 0);
p.endShape();
};
/**
* A quad is a quadrilateral, a four sided polygon. It is similar to a rectangle, but the angles between its
* edges are not constrained to ninety degrees. The first pair of parameters (x1,y1) sets the first vertex
* and the subsequent pairs should proceed clockwise or counter-clockwise around the defined shape.
*
* @param {float | int} x1 x-coordinate of the first corner
* @param {float | int} y1 y-coordinate of the first corner
* @param {float | int} x2 x-coordinate of the second corner
* @param {float | int} y2 y-coordinate of the second corner
* @param {float | int} x3 x-coordinate of the third corner
* @param {float | int} y3 y-coordinate of the third corner
* @param {float | int} x4 x-coordinate of the fourth corner
* @param {float | int} y4 y-coordinate of the fourth corner
*/
p.quad = function(x1, y1, x2, y2, x3, y3, x4, y4) {
p.beginShape(PConstants.QUADS);
p.vertex(x1, y1, 0);
p.vertex(x2, y2, 0);
p.vertex(x3, y3, 0);
p.vertex(x4, y4, 0);
p.endShape();
};
var roundedRect$2d = function(x, y, width, height, tl, tr, br, bl) {
if (bl === undef) {
tr = tl;
br = tl;
bl = tl;
}
var halfWidth = width / 2,
halfHeight = height / 2;
if (tl > halfWidth || tl > halfHeight) {
tl = Math.min(halfWidth, halfHeight);
}
if (tr > halfWidth || tr > halfHeight) {
tr = Math.min(halfWidth, halfHeight);
}
if (br > halfWidth || br > halfHeight) {
br = Math.min(halfWidth, halfHeight);
}
if (bl > halfWidth || bl > halfHeight) {
bl = Math.min(halfWidth, halfHeight);
}
// Translate the stroke by (0.5, 0.5) to draw a crisp border
if (!doFill || doStroke) {
curContext.translate(0.5, 0.5);
}
curContext.beginPath();
curContext.moveTo(x + tl, y);
curContext.lineTo(x + width - tr, y);
curContext.quadraticCurveTo(x + width, y, x + width, y + tr);
curContext.lineTo(x + width, y + height - br);
curContext.quadraticCurveTo(x + width, y + height, x + width - br, y + height);
curContext.lineTo(x + bl, y + height);
curContext.quadraticCurveTo(x, y + height, x, y + height - bl);
curContext.lineTo(x, y + tl);
curContext.quadraticCurveTo(x, y, x + tl, y);
if (!doFill || doStroke) {
curContext.translate(-0.5, -0.5);
}
executeContextFill();
executeContextStroke();
};
/**
* Draws a rectangle to the screen. A rectangle is a four-sided shape with every angle at ninety
* degrees. The first two parameters set the location, the third sets the width, and the fourth
* sets the height. The origin is changed with the rectMode() function.
*
* @param {int|float} x x-coordinate of the rectangle
* @param {int|float} y y-coordinate of the rectangle
* @param {int|float} width width of the rectangle
* @param {int|float} height height of the rectangle
*
* @see rectMode
* @see quad
*/
Drawing2D.prototype.rect = function(x, y, width, height, tl, tr, br, bl) {
if (!width && !height) {
return;
}
if (curRectMode === PConstants.CORNERS) {
width -= x;
height -= y;
} else if (curRectMode === PConstants.RADIUS) {
width *= 2;
height *= 2;
x -= width / 2;
y -= height / 2;
} else if (curRectMode === PConstants.CENTER) {
x -= width / 2;
y -= height / 2;
}
if (!renderSmooth) {
x = Math.round(x);
y = Math.round(y);
width = Math.round(width);
height = Math.round(height);
}
if (tl !== undef) {
roundedRect$2d(x, y, width, height, tl, tr, br, bl);
return;
}
// Translate the line by (0.5, 0.5) to draw a crisp rectangle border
if (doStroke && lineWidth % 2 === 1) {
curContext.translate(0.5, 0.5);
}
curContext.beginPath();
curContext.rect(x, y, width, height);
executeContextFill();
executeContextStroke();
if (doStroke && lineWidth % 2 === 1) {
curContext.translate(-0.5, -0.5);
}
};
Drawing3D.prototype.rect = function(x, y, width, height, tl, tr, br, bl) {
if (tl !== undef) {
throw "rect() with rounded corners is not supported in 3D mode";
}
if (curRectMode === PConstants.CORNERS) {
width -= x;
height -= y;
} else if (curRectMode === PConstants.RADIUS) {
width *= 2;
height *= 2;
x -= width / 2;
y -= height / 2;
} else if (curRectMode === PConstants.CENTER) {
x -= width / 2;
y -= height / 2;
}
// Modeling transformation
var model = new PMatrix3D();
model.translate(x, y, 0);
model.scale(width, height, 1);
model.transpose();
// viewing transformation needs to have Y flipped
// becuase that's what Processing does.
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
if (lineWidth > 0 && doStroke) {
curContext.useProgram(programObject2D);
uniformMatrix("model2d", programObject2D, "model", false, model.array());
uniformMatrix("view2d", programObject2D, "view", false, view.array());
uniformf("color2d", programObject2D, "color", strokeStyle);
uniformi("picktype2d", programObject2D, "picktype", 0);
vertexAttribPointer("vertex2d", programObject2D, "Vertex", 3, rectBuffer);
disableVertexAttribPointer("aTextureCoord2d", programObject2D, "aTextureCoord");
curContext.drawArrays(curContext.LINE_LOOP, 0, rectVerts.length / 3);
}
if (doFill) {
curContext.useProgram(programObject3D);
uniformMatrix("model3d", programObject3D, "model", false, model.array());
uniformMatrix("view3d", programObject3D, "view", false, view.array());
// fix stitching problems. (lines get occluded by triangles
// since they share the same depth values). This is not entirely
// working, but it's a start for drawing the outline. So
// developers can start playing around with styles.
curContext.enable(curContext.POLYGON_OFFSET_FILL);
curContext.polygonOffset(1, 1);
uniformf("color3d", programObject3D, "color", fillStyle);
if(lightCount > 0){
var v = new PMatrix3D();
v.set(view);
var m = new PMatrix3D();
m.set(model);
v.mult(m);
var normalMatrix = new PMatrix3D();
normalMatrix.set(v);
normalMatrix.invert();
normalMatrix.transpose();
uniformMatrix("normalTransform3d", programObject3D, "normalTransform", false, normalMatrix.array());
vertexAttribPointer("normal3d", programObject3D, "Normal", 3, rectNormBuffer);
}
else{
disableVertexAttribPointer("normal3d", programObject3D, "Normal");
}
vertexAttribPointer("vertex3d", programObject3D, "Vertex", 3, rectBuffer);
curContext.drawArrays(curContext.TRIANGLE_FAN, 0, rectVerts.length / 3);
curContext.disable(curContext.POLYGON_OFFSET_FILL);
}
};
/**
* Draws an ellipse (oval) in the display window. An ellipse with an equal <b>width</b> and <b>height</b> is a circle.
* The first two parameters set the location, the third sets the width, and the fourth sets the height. The origin may be
* changed with the <b>ellipseMode()</b> function.
*
* @param {float|int} x x-coordinate of the ellipse
* @param {float|int} y y-coordinate of the ellipse
* @param {float|int} width width of the ellipse
* @param {float|int} height height of the ellipse
*
* @see ellipseMode
*/
Drawing2D.prototype.ellipse = function(x, y, width, height) {
x = x || 0;
y = y || 0;
if (width <= 0 && height <= 0) {
return;
}
if (curEllipseMode === PConstants.RADIUS) {
width *= 2;
height *= 2;
} else if (curEllipseMode === PConstants.CORNERS) {
width = width - x;
height = height - y;
x += width / 2;
y += height / 2;
} else if (curEllipseMode === PConstants.CORNER) {
x += width / 2;
y += height / 2;
}
// Shortcut for drawing a 2D circle
if (width === height) {
curContext.beginPath();
curContext.arc(x, y, width / 2, 0, PConstants.TWO_PI, false);
executeContextFill();
executeContextStroke();
} else {
var w = width / 2,
h = height / 2,
C = 0.5522847498307933,
c_x = C * w,
c_y = C * h;
p.beginShape();
p.vertex(x + w, y);
p.bezierVertex(x + w, y - c_y, x + c_x, y - h, x, y - h);
p.bezierVertex(x - c_x, y - h, x - w, y - c_y, x - w, y);
p.bezierVertex(x - w, y + c_y, x - c_x, y + h, x, y + h);
p.bezierVertex(x + c_x, y + h, x + w, y + c_y, x + w, y);
p.endShape();
}
};
Drawing3D.prototype.ellipse = function(x, y, width, height) {
x = x || 0;
y = y || 0;
if (width <= 0 && height <= 0) {
return;
}
if (curEllipseMode === PConstants.RADIUS) {
width *= 2;
height *= 2;
} else if (curEllipseMode === PConstants.CORNERS) {
width = width - x;
height = height - y;
x += width / 2;
y += height / 2;
} else if (curEllipseMode === PConstants.CORNER) {
x += width / 2;
y += height / 2;
}
var w = width / 2,
h = height / 2,
C = 0.5522847498307933,
c_x = C * w,
c_y = C * h;
p.beginShape();
p.vertex(x + w, y);
p.bezierVertex(x + w, y - c_y, 0, x + c_x, y - h, 0, x, y - h, 0);
p.bezierVertex(x - c_x, y - h, 0, x - w, y - c_y, 0, x - w, y, 0);
p.bezierVertex(x - w, y + c_y, 0, x - c_x, y + h, 0, x, y + h, 0);
p.bezierVertex(x + c_x, y + h, 0, x + w, y + c_y, 0, x + w, y, 0);
p.endShape();
if (doFill) {
//temporary workaround to not working fills for bezier -- will fix later
var xAv = 0, yAv = 0, i, j;
for (i = 0; i < vertArray.length; i++) {
xAv += vertArray[i][0];
yAv += vertArray[i][1];
}
xAv /= vertArray.length;
yAv /= vertArray.length;
var vert = [],
fillVertArray = [],
colorVertArray = [];
vert[0] = xAv;
vert[1] = yAv;
vert[2] = 0;
vert[3] = 0;
vert[4] = 0;
vert[5] = fillStyle[0];
vert[6] = fillStyle[1];
vert[7] = fillStyle[2];
vert[8] = fillStyle[3];
vert[9] = strokeStyle[0];
vert[10] = strokeStyle[1];
vert[11] = strokeStyle[2];
vert[12] = strokeStyle[3];
vert[13] = normalX;
vert[14] = normalY;
vert[15] = normalZ;
vertArray.unshift(vert);
for (i = 0; i < vertArray.length; i++) {
for (j = 0; j < 3; j++) {
fillVertArray.push(vertArray[i][j]);
}
for (j = 5; j < 9; j++) {
colorVertArray.push(vertArray[i][j]);
}
}
fill3D(fillVertArray, "TRIANGLE_FAN", colorVertArray);
}
};
/**
* Sets the current normal vector. This is for drawing three dimensional shapes and surfaces and
* specifies a vector perpendicular to the surface of the shape which determines how lighting affects
* it. Processing attempts to automatically assign normals to shapes, but since that's imperfect,
* this is a better option when you want more control. This function is identical to glNormal3f() in OpenGL.
*
* @param {float} nx x direction
* @param {float} ny y direction
* @param {float} nz z direction
*
* @see beginShape
* @see endShape
* @see lights
*/
p.normal = function(nx, ny, nz) {
if (arguments.length !== 3 || !(typeof nx === "number" && typeof ny === "number" && typeof nz === "number")) {
throw "normal() requires three numeric arguments.";
}
normalX = nx;
normalY = ny;
normalZ = nz;
if (curShape !== 0) {
if (normalMode === PConstants.NORMAL_MODE_AUTO) {
normalMode = PConstants.NORMAL_MODE_SHAPE;
} else if (normalMode === PConstants.NORMAL_MODE_SHAPE) {
normalMode = PConstants.NORMAL_MODE_VERTEX;
}
}
};
////////////////////////////////////////////////////////////////////////////
// Raster drawing functions
////////////////////////////////////////////////////////////////////////////
/**
* Saves an image from the display window. Images are saved in TIFF, TARGA, JPEG, and PNG format
* depending on the extension within the filename parameter. For example, "image.tif" will have
* a TIFF image and "image.png" will save a PNG image. If no extension is included in the filename,
* the image will save in TIFF format and .tif will be added to the name. These files are saved to
* the sketch's folder, which may be opened by selecting "Show sketch folder" from the "Sketch" menu.
* It is not possible to use save() while running the program in a web browser. All images saved
* from the main drawing window will be opaque. To save images without a background, use createGraphics().
*
* @param {String} filename any sequence of letters and numbers
*
* @see saveFrame
* @see createGraphics
*/
p.save = function(file, img) {
// file is unused at the moment
// may implement this differently in later release
if (img !== undef) {
return window.open(img.toDataURL(),"_blank");
}
return window.open(p.externals.canvas.toDataURL(),"_blank");
};
var saveNumber = 0;
p.saveFrame = function(file) {
if(file === undef) {
// use default name template if parameter is not specified
file = "screen-####.png";
}
// Increment changeable part: screen-0000.png, screen-0001.png, ...
var frameFilename = file.replace(/#+/, function(all) {
var s = "" + (saveNumber++);
while(s.length < all.length) {
s = "0" + s;
}
return s;
});
p.save(frameFilename);
};
var utilityContext2d = document.createElement("canvas").getContext("2d");
var canvasDataCache = [undef, undef, undef]; // we need three for now
function getCanvasData(obj, w, h) {
var canvasData = canvasDataCache.shift();
if (canvasData === undef) {
canvasData = {};
canvasData.canvas = document.createElement("canvas");
canvasData.context = canvasData.canvas.getContext('2d');
}
canvasDataCache.push(canvasData);
var canvas = canvasData.canvas, context = canvasData.context,
width = w || obj.width, height = h || obj.height;
canvas.width = width;
canvas.height = height;
if (!obj) {
context.clearRect(0, 0, width, height);
} else if ("data" in obj) { // ImageData
context.putImageData(obj, 0, 0);
} else {
context.clearRect(0, 0, width, height);
context.drawImage(obj, 0, 0, width, height);
}
return canvasData;
}
/**
* Handle the sketch code for pixels[] and pixels.length
* parser code converts pixels[] to getPixels()
* or setPixels(), .length becomes getLength()
*/
function buildPixelsObject(pImage) {
return {
getLength: (function(aImg) {
return function() {
if (aImg.isRemote) {
throw "Image is loaded remotely. Cannot get length.";
} else {
return aImg.imageData.data.length ? aImg.imageData.data.length/4 : 0;
}
};
}(pImage)),
getPixel: (function(aImg) {
return function(i) {
var offset = i*4,
data = aImg.imageData.data;
if (aImg.isRemote) {
throw "Image is loaded remotely. Cannot get pixels.";
}
return (data[offset+3] << 24) & PConstants.ALPHA_MASK |
(data[offset] << 16) & PConstants.RED_MASK |
(data[offset+1] << 8) & PConstants.GREEN_MASK |
data[offset+2] & PConstants.BLUE_MASK;
};
}(pImage)),
setPixel: (function(aImg) {
return function(i, c) {
var offset = i*4,
data = aImg.imageData.data;
if (aImg.isRemote) {
throw "Image is loaded remotely. Cannot set pixel.";
}
data[offset+0] = (c & PConstants.RED_MASK) >>> 16;
data[offset+1] = (c & PConstants.GREEN_MASK) >>> 8;
data[offset+2] = (c & PConstants.BLUE_MASK);
data[offset+3] = (c & PConstants.ALPHA_MASK) >>> 24;
aImg.__isDirty = true;
};
}(pImage)),
toArray: (function(aImg) {
return function() {
var arr = [],
data = aImg.imageData.data,
length = aImg.width * aImg.height;
if (aImg.isRemote) {
throw "Image is loaded remotely. Cannot get pixels.";
}
for (var i = 0, offset = 0; i < length; i++, offset += 4) {
arr.push( (data[offset+3] << 24) & PConstants.ALPHA_MASK |
(data[offset] << 16) & PConstants.RED_MASK |
(data[offset+1] << 8) & PConstants.GREEN_MASK |
data[offset+2] & PConstants.BLUE_MASK );
}
return arr;
};
}(pImage)),
set: (function(aImg) {
return function(arr) {
var offset,
data,
c;
if (this.isRemote) {
throw "Image is loaded remotely. Cannot set pixels.";
}
data = aImg.imageData.data;
for (var i = 0, aL = arr.length; i < aL; i++) {
c = arr[i];
offset = i*4;
data[offset+0] = (c & PConstants.RED_MASK) >>> 16;
data[offset+1] = (c & PConstants.GREEN_MASK) >>> 8;
data[offset+2] = (c & PConstants.BLUE_MASK);
data[offset+3] = (c & PConstants.ALPHA_MASK) >>> 24;
}
aImg.__isDirty = true;
};
}(pImage))
};
}
/**
* Datatype for storing images. Processing can display .gif, .jpg, .tga, and .png images. Images may be
* displayed in 2D and 3D space. Before an image is used, it must be loaded with the loadImage() function.
* The PImage object contains fields for the width and height of the image, as well as an array called
* pixels[] which contains the values for every pixel in the image. A group of methods, described below,
* allow easy access to the image's pixels and alpha channel and simplify the process of compositing.
* Before using the pixels[] array, be sure to use the loadPixels() method on the image to make sure that the
* pixel data is properly loaded. To create a new image, use the createImage() function (do not use new PImage()).
*
* @param {int} width image width
* @param {int} height image height
* @param {MODE} format Either RGB, ARGB, ALPHA (grayscale alpha channel)
*
* @returns {PImage}
*
* @see loadImage
* @see imageMode
* @see createImage
*/
var PImage = function(aWidth, aHeight, aFormat) {
// Keep track of whether or not the cached imageData has been touched.
this.__isDirty = false;
if (aWidth instanceof HTMLImageElement) {
// convert an <img> to a PImage
this.fromHTMLImageData(aWidth);
} else if (aHeight || aFormat) {
this.width = aWidth || 1;
this.height = aHeight || 1;
// Stuff a canvas into sourceImg so image() calls can use drawImage like an <img>
var canvas = this.sourceImg = document.createElement("canvas");
canvas.width = this.width;
canvas.height = this.height;
//XXX(jeresig): Commenting out imageData stuff
//var imageData = this.imageData = canvas.getContext('2d').createImageData(this.width, this.height);
this.format = (aFormat === PConstants.ARGB || aFormat === PConstants.ALPHA) ? aFormat : PConstants.RGB;
//if (this.format === PConstants.RGB) {
// Set the alpha channel of an RGB image to opaque.
//for (var i = 3, data = this.imageData.data, len = data.length; i < len; i += 4) {
//data[i] = 255;
//}
//}
//this.__isDirty = true;
//this.updatePixels();
} else {
this.width = 0;
this.height = 0;
//XXX(jeresig): Commenting out imageData stuff
//this.imageData = utilityContext2d.createImageData(1, 1);
this.format = PConstants.ARGB;
}
//XXX(jeresig): Commenting out imageData stuff
//this.pixels = buildPixelsObject(this);
};
PImage.prototype = {
/**
* Temporary hack to deal with cross-Processing-instance created PImage. See
* tickets #1623 and #1644.
*/
__isPImage: true,
/**
* @member PImage
* Updates the image with the data in its pixels[] array. Use in conjunction with loadPixels(). If
* you're only reading pixels from the array, there's no need to call updatePixels().
* Certain renderers may or may not seem to require loadPixels() or updatePixels(). However, the rule
* is that any time you want to manipulate the pixels[] array, you must first call loadPixels(), and
* after changes have been made, call updatePixels(). Even if the renderer may not seem to use this
* function in the current Processing release, this will always be subject to change.
* Currently, none of the renderers use the additional parameters to updatePixels().
*/
updatePixels: function() {
var canvas = this.sourceImg;
if (canvas && canvas instanceof HTMLCanvasElement && this.__isDirty) {
canvas.getContext('2d').putImageData(this.imageData, 0, 0);
}
this.__isDirty = false;
},
fromHTMLImageData: function(htmlImg) {
// convert an <img> to a PImage
var canvasData = getCanvasData(htmlImg);
//XXX(jeresig): Commenting out imageData stuff
//try {
//var imageData = canvasData.context.getImageData(0, 0, htmlImg.width, htmlImg.height);
//this.fromImageData(imageData);
//} catch(e) {
if (htmlImg.width && htmlImg.height) {
this.isRemote = true;
this.width = htmlImg.width;
this.height = htmlImg.height;
}
//}
this.sourceImg = htmlImg;
},
'get': function(x, y, w, h) {
if (!arguments.length) {
return p.get(this);
}
if (arguments.length === 2) {
return p.get(x, y, this);
}
if (arguments.length === 4) {
return p.get(x, y, w, h, this);
}
},
/**
* @member PImage
* Changes the color of any pixel or writes an image directly into the image. The x and y parameter
* specify the pixel or the upper-left corner of the image. The color parameter specifies the color value.
* Setting the color of a single pixel with set(x, y) is easy, but not as fast as putting the data
* directly into pixels[]. The equivalent statement to "set(x, y, #000000)" using pixels[] is
* "pixels[y*width+x] = #000000". Processing requires calling loadPixels() to load the display window
* data into the pixels[] array before getting the values and calling updatePixels() to update the window.
*
* @param {int} x x-coordinate of the pixel or upper-left corner of the image
* @param {int} y y-coordinate of the pixel or upper-left corner of the image
* @param {color} color any value of the color datatype
*
* @see get
* @see pixels[]
* @see copy
*/
'set': function(x, y, c) {
p.set(x, y, c, this);
this.__isDirty = true;
},
/**
* @member PImage
* Blends a region of pixels into the image specified by the img parameter. These copies utilize full
* alpha channel support and a choice of the following modes to blend the colors of source pixels (A)
* with the ones of pixels in the destination image (B):
* BLEND - linear interpolation of colours: C = A*factor + B
* ADD - additive blending with white clip: C = min(A*factor + B, 255)
* SUBTRACT - subtractive blending with black clip: C = max(B - A*factor, 0)
* DARKEST - only the darkest colour succeeds: C = min(A*factor, B)
* LIGHTEST - only the lightest colour succeeds: C = max(A*factor, B)
* DIFFERENCE - subtract colors from underlying image.
* EXCLUSION - similar to DIFFERENCE, but less extreme.
* MULTIPLY - Multiply the colors, result will always be darker.
* SCREEN - Opposite multiply, uses inverse values of the colors.
* OVERLAY - A mix of MULTIPLY and SCREEN. Multiplies dark values, and screens light values.
* HARD_LIGHT - SCREEN when greater than 50% gray, MULTIPLY when lower.
* SOFT_LIGHT - Mix of DARKEST and LIGHTEST. Works like OVERLAY, but not as harsh.
* DODGE - Lightens light tones and increases contrast, ignores darks. Called "Color Dodge" in Illustrator and Photoshop.
* BURN - Darker areas are applied, increasing contrast, ignores lights. Called "Color Burn" in Illustrator and Photoshop.
* All modes use the alpha information (highest byte) of source image pixels as the blending factor.
* If the source and destination regions are different sizes, the image will be automatically resized to
* match the destination size. If the srcImg parameter is not used, the display window is used as the source image.
* This function ignores imageMode().
*
* @param {int} x X coordinate of the source's upper left corner
* @param {int} y Y coordinate of the source's upper left corner
* @param {int} width source image width
* @param {int} height source image height
* @param {int} dx X coordinate of the destinations's upper left corner
* @param {int} dy Y coordinate of the destinations's upper left corner
* @param {int} dwidth destination image width
* @param {int} dheight destination image height
* @param {PImage} srcImg an image variable referring to the source image
* @param {MODE} MODE Either BLEND, ADD, SUBTRACT, LIGHTEST, DARKEST, DIFFERENCE, EXCLUSION,
* MULTIPLY, SCREEN, OVERLAY, HARD_LIGHT, SOFT_LIGHT, DODGE, BURN
*
* @see alpha
* @see copy
*/
blend: function(srcImg, x, y, width, height, dx, dy, dwidth, dheight, MODE) {
if (arguments.length === 9) {
p.blend(this, srcImg, x, y, width, height, dx, dy, dwidth, dheight, this);
} else if (arguments.length === 10) {
p.blend(srcImg, x, y, width, height, dx, dy, dwidth, dheight, MODE, this);
}
delete this.sourceImg;
},
/**
* @member PImage
* Copies a region of pixels from one image into another. If the source and destination regions
* aren't the same size, it will automatically resize source pixels to fit the specified target region.
* No alpha information is used in the process, however if the source image has an alpha channel set,
* it will be copied as well. This function ignores imageMode().
*
* @param {int} sx X coordinate of the source's upper left corner
* @param {int} sy Y coordinate of the source's upper left corner
* @param {int} swidth source image width
* @param {int} sheight source image height
* @param {int} dx X coordinate of the destinations's upper left corner
* @param {int} dy Y coordinate of the destinations's upper left corner
* @param {int} dwidth destination image width
* @param {int} dheight destination image height
* @param {PImage} srcImg an image variable referring to the source image
*
* @see alpha
* @see blend
*/
copy: function(srcImg, sx, sy, swidth, sheight, dx, dy, dwidth, dheight) {
if (arguments.length === 8) {
p.blend(this, srcImg, sx, sy, swidth, sheight, dx, dy, dwidth, PConstants.REPLACE, this);
} else if (arguments.length === 9) {
p.blend(srcImg, sx, sy, swidth, sheight, dx, dy, dwidth, dheight, PConstants.REPLACE, this);
}
delete this.sourceImg;
},
/**
* @member PImage
* Filters an image as defined by one of the following modes:
* THRESHOLD - converts the image to black and white pixels depending if they are above or below
* the threshold defined by the level parameter. The level must be between 0.0 (black) and 1.0(white).
* If no level is specified, 0.5 is used.
* GRAY - converts any colors in the image to grayscale equivalents
* INVERT - sets each pixel to its inverse value
* POSTERIZE - limits each channel of the image to the number of colors specified as the level parameter
* BLUR - executes a Guassian blur with the level parameter specifying the extent of the blurring.
* If no level parameter is used, the blur is equivalent to Guassian blur of radius 1.
* OPAQUE - sets the alpha channel to entirely opaque.
* ERODE - reduces the light areas with the amount defined by the level parameter.
* DILATE - increases the light areas with the amount defined by the level parameter
*
* @param {MODE} MODE Either THRESHOLD, GRAY, INVERT, POSTERIZE, BLUR, OPAQUE, ERODE, or DILATE
* @param {int|float} param in the range from 0 to 1
*/
filter: function(mode, param) {
if (arguments.length === 2) {
p.filter(mode, param, this);
} else if (arguments.length === 1) {
// no param specified, send null to show its invalid
p.filter(mode, null, this);
}
delete this.sourceImg;
},
/**
* @member PImage
* Saves the image into a file. Images are saved in TIFF, TARGA, JPEG, and PNG format depending on
* the extension within the filename parameter. For example, "image.tif" will have a TIFF image and
* "image.png" will save a PNG image. If no extension is included in the filename, the image will save
* in TIFF format and .tif will be added to the name. These files are saved to the sketch's folder,
* which may be opened by selecting "Show sketch folder" from the "Sketch" menu. It is not possible to
* use save() while running the program in a web browser.
* To save an image created within the code, rather than through loading, it's necessary to make the
* image with the createImage() function so it is aware of the location of the program and can therefore
* save the file to the right place. See the createImage() reference for more information.
*
* @param {String} filename a sequence of letters and numbers
*/
save: function(file){
p.save(file,this);
},
/**
* @member PImage
* Resize the image to a new width and height. To make the image scale proportionally, use 0 as the
* value for the wide or high parameter.
*
* @param {int} wide the resized image width
* @param {int} high the resized image height
*
* @see get
*/
resize: function(w, h) {
if (this.isRemote) { // Remote images cannot access imageData
throw "Image is loaded remotely. Cannot resize.";
}
if (this.width !== 0 || this.height !== 0) {
// make aspect ratio if w or h is 0
if (w === 0 && h !== 0) {
w = Math.floor(this.width / this.height * h);
} else if (h === 0 && w !== 0) {
h = Math.floor(this.height / this.width * w);
}
// put 'this.imageData' into a new canvas
var canvas = getCanvasData(this.imageData).canvas;
// pull imageData object out of canvas into ImageData object
var imageData = getCanvasData(canvas, w, h).context.getImageData(0, 0, w, h);
// set this as new pimage
this.fromImageData(imageData);
}
},
/**
* @member PImage
* Masks part of an image from displaying by loading another image and using it as an alpha channel.
* This mask image should only contain grayscale data, but only the blue color channel is used. The
* mask image needs to be the same size as the image to which it is applied.
* In addition to using a mask image, an integer array containing the alpha channel data can be
* specified directly. This method is useful for creating dynamically generated alpha masks. This
* array must be of the same length as the target image's pixels array and should contain only grayscale
* data of values between 0-255.
*
* @param {PImage} maskImg any PImage object used as the alpha channel for "img", needs to be same
* size as "img"
* @param {int[]} maskArray any array of Integer numbers used as the alpha channel, needs to be same
* length as the image's pixel array
*/
mask: function(mask) {
var obj = this.toImageData(),
i,
size;
if (mask instanceof PImage || mask.__isPImage) {
if (mask.width === this.width && mask.height === this.height) {
mask = mask.toImageData();
for (i = 2, size = this.width * this.height * 4; i < size; i += 4) {
// using it as an alpha channel
obj.data[i + 1] = mask.data[i];
// but only the blue color channel
}
} else {
throw "mask must have the same dimensions as PImage.";
}
} else if (mask instanceof Array) {
if (this.width * this.height === mask.length) {
for (i = 0, size = mask.length; i < size; ++i) {
obj.data[i * 4 + 3] = mask[i];
}
} else {
throw "mask array must be the same length as PImage pixels array.";
}
}
this.fromImageData(obj);
},
// These are intentionally left blank for PImages, we work live with pixels and draw as necessary
/**
* @member PImage
* Loads the pixel data for the image into its pixels[] array. This function must always be called
* before reading from or writing to pixels[].
* Certain renderers may or may not seem to require loadPixels() or updatePixels(). However, the
* rule is that any time you want to manipulate the pixels[] array, you must first call loadPixels(),
* and after changes have been made, call updatePixels(). Even if the renderer may not seem to use
* this function in the current Processing release, this will always be subject to change.
*/
loadPixels: nop,
toImageData: function() {
if (this.isRemote) {
return this.sourceImg;
}
if (!this.__isDirty) {
return this.imageData;
}
var canvasData = getCanvasData(this.imageData);
return canvasData.context.getImageData(0, 0, this.width, this.height);
},
toDataURL: function() {
if (this.isRemote) { // Remote images cannot access imageData
throw "Image is loaded remotely. Cannot create dataURI.";
}
var canvasData = getCanvasData(this.imageData);
return canvasData.canvas.toDataURL();
},
fromImageData: function(canvasImg) {
var w = canvasImg.width,
h = canvasImg.height,
canvas = document.createElement('canvas'),
ctx = canvas.getContext('2d');
this.width = canvas.width = w;
this.height = canvas.height = h;
ctx.putImageData(canvasImg, 0, 0);
// changed for 0.9
this.format = PConstants.ARGB;
this.imageData = canvasImg;
this.sourceImg = canvas;
}
};
p.PImage = PImage;
/**
* Creates a new PImage (the datatype for storing images). This provides a fresh buffer of pixels to play
* with. Set the size of the buffer with the width and height parameters. The format parameter defines how
* the pixels are stored. See the PImage reference for more information.
* Be sure to include all three parameters, specifying only the width and height (but no format) will
* produce a strange error.
* Advanced users please note that createImage() should be used instead of the syntax new PImage().
*
* @param {int} width image width
* @param {int} height image height
* @param {MODE} format Either RGB, ARGB, ALPHA (grayscale alpha channel)
*
* @returns {PImage}
*
* @see PImage
* @see PGraphics
*/
p.createImage = function(w, h, mode) {
return new PImage(w,h,mode);
};
// Loads an image for display. Type is an extension. Callback is fired on load.
/**
* Loads an image into a variable of type PImage. Four types of images ( .gif, .jpg, .tga, .png) images may
* be loaded. To load correctly, images must be located in the data directory of the current sketch. In most
* cases, load all images in setup() to preload them at the start of the program. Loading images inside draw()
* will reduce the speed of a program.
* The filename parameter can also be a URL to a file found online. For security reasons, a Processing sketch
* found online can only download files from the same server from which it came. Getting around this restriction
* requires a signed applet.
* The extension parameter is used to determine the image type in cases where the image filename does not end
* with a proper extension. Specify the extension as the second parameter to loadImage(), as shown in the
* third example on this page.
* If an image is not loaded successfully, the null value is returned and an error message will be printed to
* the console. The error message does not halt the program, however the null value may cause a NullPointerException
* if your code does not check whether the value returned from loadImage() is null.
* Depending on the type of error, a PImage object may still be returned, but the width and height of the image
* will be set to -1. This happens if bad image data is returned or cannot be decoded properly. Sometimes this happens
* with image URLs that produce a 403 error or that redirect to a password prompt, because loadImage() will attempt
* to interpret the HTML as image data.
*
* @param {String} filename name of file to load, can be .gif, .jpg, .tga, or a handful of other image
* types depending on your platform.
* @param {String} extension the type of image to load, for example "png", "gif", "jpg"
*
* @returns {PImage}
*
* @see PImage
* @see image
* @see imageMode
* @see background
*/
p.loadImage = function(file, type, callback) {
// if type is specified add it with a . to file to make the filename
if (type) {
file = file + "." + type;
}
var pimg;
// if image is in the preloader cache return a new PImage
if (curSketch.imageCache.images[file]) {
pimg = new PImage(curSketch.imageCache.images[file]);
pimg.loaded = true;
return pimg;
}
// else async load it
pimg = new PImage();
var img = document.createElement('img');
pimg.sourceImg = img;
img.onload = (function(aImage, aPImage, aCallback) {
var image = aImage;
var pimg = aPImage;
var callback = aCallback;
return function() {
// change the <img> object into a PImage now that its loaded
pimg.fromHTMLImageData(image);
pimg.loaded = true;
if (callback) {
callback();
}
};
}(img, pimg, callback));
img.src = file; // needs to be called after the img.onload function is declared or it wont work in opera
return pimg;
};
// async loading of large images, same functionality as loadImage above
/**
* This function load images on a separate thread so that your sketch does not freeze while images load during
* setup(). While the image is loading, its width and height will be 0. If an error occurs while loading the image,
* its width and height will be set to -1. You'll know when the image has loaded properly because its width and
* height will be greater than 0. Asynchronous image loading (particularly when downloading from a server) can
* dramatically improve performance.
* The extension parameter is used to determine the image type in cases where the image filename does not end
* with a proper extension. Specify the extension as the second parameter to requestImage().
*
* @param {String} filename name of file to load, can be .gif, .jpg, .tga, or a handful of other image
* types depending on your platform.
* @param {String} extension the type of image to load, for example "png", "gif", "jpg"
*
* @returns {PImage}
*
* @see PImage
* @see loadImage
*/
p.requestImage = p.loadImage;
function get$2(x,y) {
var data;
// return the color at x,y (int) of curContext
if (x >= p.width || x < 0 || y < 0 || y >= p.height) {
// x,y is outside image return transparent black
return 0;
}
// loadPixels() has been called
if (isContextReplaced) {
var offset = ((0|x) + p.width * (0|y)) * 4;
data = p.imageData.data;
return (data[offset + 3] << 24) & PConstants.ALPHA_MASK |
(data[offset] << 16) & PConstants.RED_MASK |
(data[offset + 1] << 8) & PConstants.GREEN_MASK |
data[offset + 2] & PConstants.BLUE_MASK;
}
// x,y is inside canvas space
data = p.toImageData(0|x, 0|y, 1, 1).data;
return (data[3] << 24) & PConstants.ALPHA_MASK |
(data[0] << 16) & PConstants.RED_MASK |
(data[1] << 8) & PConstants.GREEN_MASK |
data[2] & PConstants.BLUE_MASK;
}
function get$3(x,y,img) {
if (img.isRemote) { // Remote images cannot access imageData
throw "Image is loaded remotely. Cannot get x,y.";
}
// PImage.get(x,y) was called, return the color (int) at x,y of img
var offset = y * img.width * 4 + (x * 4),
data = img.imageData.data;
return (data[offset + 3] << 24) & PConstants.ALPHA_MASK |
(data[offset] << 16) & PConstants.RED_MASK |
(data[offset + 1] << 8) & PConstants.GREEN_MASK |
data[offset + 2] & PConstants.BLUE_MASK;
}
function get$4(x, y, w, h) {
// return a PImage of w and h from cood x,y of curContext
var c = new PImage(w, h, PConstants.ARGB);
c.fromImageData(p.toImageData(x, y, w, h));
return c;
}
function get$5(x, y, w, h, img) {
if (img.isRemote) { // Remote images cannot access imageData
throw "Image is loaded remotely. Cannot get x,y,w,h.";
}
// PImage.get(x,y,w,h) was called, return x,y,w,h PImage of img
// offset start point needs to be *4
var c = new PImage(w, h, PConstants.ARGB), cData = c.imageData.data,
imgWidth = img.width, imgHeight = img.height, imgData = img.imageData.data;
// Don't need to copy pixels from the image outside ranges.
var startRow = Math.max(0, -y), startColumn = Math.max(0, -x),
stopRow = Math.min(h, imgHeight - y), stopColumn = Math.min(w, imgWidth - x);
for (var i = startRow; i < stopRow; ++i) {
var sourceOffset = ((y + i) * imgWidth + (x + startColumn)) * 4;
var targetOffset = (i * w + startColumn) * 4;
for (var j = startColumn; j < stopColumn; ++j) {
cData[targetOffset++] = imgData[sourceOffset++];
cData[targetOffset++] = imgData[sourceOffset++];
cData[targetOffset++] = imgData[sourceOffset++];
cData[targetOffset++] = imgData[sourceOffset++];
}
}
c.__isDirty = true;
return c;
}
// Gets a single pixel or block of pixels from the current Canvas Context or a PImage
/**
* Reads the color of any pixel or grabs a section of an image. If no parameters are specified, the entire
* image is returned. Get the value of one pixel by specifying an x,y coordinate. Get a section of the display
* window by specifying an additional width and height parameter. If the pixel requested is outside of the image
* window, black is returned. The numbers returned are scaled according to the current color ranges, but only RGB
* values are returned by this function. For example, even though you may have drawn a shape with colorMode(HSB),
* the numbers returned will be in RGB.
* Getting the color of a single pixel with get(x, y) is easy, but not as fast as grabbing the data directly
* from pixels[]. The equivalent statement to "get(x, y)" using pixels[] is "pixels[y*width+x]". Processing
* requires calling loadPixels() to load the display window data into the pixels[] array before getting the values.
* This function ignores imageMode().
*
* @param {int} x x-coordinate of the pixel
* @param {int} y y-coordinate of the pixel
* @param {int} width width of pixel rectangle to get
* @param {int} height height of pixel rectangle to get
*
* @returns {Color|PImage}
*
* @see set
* @see pixels[]
* @see imageMode
*/
p.get = function(x, y, w, h, img) {
// for 0 2 and 4 arguments use curContext, otherwise PImage.get was called
if (img !== undefined) {
return get$5(x, y, w, h, img);
}
if (h !== undefined) {
return get$4(x, y, w, h);
}
if (w !== undefined) {
return get$3(x, y, w);
}
if (y !== undefined) {
return get$2(x, y);
}
if (x !== undefined) {
// PImage.get() was called, return a new PImage
return get$5(0, 0, x.width, x.height, x);
}
return get$4(0, 0, p.width, p.height);
};
/**
* Creates and returns a new <b>PGraphics</b> object of the types P2D, P3D, and JAVA2D. Use this class if you need to draw
* into an off-screen graphics buffer. It's not possible to use <b>createGraphics()</b> with OPENGL, because it doesn't
* allow offscreen use. The DXF and PDF renderers require the filename parameter. <br /><br /> It's important to call
* any drawing commands between beginDraw() and endDraw() statements. This is also true for any commands that affect
* drawing, such as smooth() or colorMode().<br /><br /> Unlike the main drawing surface which is completely opaque,
* surfaces created with createGraphics() can have transparency. This makes it possible to draw into a graphics and
* maintain the alpha channel.
*
* @param {int} width width in pixels
* @param {int} height height in pixels
* @param {int} renderer Either P2D, P3D, JAVA2D, PDF, DXF
* @param {String} filename the name of the file (not supported yet)
*/
p.createGraphics = function(w, h, render) {
var pg = new Processing();
pg.size(w, h, render);
return pg;
};
// pixels caching
function resetContext() {
if(isContextReplaced) {
curContext = originalContext;
isContextReplaced = false;
p.updatePixels();
}
}
function SetPixelContextWrapper() {
function wrapFunction(newContext, name) {
function wrapper() {
resetContext();
curContext[name].apply(curContext, arguments);
}
newContext[name] = wrapper;
}
function wrapProperty(newContext, name) {
function getter() {
resetContext();
return curContext[name];
}
function setter(value) {
resetContext();
curContext[name] = value;
}
p.defineProperty(newContext, name, { get: getter, set: setter });
}
for(var n in curContext) {
if(typeof curContext[n] === 'function') {
wrapFunction(this, n);
} else {
wrapProperty(this, n);
}
}
}
function replaceContext() {
if(isContextReplaced) {
return;
}
p.loadPixels();
if(proxyContext === null) {
originalContext = curContext;
proxyContext = new SetPixelContextWrapper();
}
isContextReplaced = true;
curContext = proxyContext;
setPixelsCached = 0;
}
function set$3(x, y, c) {
if (x < p.width && x >= 0 && y >= 0 && y < p.height) {
replaceContext();
p.pixels.setPixel((0|x)+p.width*(0|y), c);
if(++setPixelsCached > maxPixelsCached) {
resetContext();
}
}
}
function set$4(x, y, obj, img) {
if (img.isRemote) { // Remote images cannot access imageData
throw "Image is loaded remotely. Cannot set x,y.";
}
var c = p.color.toArray(obj);
var offset = y * img.width * 4 + (x*4);
var data = img.imageData.data;
data[offset] = c[0];
data[offset+1] = c[1];
data[offset+2] = c[2];
data[offset+3] = c[3];
}
// Paints a pixel array into the canvas
/**
* Changes the color of any pixel or writes an image directly into the display window. The x and y parameters
* specify the pixel to change and the color parameter specifies the color value. The color parameter is affected
* by the current color mode (the default is RGB values from 0 to 255). When setting an image, the x and y
* parameters define the coordinates for the upper-left corner of the image.
* Setting the color of a single pixel with set(x, y) is easy, but not as fast as putting the data directly
* into pixels[]. The equivalent statement to "set(x, y, #000000)" using pixels[] is "pixels[y*width+x] = #000000".
* You must call loadPixels() to load the display window data into the pixels[] array before setting the values
* and calling updatePixels() to update the window with any changes. This function ignores imageMode().
*
* @param {int} x x-coordinate of the pixel
* @param {int} y y-coordinate of the pixel
* @param {Color} obj any value of the color datatype
* @param {PImage} img any valid variable of type PImage
*
* @see get
* @see pixels[]
* @see imageMode
*/
p.set = function(x, y, obj, img) {
var color, oldFill;
if (arguments.length === 3) {
// called p.set(), was it with a color or a img ?
if (typeof obj === "number") {
set$3(x, y, obj);
} else if (obj instanceof PImage || obj.__isPImage) {
p.image(obj, x, y);
}
} else if (arguments.length === 4) {
// PImage.set(x,y,c) was called, set coordinate x,y color to c of img
set$4(x, y, obj, img);
}
};
p.imageData = {};
// handle the sketch code for pixels[]
// parser code converts pixels[] to getPixels() or setPixels(),
// .length becomes getLength()
/**
* Array containing the values for all the pixels in the display window. These values are of the color datatype.
* This array is the size of the display window. For example, if the image is 100x100 pixels, there will be 10000
* values and if the window is 200x300 pixels, there will be 60000 values. The index value defines the position
* of a value within the array. For example, the statment color b = pixels[230] will set the variable b to be
* equal to the value at that location in the array.
* Before accessing this array, the data must loaded with the loadPixels() function. After the array data has
* been modified, the updatePixels() function must be run to update the changes.
*
* @param {int} index must not exceed the size of the array
*
* @see loadPixels
* @see updatePixels
* @see get
* @see set
* @see PImage
*/
p.pixels = {
getLength: function() { return p.imageData.data.length ? p.imageData.data.length/4 : 0; },
getPixel: function(i) {
var offset = i*4, data = p.imageData.data;
return (data[offset+3] << 24) & 0xff000000 |
(data[offset+0] << 16) & 0x00ff0000 |
(data[offset+1] << 8) & 0x0000ff00 |
data[offset+2] & 0x000000ff;
},
setPixel: function(i,c) {
var offset = i*4, data = p.imageData.data;
data[offset+0] = (c & 0x00ff0000) >>> 16; // RED_MASK
data[offset+1] = (c & 0x0000ff00) >>> 8; // GREEN_MASK
data[offset+2] = (c & 0x000000ff); // BLUE_MASK
data[offset+3] = (c & 0xff000000) >>> 24; // ALPHA_MASK
},
toArray: function() {
var arr = [], length = p.imageData.width * p.imageData.height, data = p.imageData.data;
for (var i = 0, offset = 0; i < length; i++, offset += 4) {
arr.push((data[offset+3] << 24) & 0xff000000 |
(data[offset+0] << 16) & 0x00ff0000 |
(data[offset+1] << 8) & 0x0000ff00 |
data[offset+2] & 0x000000ff);
}
return arr;
},
set: function(arr) {
for (var i = 0, aL = arr.length; i < aL; i++) {
this.setPixel(i, arr[i]);
}
}
};
// Gets a 1-Dimensional pixel array from Canvas
/**
* Loads the pixel data for the display window into the pixels[] array. This function must always be called
* before reading from or writing to pixels[].
* Certain renderers may or may not seem to require loadPixels() or updatePixels(). However, the rule is that
* any time you want to manipulate the pixels[] array, you must first call loadPixels(), and after changes
* have been made, call updatePixels(). Even if the renderer may not seem to use this function in the current
* Processing release, this will always be subject to change.
*
* @see pixels[]
* @see updatePixels
*/
p.loadPixels = function() {
p.imageData = drawing.$ensureContext().getImageData(0, 0, p.width, p.height);
};
// Draws a 1-Dimensional pixel array to Canvas
/**
* Updates the display window with the data in the pixels[] array. Use in conjunction with loadPixels(). If
* you're only reading pixels from the array, there's no need to call updatePixels() unless there are changes.
* Certain renderers may or may not seem to require loadPixels() or updatePixels(). However, the rule is that
* any time you want to manipulate the pixels[] array, you must first call loadPixels(), and after changes
* have been made, call updatePixels(). Even if the renderer may not seem to use this function in the current
* Processing release, this will always be subject to change.
* Currently, none of the renderers use the additional parameters to updatePixels(), however this may be
* implemented in the future.
*
* @see loadPixels
* @see pixels[]
*/
p.updatePixels = function() {
if (p.imageData) {
drawing.$ensureContext().putImageData(p.imageData, 0, 0);
}
};
/**
* Set various hints and hacks for the renderer. This is used to handle obscure rendering features that cannot be
* implemented in a consistent manner across renderers. Many options will often graduate to standard features
* instead of hints over time.
* hint(ENABLE_OPENGL_4X_SMOOTH) - Enable 4x anti-aliasing for OpenGL. This can help force anti-aliasing if
* it has not been enabled by the user. On some graphics cards, this can also be set by the graphics driver's
* control panel, however not all cards make this available. This hint must be called immediately after the
* size() command because it resets the renderer, obliterating any settings and anything drawn (and like size(),
* re-running the code that came before it again).
* hint(DISABLE_OPENGL_2X_SMOOTH) - In Processing 1.0, Processing always enables 2x smoothing when the OpenGL
* renderer is used. This hint disables the default 2x smoothing and returns the smoothing behavior found in
* earlier releases, where smooth() and noSmooth() could be used to enable and disable smoothing, though the
* quality was inferior.
* hint(ENABLE_NATIVE_FONTS) - Use the native version fonts when they are installed, rather than the bitmapped
* version from a .vlw file. This is useful with the JAVA2D renderer setting, as it will improve font rendering
* speed. This is not enabled by default, because it can be misleading while testing because the type will look
* great on your machine (because you have the font installed) but lousy on others' machines if the identical
* font is unavailable. This option can only be set per-sketch, and must be called before any use of textFont().
* hint(DISABLE_DEPTH_TEST) - Disable the zbuffer, allowing you to draw on top of everything at will. When depth
* testing is disabled, items will be drawn to the screen sequentially, like a painting. This hint is most often
* used to draw in 3D, then draw in 2D on top of it (for instance, to draw GUI controls in 2D on top of a 3D
* interface). Starting in release 0149, this will also clear the depth buffer. Restore the default with
* hint(ENABLE_DEPTH_TEST), but note that with the depth buffer cleared, any 3D drawing that happens later in
* draw() will ignore existing shapes on the screen.
* hint(ENABLE_DEPTH_SORT) - Enable primitive z-sorting of triangles and lines in P3D and OPENGL. This can slow
* performance considerably, and the algorithm is not yet perfect. Restore the default with hint(DISABLE_DEPTH_SORT).
* hint(DISABLE_OPENGL_ERROR_REPORT) - Speeds up the OPENGL renderer setting by not checking for errors while
* running. Undo with hint(ENABLE_OPENGL_ERROR_REPORT).
* As of release 0149, unhint() has been removed in favor of adding additional ENABLE/DISABLE constants to reset
* the default behavior. This prevents the double negatives, and also reinforces which hints can be enabled or disabled.
*
* @param {MODE} item constant: name of the hint to be enabled or disabled
*
* @see PGraphics
* @see createGraphics
* @see size
*/
p.hint = function(which) {
var curContext = drawing.$ensureContext();
if (which === PConstants.DISABLE_DEPTH_TEST) {
curContext.disable(curContext.DEPTH_TEST);
curContext.depthMask(false);
curContext.clear(curContext.DEPTH_BUFFER_BIT);
}
else if (which === PConstants.ENABLE_DEPTH_TEST) {
curContext.enable(curContext.DEPTH_TEST);
curContext.depthMask(true);
}
};
/**
* The background() function sets the color used for the background of the Processing window.
* The default background is light gray. In the <b>draw()</b> function, the background color is used to clear the display window at the beginning of each frame.
* An image can also be used as the background for a sketch, however its width and height must be the same size as the sketch window.
* To resize an image 'b' to the size of the sketch window, use b.resize(width, height).
* Images used as background will ignore the current <b>tint()</b> setting.
* For the main drawing surface, the alpha value will be ignored. However,
* alpha can be used on PGraphics objects from <b>createGraphics()</b>. This is
* the only way to set all the pixels partially transparent, for instance.
* If the 'gray' parameter is passed in the function sets the background to a grayscale value, based on the
* current colorMode.
* <p>
* Note that background() should be called before any transformations occur,
* because some implementations may require the current transformation matrix
* to be identity before drawing.
*
* @param {int|float} gray specifies a value between white and black
* @param {int|float} value1 red or hue value (depending on the current color mode)
* @param {int|float} value2 green or saturation value (depending on the current color mode)
* @param {int|float} value3 blue or brightness value (depending on the current color mode)
* @param {int|float} alpha opacity of the background
* @param {Color} color any value of the color datatype
* @param {int} hex color value in hexadecimal notation (i.e. #FFCC00 or 0xFFFFCC00)
* @param {PImage} image an instance of a PImage to use as a background
*
* @see #stroke()
* @see #fill()
* @see #tint()
* @see #colorMode()
*/
var backgroundHelper = function(arg1, arg2, arg3, arg4) {
var obj;
if (arg1 instanceof PImage || arg1.__isPImage) {
obj = arg1;
if (!obj.loaded) {
throw "Error using image in background(): PImage not loaded.";
}
if(obj.width !== p.width || obj.height !== p.height){
throw "Background image must be the same dimensions as the canvas.";
}
} else {
obj = p.color(arg1, arg2, arg3, arg4);
}
backgroundObj = obj;
};
Drawing2D.prototype.background = function(arg1, arg2, arg3, arg4) {
if (arg1 !== undef) {
backgroundHelper(arg1, arg2, arg3, arg4);
}
if (backgroundObj instanceof PImage || backgroundObj.__isPImage) {
saveContext();
curContext.setTransform(1, 0, 0, 1, 0, 0);
p.image(backgroundObj, 0, 0);
restoreContext();
} else {
saveContext();
curContext.setTransform(1, 0, 0, 1, 0, 0);
// If the background is transparent
if (p.alpha(backgroundObj) !== colorModeA) {
curContext.clearRect(0,0, p.width, p.height);
}
curContext.fillStyle = p.color.toString(backgroundObj);
curContext.fillRect(0, 0, p.width, p.height);
isFillDirty = true;
restoreContext();
}
};
Drawing3D.prototype.background = function(arg1, arg2, arg3, arg4) {
if (arguments.length > 0) {
backgroundHelper(arg1, arg2, arg3, arg4);
}
var c = p.color.toGLArray(backgroundObj);
curContext.clearColor(c[0], c[1], c[2], c[3]);
curContext.clear(curContext.COLOR_BUFFER_BIT | curContext.DEPTH_BUFFER_BIT);
// An image as a background in 3D is not implemented yet
};
// Draws an image to the Canvas
/**
* Displays images to the screen. The images must be in the sketch's "data" directory to load correctly. Select "Add
* file..." from the "Sketch" menu to add the image. Processing currently works with GIF, JPEG, and Targa images. The
* color of an image may be modified with the tint() function and if a GIF has transparency, it will maintain its
* transparency. The img parameter specifies the image to display and the x and y parameters define the location of
* the image from its upper-left corner. The image is displayed at its original size unless the width and height
* parameters specify a different size. The imageMode() function changes the way the parameters work. A call to
* imageMode(CORNERS) will change the width and height parameters to define the x and y values of the opposite
* corner of the image.
*
* @param {PImage} img the image to display
* @param {int|float} x x-coordinate of the image
* @param {int|float} y y-coordinate of the image
* @param {int|float} width width to display the image
* @param {int|float} height height to display the image
*
* @see loadImage
* @see PImage
* @see imageMode
* @see tint
* @see background
* @see alpha
*/
Drawing2D.prototype.image = function(img, x, y, w, h) {
// Fix fractional positions
x = Math.round(x);
y = Math.round(y);
if (img.width > 0) {
var wid = w || img.width;
var hgt = h || img.height;
var bounds = imageModeConvert(x || 0, y || 0, w || img.width, h || img.height, arguments.length < 4);
var fastImage = !!img.sourceImg && curTint === null;
if (fastImage) {
var htmlElement = img.sourceImg;
if (img.__isDirty) {
img.updatePixels();
}
// Using HTML element's width and height in case if the image was resized.
curContext.drawImage(htmlElement, 0, 0,
htmlElement.width, htmlElement.height, bounds.x, bounds.y, bounds.w, bounds.h);
} else {
var obj = img.toImageData();
// Tint the image
if (curTint !== null) {
curTint(obj);
img.__isDirty = true;
}
curContext.drawImage(getCanvasData(obj).canvas, 0, 0,
img.width, img.height, bounds.x, bounds.y, bounds.w, bounds.h);
}
}
};
Drawing3D.prototype.image = function(img, x, y, w, h) {
if (img.width > 0) {
// Fix fractional positions
x = Math.round(x);
y = Math.round(y);
w = w || img.width;
h = h || img.height;
p.beginShape(p.QUADS);
p.texture(img);
p.vertex(x, y, 0, 0, 0);
p.vertex(x, y+h, 0, 0, h);
p.vertex(x+w, y+h, 0, w, h);
p.vertex(x+w, y, 0, w, 0);
p.endShape();
}
};
/**
* The tint() function sets the fill value for displaying images. Images can be tinted to
* specified colors or made transparent by setting the alpha.
* <br><br>To make an image transparent, but not change it's color,
* use white as the tint color and specify an alpha value. For instance,
* tint(255, 128) will make an image 50% transparent (unless
* <b>colorMode()</b> has been used).
*
* <br><br>When using hexadecimal notation to specify a color, use "#" or
* "0x" before the values (e.g. #CCFFAA, 0xFFCCFFAA). The # syntax uses six
* digits to specify a color (the way colors are specified in HTML and CSS).
* When using the hexadecimal notation starting with "0x", the hexadecimal
* value must be specified with eight characters; the first two characters
* define the alpha component and the remainder the red, green, and blue
* components.
* <br><br>The value for the parameter "gray" must be less than or equal
* to the current maximum value as specified by <b>colorMode()</b>.
* The default maximum value is 255.
* <br><br>The tint() method is also used to control the coloring of
* textures in 3D.
*
* @param {int|float} gray any valid number
* @param {int|float} alpha opacity of the image
* @param {int|float} value1 red or hue value
* @param {int|float} value2 green or saturation value
* @param {int|float} value3 blue or brightness value
* @param {int|float} color any value of the color datatype
* @param {int} hex color value in hexadecimal notation (i.e. #FFCC00 or 0xFFFFCC00)
*
* @see #noTint()
* @see #image()
*/
p.tint = function(a1, a2, a3, a4) {
var tintColor = p.color(a1, a2, a3, a4);
var r = p.red(tintColor) / colorModeX;
var g = p.green(tintColor) / colorModeY;
var b = p.blue(tintColor) / colorModeZ;
var a = p.alpha(tintColor) / colorModeA;
curTint = function(obj) {
var data = obj.data,
length = 4 * obj.width * obj.height;
for (var i = 0; i < length;) {
data[i++] *= r;
data[i++] *= g;
data[i++] *= b;
data[i++] *= a;
}
};
// for overriding the color buffer when 3d rendering
curTint3d = function(data){
for (var i = 0; i < data.length;) {
data[i++] = r;
data[i++] = g;
data[i++] = b;
data[i++] = a;
}
};
};
/**
* The noTint() function removes the current fill value for displaying images and reverts to displaying images with their original hues.
*
* @see #tint()
* @see #image()
*/
p.noTint = function() {
curTint = null;
curTint3d = null;
};
/**
* Copies a region of pixels from the display window to another area of the display window and copies a region of pixels from an
* image used as the srcImg parameter into the display window. If the source and destination regions aren't the same size, it will
* automatically resize the source pixels to fit the specified target region. No alpha information is used in the process, however
* if the source image has an alpha channel set, it will be copied as well. This function ignores imageMode().
*
* @param {int} x X coordinate of the source's upper left corner
* @param {int} y Y coordinate of the source's upper left corner
* @param {int} width source image width
* @param {int} height source image height
* @param {int} dx X coordinate of the destination's upper left corner
* @param {int} dy Y coordinate of the destination's upper left corner
* @param {int} dwidth destination image width
* @param {int} dheight destination image height
* @param {PImage} srcImg image variable referring to the source image
*
* @see blend
* @see get
*/
p.copy = function(src, sx, sy, sw, sh, dx, dy, dw, dh) {
if (dh === undef) {
// shift everything, and introduce p
dh = dw;
dw = dy;
dy = dx;
dx = sh;
sh = sw;
sw = sy;
sy = sx;
sx = src;
src = p;
}
p.blend(src, sx, sy, sw, sh, dx, dy, dw, dh, PConstants.REPLACE);
};
/**
* Blends a region of pixels from one image into another (or in itself again) with full alpha channel support. There
* is a choice of the following modes to blend the source pixels (A) with the ones of pixels in the destination image (B):
* BLEND - linear interpolation of colours: C = A*factor + B
* ADD - additive blending with white clip: C = min(A*factor + B, 255)
* SUBTRACT - subtractive blending with black clip: C = max(B - A*factor, 0)
* DARKEST - only the darkest colour succeeds: C = min(A*factor, B)
* LIGHTEST - only the lightest colour succeeds: C = max(A*factor, B)
* DIFFERENCE - subtract colors from underlying image.
* EXCLUSION - similar to DIFFERENCE, but less extreme.
* MULTIPLY - Multiply the colors, result will always be darker.
* SCREEN - Opposite multiply, uses inverse values of the colors.
* OVERLAY - A mix of MULTIPLY and SCREEN. Multiplies dark values, and screens light values.
* HARD_LIGHT - SCREEN when greater than 50% gray, MULTIPLY when lower.
* SOFT_LIGHT - Mix of DARKEST and LIGHTEST. Works like OVERLAY, but not as harsh.
* DODGE - Lightens light tones and increases contrast, ignores darks. Called "Color Dodge" in Illustrator and Photoshop.
* BURN - Darker areas are applied, increasing contrast, ignores lights. Called "Color Burn" in Illustrator and Photoshop.
* All modes use the alpha information (highest byte) of source image pixels as the blending factor. If the source and
* destination regions are different sizes, the image will be automatically resized to match the destination size. If the
* srcImg parameter is not used, the display window is used as the source image. This function ignores imageMode().
*
* @param {int} x X coordinate of the source's upper left corner
* @param {int} y Y coordinate of the source's upper left corner
* @param {int} width source image width
* @param {int} height source image height
* @param {int} dx X coordinate of the destination's upper left corner
* @param {int} dy Y coordinate of the destination's upper left corner
* @param {int} dwidth destination image width
* @param {int} dheight destination image height
* @param {PImage} srcImg image variable referring to the source image
* @param {PImage} MODE Either BLEND, ADD, SUBTRACT, LIGHTEST, DARKEST, DIFFERENCE, EXCLUSION, MULTIPLY, SCREEN,
* OVERLAY, HARD_LIGHT, SOFT_LIGHT, DODGE, BURN
* @see filter
*/
p.blend = function(src, sx, sy, sw, sh, dx, dy, dw, dh, mode, pimgdest) {
if (src.isRemote) {
throw "Image is loaded remotely. Cannot blend image.";
}
if (mode === undef) {
// shift everything, and introduce p
mode = dh;
dh = dw;
dw = dy;
dy = dx;
dx = sh;
sh = sw;
sw = sy;
sy = sx;
sx = src;
src = p;
}
var sx2 = sx + sw,
sy2 = sy + sh,
dx2 = dx + dw,
dy2 = dy + dh,
dest = pimgdest || p;
// check if pimgdest is there and pixels, if so this was a call from pimg.blend
if (pimgdest === undef || mode === undef) {
p.loadPixels();
}
src.loadPixels();
if (src === p && p.intersect(sx, sy, sx2, sy2, dx, dy, dx2, dy2)) {
p.blit_resize(p.get(sx, sy, sx2 - sx, sy2 - sy), 0, 0, sx2 - sx - 1, sy2 - sy - 1,
dest.imageData.data, dest.width, dest.height, dx, dy, dx2, dy2, mode);
} else {
p.blit_resize(src, sx, sy, sx2, sy2, dest.imageData.data, dest.width, dest.height, dx, dy, dx2, dy2, mode);
}
if (pimgdest === undef) {
p.updatePixels();
}
};
// helper function for filter()
var buildBlurKernel = function(r) {
var radius = p.floor(r * 3.5), i, radiusi;
radius = (radius < 1) ? 1 : ((radius < 248) ? radius : 248);
if (p.shared.blurRadius !== radius) {
p.shared.blurRadius = radius;
p.shared.blurKernelSize = 1 + (p.shared.blurRadius<<1);
p.shared.blurKernel = new Float32Array(p.shared.blurKernelSize);
var sharedBlurKernal = p.shared.blurKernel;
var sharedBlurKernelSize = p.shared.blurKernelSize;
var sharedBlurRadius = p.shared.blurRadius;
// init blurKernel
for (i = 0; i < sharedBlurKernelSize; i++) {
sharedBlurKernal[i] = 0;
}
var radiusiSquared = (radius - 1) * (radius - 1);
for (i = 1; i < radius; i++) {
sharedBlurKernal[radius + i] = sharedBlurKernal[radiusi] = radiusiSquared;
}
sharedBlurKernal[radius] = radius * radius;
}
};
var blurARGB = function(r, aImg) {
var sum, cr, cg, cb, ca, c, m;
var read, ri, ym, ymi, bk0;
var wh = aImg.pixels.getLength();
var r2 = new Float32Array(wh);
var g2 = new Float32Array(wh);
var b2 = new Float32Array(wh);
var a2 = new Float32Array(wh);
var yi = 0;
var x, y, i, offset;
buildBlurKernel(r);
var aImgHeight = aImg.height;
var aImgWidth = aImg.width;
var sharedBlurKernelSize = p.shared.blurKernelSize;
var sharedBlurRadius = p.shared.blurRadius;
var sharedBlurKernal = p.shared.blurKernel;
var pix = aImg.imageData.data;
for (y = 0; y < aImgHeight; y++) {
for (x = 0; x < aImgWidth; x++) {
cb = cg = cr = ca = sum = 0;
read = x - sharedBlurRadius;
if (read<0) {
bk0 = -read;
read = 0;
} else {
if (read >= aImgWidth) {
break;
}
bk0=0;
}
for (i = bk0; i < sharedBlurKernelSize; i++) {
if (read >= aImgWidth) {
break;
}
offset = (read + yi) *4;
m = sharedBlurKernal[i];
ca += m * pix[offset + 3];
cr += m * pix[offset];
cg += m * pix[offset + 1];
cb += m * pix[offset + 2];
sum += m;
read++;
}
ri = yi + x;
a2[ri] = ca / sum;
r2[ri] = cr / sum;
g2[ri] = cg / sum;
b2[ri] = cb / sum;
}
yi += aImgWidth;
}
yi = 0;
ym = -sharedBlurRadius;
ymi = ym*aImgWidth;
for (y = 0; y < aImgHeight; y++) {
for (x = 0; x < aImgWidth; x++) {
cb = cg = cr = ca = sum = 0;
if (ym<0) {
bk0 = ri = -ym;
read = x;
} else {
if (ym >= aImgHeight) {
break;
}
bk0 = 0;
ri = ym;
read = x + ymi;
}
for (i = bk0; i < sharedBlurKernelSize; i++) {
if (ri >= aImgHeight) {
break;
}
m = sharedBlurKernal[i];
ca += m * a2[read];
cr += m * r2[read];
cg += m * g2[read];
cb += m * b2[read];
sum += m;
ri++;
read += aImgWidth;
}
offset = (x + yi) *4;
pix[offset] = cr / sum;
pix[offset + 1] = cg / sum;
pix[offset + 2] = cb / sum;
pix[offset + 3] = ca / sum;
}
yi += aImgWidth;
ymi += aImgWidth;
ym++;
}
};
// helper funtion for ERODE and DILATE modes of filter()
var dilate = function(isInverted, aImg) {
var currIdx = 0;
var maxIdx = aImg.pixels.getLength();
var out = new Int32Array(maxIdx);
var currRowIdx, maxRowIdx, colOrig, colOut, currLum;
var idxRight, idxLeft, idxUp, idxDown,
colRight, colLeft, colUp, colDown,
lumRight, lumLeft, lumUp, lumDown;
if (!isInverted) {
// erosion (grow light areas)
while (currIdx<maxIdx) {
currRowIdx = currIdx;
maxRowIdx = currIdx + aImg.width;
while (currIdx < maxRowIdx) {
colOrig = colOut = aImg.pixels.getPixel(currIdx);
idxLeft = currIdx - 1;
idxRight = currIdx + 1;
idxUp = currIdx - aImg.width;
idxDown = currIdx + aImg.width;
if (idxLeft < currRowIdx) {
idxLeft = currIdx;
}
if (idxRight >= maxRowIdx) {
idxRight = currIdx;
}
if (idxUp < 0) {
idxUp = 0;
}
if (idxDown >= maxIdx) {
idxDown = currIdx;
}
colUp = aImg.pixels.getPixel(idxUp);
colLeft = aImg.pixels.getPixel(idxLeft);
colDown = aImg.pixels.getPixel(idxDown);
colRight = aImg.pixels.getPixel(idxRight);
// compute luminance
currLum = 77*(colOrig>>16&0xff) + 151*(colOrig>>8&0xff) + 28*(colOrig&0xff);
lumLeft = 77*(colLeft>>16&0xff) + 151*(colLeft>>8&0xff) + 28*(colLeft&0xff);
lumRight = 77*(colRight>>16&0xff) + 151*(colRight>>8&0xff) + 28*(colRight&0xff);
lumUp = 77*(colUp>>16&0xff) + 151*(colUp>>8&0xff) + 28*(colUp&0xff);
lumDown = 77*(colDown>>16&0xff) + 151*(colDown>>8&0xff) + 28*(colDown&0xff);
if (lumLeft > currLum) {
colOut = colLeft;
currLum = lumLeft;
}
if (lumRight > currLum) {
colOut = colRight;
currLum = lumRight;
}
if (lumUp > currLum) {
colOut = colUp;
currLum = lumUp;
}
if (lumDown > currLum) {
colOut = colDown;
currLum = lumDown;
}
out[currIdx++] = colOut;
}
}
} else {
// dilate (grow dark areas)
while (currIdx < maxIdx) {
currRowIdx = currIdx;
maxRowIdx = currIdx + aImg.width;
while (currIdx < maxRowIdx) {
colOrig = colOut = aImg.pixels.getPixel(currIdx);
idxLeft = currIdx - 1;
idxRight = currIdx + 1;
idxUp = currIdx - aImg.width;
idxDown = currIdx + aImg.width;
if (idxLeft < currRowIdx) {
idxLeft = currIdx;
}
if (idxRight >= maxRowIdx) {
idxRight = currIdx;
}
if (idxUp < 0) {
idxUp = 0;
}
if (idxDown >= maxIdx) {
idxDown = currIdx;
}
colUp = aImg.pixels.getPixel(idxUp);
colLeft = aImg.pixels.getPixel(idxLeft);
colDown = aImg.pixels.getPixel(idxDown);
colRight = aImg.pixels.getPixel(idxRight);
// compute luminance
currLum = 77*(colOrig>>16&0xff) + 151*(colOrig>>8&0xff) + 28*(colOrig&0xff);
lumLeft = 77*(colLeft>>16&0xff) + 151*(colLeft>>8&0xff) + 28*(colLeft&0xff);
lumRight = 77*(colRight>>16&0xff) + 151*(colRight>>8&0xff) + 28*(colRight&0xff);
lumUp = 77*(colUp>>16&0xff) + 151*(colUp>>8&0xff) + 28*(colUp&0xff);
lumDown = 77*(colDown>>16&0xff) + 151*(colDown>>8&0xff) + 28*(colDown&0xff);
if (lumLeft < currLum) {
colOut = colLeft;
currLum = lumLeft;
}
if (lumRight < currLum) {
colOut = colRight;
currLum = lumRight;
}
if (lumUp < currLum) {
colOut = colUp;
currLum = lumUp;
}
if (lumDown < currLum) {
colOut = colDown;
currLum = lumDown;
}
out[currIdx++]=colOut;
}
}
}
aImg.pixels.set(out);
//p.arraycopy(out,0,pixels,0,maxIdx);
};
/**
* Filters the display window as defined by one of the following modes:
* THRESHOLD - converts the image to black and white pixels depending if they are above or below the threshold
* defined by the level parameter. The level must be between 0.0 (black) and 1.0(white). If no level is specified, 0.5 is used.
* GRAY - converts any colors in the image to grayscale equivalents
* INVERT - sets each pixel to its inverse value
* POSTERIZE - limits each channel of the image to the number of colors specified as the level parameter
* BLUR - executes a Guassian blur with the level parameter specifying the extent of the blurring. If no level parameter is
* used, the blur is equivalent to Guassian blur of radius 1.
* OPAQUE - sets the alpha channel to entirely opaque.
* ERODE - reduces the light areas with the amount defined by the level parameter.
* DILATE - increases the light areas with the amount defined by the level parameter.
*
* @param {MODE} MODE Either THRESHOLD, GRAY, INVERT, POSTERIZE, BLUR, OPAQUE, ERODE, or DILATE
* @param {int|float} level defines the quality of the filter
*
* @see blend
*/
p.filter = function(kind, param, aImg){
var img, col, lum, i;
if (arguments.length === 3) {
aImg.loadPixels();
img = aImg;
} else {
p.loadPixels();
img = p;
}
if (param === undef) {
param = null;
}
if (img.isRemote) { // Remote images cannot access imageData
throw "Image is loaded remotely. Cannot filter image.";
}
// begin filter process
var imglen = img.pixels.getLength();
switch (kind) {
case PConstants.BLUR:
var radius = param || 1; // if no param specified, use 1 (default for p5)
blurARGB(radius, img);
break;
case PConstants.GRAY:
if (img.format === PConstants.ALPHA) { //trouble
// for an alpha image, convert it to an opaque grayscale
for (i = 0; i < imglen; i++) {
col = 255 - img.pixels.getPixel(i);
img.pixels.setPixel(i,(0xff000000 | (col << 16) | (col << 8) | col));
}
img.format = PConstants.RGB; //trouble
} else {
for (i = 0; i < imglen; i++) {
col = img.pixels.getPixel(i);
lum = (77*(col>>16&0xff) + 151*(col>>8&0xff) + 28*(col&0xff))>>8;
img.pixels.setPixel(i,((col & PConstants.ALPHA_MASK) | lum<<16 | lum<<8 | lum));
}
}
break;
case PConstants.INVERT:
for (i = 0; i < imglen; i++) {
img.pixels.setPixel(i, (img.pixels.getPixel(i) ^ 0xffffff));
}
break;
case PConstants.POSTERIZE:
if (param === null) {
throw "Use filter(POSTERIZE, int levels) instead of filter(POSTERIZE)";
}
var levels = p.floor(param);
if ((levels < 2) || (levels > 255)) {
throw "Levels must be between 2 and 255 for filter(POSTERIZE, levels)";
}
var levels1 = levels - 1;
for (i = 0; i < imglen; i++) {
var rlevel = (img.pixels.getPixel(i) >> 16) & 0xff;
var glevel = (img.pixels.getPixel(i) >> 8) & 0xff;
var blevel = img.pixels.getPixel(i) & 0xff;
rlevel = (((rlevel * levels) >> 8) * 255) / levels1;
glevel = (((glevel * levels) >> 8) * 255) / levels1;
blevel = (((blevel * levels) >> 8) * 255) / levels1;
img.pixels.setPixel(i, ((0xff000000 & img.pixels.getPixel(i)) | (rlevel << 16) | (glevel << 8) | blevel));
}
break;
case PConstants.OPAQUE:
for (i = 0; i < imglen; i++) {
img.pixels.setPixel(i, (img.pixels.getPixel(i) | 0xff000000));
}
img.format = PConstants.RGB; //trouble
break;
case PConstants.THRESHOLD:
if (param === null) {
param = 0.5;
}
if ((param < 0) || (param > 1)) {
throw "Level must be between 0 and 1 for filter(THRESHOLD, level)";
}
var thresh = p.floor(param * 255);
for (i = 0; i < imglen; i++) {
var max = p.max((img.pixels.getPixel(i) & PConstants.RED_MASK) >> 16, p.max((img.pixels.getPixel(i) & PConstants.GREEN_MASK) >> 8, (img.pixels.getPixel(i) & PConstants.BLUE_MASK)));
img.pixels.setPixel(i, ((img.pixels.getPixel(i) & PConstants.ALPHA_MASK) | ((max < thresh) ? 0x000000 : 0xffffff)));
}
break;
case PConstants.ERODE:
dilate(true, img);
break;
case PConstants.DILATE:
dilate(false, img);
break;
}
img.updatePixels();
};
// shared variables for blit_resize(), filter_new_scanline(), filter_bilinear(), filter()
// change this in the future to not be exposed to p
p.shared = {
fracU: 0,
ifU: 0,
fracV: 0,
ifV: 0,
u1: 0,
u2: 0,
v1: 0,
v2: 0,
sX: 0,
sY: 0,
iw: 0,
iw1: 0,
ih1: 0,
ul: 0,
ll: 0,
ur: 0,
lr: 0,
cUL: 0,
cLL: 0,
cUR: 0,
cLR: 0,
srcXOffset: 0,
srcYOffset: 0,
r: 0,
g: 0,
b: 0,
a: 0,
srcBuffer: null,
blurRadius: 0,
blurKernelSize: 0,
blurKernel: null
};
p.intersect = function(sx1, sy1, sx2, sy2, dx1, dy1, dx2, dy2) {
var sw = sx2 - sx1 + 1;
var sh = sy2 - sy1 + 1;
var dw = dx2 - dx1 + 1;
var dh = dy2 - dy1 + 1;
if (dx1 < sx1) {
dw += dx1 - sx1;
if (dw > sw) {
dw = sw;
}
} else {
var w = sw + sx1 - dx1;
if (dw > w) {
dw = w;
}
}
if (dy1 < sy1) {
dh += dy1 - sy1;
if (dh > sh) {
dh = sh;
}
} else {
var h = sh + sy1 - dy1;
if (dh > h) {
dh = h;
}
}
return ! (dw <= 0 || dh <= 0);
};
var blendFuncs = {};
blendFuncs[PConstants.BLEND] = p.modes.blend;
blendFuncs[PConstants.ADD] = p.modes.add;
blendFuncs[PConstants.SUBTRACT] = p.modes.subtract;
blendFuncs[PConstants.LIGHTEST] = p.modes.lightest;
blendFuncs[PConstants.DARKEST] = p.modes.darkest;
blendFuncs[PConstants.REPLACE] = p.modes.replace;
blendFuncs[PConstants.DIFFERENCE] = p.modes.difference;
blendFuncs[PConstants.EXCLUSION] = p.modes.exclusion;
blendFuncs[PConstants.MULTIPLY] = p.modes.multiply;
blendFuncs[PConstants.SCREEN] = p.modes.screen;
blendFuncs[PConstants.OVERLAY] = p.modes.overlay;
blendFuncs[PConstants.HARD_LIGHT] = p.modes.hard_light;
blendFuncs[PConstants.SOFT_LIGHT] = p.modes.soft_light;
blendFuncs[PConstants.DODGE] = p.modes.dodge;
blendFuncs[PConstants.BURN] = p.modes.burn;
p.blit_resize = function(img, srcX1, srcY1, srcX2, srcY2, destPixels,
screenW, screenH, destX1, destY1, destX2, destY2, mode) {
var x, y;
if (srcX1 < 0) {
srcX1 = 0;
}
if (srcY1 < 0) {
srcY1 = 0;
}
if (srcX2 >= img.width) {
srcX2 = img.width - 1;
}
if (srcY2 >= img.height) {
srcY2 = img.height - 1;
}
var srcW = srcX2 - srcX1;
var srcH = srcY2 - srcY1;
var destW = destX2 - destX1;
var destH = destY2 - destY1;
if (destW <= 0 || destH <= 0 || srcW <= 0 || srcH <= 0 || destX1 >= screenW ||
destY1 >= screenH || srcX1 >= img.width || srcY1 >= img.height) {
return;
}
var dx = Math.floor(srcW / destW * PConstants.PRECISIONF);
var dy = Math.floor(srcH / destH * PConstants.PRECISIONF);
var pshared = p.shared;
pshared.srcXOffset = Math.floor(destX1 < 0 ? -destX1 * dx : srcX1 * PConstants.PRECISIONF);
pshared.srcYOffset = Math.floor(destY1 < 0 ? -destY1 * dy : srcY1 * PConstants.PRECISIONF);
if (destX1 < 0) {
destW += destX1;
destX1 = 0;
}
if (destY1 < 0) {
destH += destY1;
destY1 = 0;
}
destW = Math.min(destW, screenW - destX1);
destH = Math.min(destH, screenH - destY1);
var destOffset = destY1 * screenW + destX1;
var destColor;
pshared.srcBuffer = img.imageData.data;
pshared.iw = img.width;
pshared.iw1 = img.width - 1;
pshared.ih1 = img.height - 1;
// cache for speed
var filterBilinear = p.filter_bilinear,
filterNewScanline = p.filter_new_scanline,
blendFunc = blendFuncs[mode],
blendedColor,
idx,
cULoffset,
cURoffset,
cLLoffset,
cLRoffset,
ALPHA_MASK = PConstants.ALPHA_MASK,
RED_MASK = PConstants.RED_MASK,
GREEN_MASK = PConstants.GREEN_MASK,
BLUE_MASK = PConstants.BLUE_MASK,
PREC_MAXVAL = PConstants.PREC_MAXVAL,
PRECISIONB = PConstants.PRECISIONB,
PREC_RED_SHIFT = PConstants.PREC_RED_SHIFT,
PREC_ALPHA_SHIFT = PConstants.PREC_ALPHA_SHIFT,
srcBuffer = pshared.srcBuffer,
min = Math.min;
for (y = 0; y < destH; y++) {
pshared.sX = pshared.srcXOffset;
pshared.fracV = pshared.srcYOffset & PREC_MAXVAL;
pshared.ifV = PREC_MAXVAL - pshared.fracV;
pshared.v1 = (pshared.srcYOffset >> PRECISIONB) * pshared.iw;
pshared.v2 = min((pshared.srcYOffset >> PRECISIONB) + 1, pshared.ih1) * pshared.iw;
for (x = 0; x < destW; x++) {
idx = (destOffset + x) * 4;
destColor = (destPixels[idx + 3] << 24) &
ALPHA_MASK | (destPixels[idx] << 16) &
RED_MASK | (destPixels[idx + 1] << 8) &
GREEN_MASK | destPixels[idx + 2] & BLUE_MASK;
pshared.fracU = pshared.sX & PREC_MAXVAL;
pshared.ifU = PREC_MAXVAL - pshared.fracU;
pshared.ul = (pshared.ifU * pshared.ifV) >> PRECISIONB;
pshared.ll = (pshared.ifU * pshared.fracV) >> PRECISIONB;
pshared.ur = (pshared.fracU * pshared.ifV) >> PRECISIONB;
pshared.lr = (pshared.fracU * pshared.fracV) >> PRECISIONB;
pshared.u1 = (pshared.sX >> PRECISIONB);
pshared.u2 = min(pshared.u1 + 1, pshared.iw1);
cULoffset = (pshared.v1 + pshared.u1) * 4;
cURoffset = (pshared.v1 + pshared.u2) * 4;
cLLoffset = (pshared.v2 + pshared.u1) * 4;
cLRoffset = (pshared.v2 + pshared.u2) * 4;
pshared.cUL = (srcBuffer[cULoffset + 3] << 24) &
ALPHA_MASK | (srcBuffer[cULoffset] << 16) &
RED_MASK | (srcBuffer[cULoffset + 1] << 8) &
GREEN_MASK | srcBuffer[cULoffset + 2] & BLUE_MASK;
pshared.cUR = (srcBuffer[cURoffset + 3] << 24) &
ALPHA_MASK | (srcBuffer[cURoffset] << 16) &
RED_MASK | (srcBuffer[cURoffset + 1] << 8) &
GREEN_MASK | srcBuffer[cURoffset + 2] & BLUE_MASK;
pshared.cLL = (srcBuffer[cLLoffset + 3] << 24) &
ALPHA_MASK | (srcBuffer[cLLoffset] << 16) &
RED_MASK | (srcBuffer[cLLoffset + 1] << 8) &
GREEN_MASK | srcBuffer[cLLoffset + 2] & BLUE_MASK;
pshared.cLR = (srcBuffer[cLRoffset + 3] << 24) &
ALPHA_MASK | (srcBuffer[cLRoffset] << 16) &
RED_MASK | (srcBuffer[cLRoffset + 1] << 8) &
GREEN_MASK | srcBuffer[cLRoffset + 2] & BLUE_MASK;
pshared.r = ((pshared.ul * ((pshared.cUL & RED_MASK) >> 16) +
pshared.ll * ((pshared.cLL & RED_MASK) >> 16) +
pshared.ur * ((pshared.cUR & RED_MASK) >> 16) +
pshared.lr * ((pshared.cLR & RED_MASK) >> 16)) << PREC_RED_SHIFT) & RED_MASK;
pshared.g = ((pshared.ul * (pshared.cUL & GREEN_MASK) +
pshared.ll * (pshared.cLL & GREEN_MASK) +
pshared.ur * (pshared.cUR & GREEN_MASK) +
pshared.lr * (pshared.cLR & GREEN_MASK)) >>> PRECISIONB) & GREEN_MASK;
pshared.b = (pshared.ul * (pshared.cUL & BLUE_MASK) +
pshared.ll * (pshared.cLL & BLUE_MASK) +
pshared.ur * (pshared.cUR & BLUE_MASK) +
pshared.lr * (pshared.cLR & BLUE_MASK)) >>> PRECISIONB;
pshared.a = ((pshared.ul * ((pshared.cUL & ALPHA_MASK) >>> 24) +
pshared.ll * ((pshared.cLL & ALPHA_MASK) >>> 24) +
pshared.ur * ((pshared.cUR & ALPHA_MASK) >>> 24) +
pshared.lr * ((pshared.cLR & ALPHA_MASK) >>> 24)) << PREC_ALPHA_SHIFT) & ALPHA_MASK;
blendedColor = blendFunc(destColor, (pshared.a | pshared.r | pshared.g | pshared.b));
destPixels[idx] = (blendedColor & RED_MASK) >>> 16;
destPixels[idx + 1] = (blendedColor & GREEN_MASK) >>> 8;
destPixels[idx + 2] = (blendedColor & BLUE_MASK);
destPixels[idx + 3] = (blendedColor & ALPHA_MASK) >>> 24;
pshared.sX += dx;
}
destOffset += screenW;
pshared.srcYOffset += dy;
}
};
////////////////////////////////////////////////////////////////////////////
// Font handling
////////////////////////////////////////////////////////////////////////////
/**
* loadFont() Loads a font into a variable of type PFont.
*
* @param {String} name filename of the font to load
* @param {int|float} size option font size (used internally)
*
* @returns {PFont} new PFont object
*
* @see #PFont
* @see #textFont
* @see #text
* @see #createFont
*/
p.loadFont = function(name, size) {
if (name === undef) {
throw("font name required in loadFont.");
}
if (name.indexOf(".svg") === -1) {
if (size === undef) {
size = curTextFont.size;
}
return PFont.get(name, size);
}
// If the font is a glyph, calculate by SVG table
var font = p.loadGlyphs(name);
return {
name: name,
css: '12px sans-serif',
glyph: true,
units_per_em: font.units_per_em,
horiz_adv_x: 1 / font.units_per_em * font.horiz_adv_x,
ascent: font.ascent,
descent: font.descent,
width: function(str) {
var width = 0;
var len = str.length;
for (var i = 0; i < len; i++) {
try {
width += parseFloat(p.glyphLook(p.glyphTable[name], str[i]).horiz_adv_x);
}
catch(e) {
Processing.debug(e);
}
}
return width / p.glyphTable[name].units_per_em;
}
};
};
/**
* createFont() Loads a font into a variable of type PFont.
* Smooth and charset are ignored in Processing.js.
*
* @param {String} name filename of the font to load
* @param {int|float} size font size in pixels
* @param {boolean} smooth not used in Processing.js
* @param {char[]} charset not used in Processing.js
*
* @returns {PFont} new PFont object
*
* @see #PFont
* @see #textFont
* @see #text
* @see #loadFont
*/
p.createFont = function(name, size) {
// because Processing.js only deals with real fonts,
// createFont is simply a wrapper for loadFont/2
return p.loadFont(name, size);
};
/**
* textFont() Sets the current font.
*
* @param {PFont} pfont the PFont to load as current text font
* @param {int|float} size optional font size in pixels
*
* @see #createFont
* @see #loadFont
* @see #PFont
* @see #text
*/
p.textFont = function(pfont, size) {
if (size !== undef) {
// If we're using an SVG glyph font, don't load from cache
if (!pfont.glyph) {
pfont = PFont.get(pfont.name, size);
}
curTextSize = size;
}
curTextFont = pfont;
curFontName = curTextFont.name;
curTextAscent = curTextFont.ascent;
curTextDescent = curTextFont.descent;
curTextLeading = curTextFont.leading;
var curContext = drawing.$ensureContext();
curContext.font = curTextFont.css;
};
/**
* textSize() Sets the current font size in pixels.
*
* @param {int|float} size font size in pixels
*
* @see #textFont
* @see #loadFont
* @see #PFont
* @see #text
*/
p.textSize = function(size) {
if (size !== curTextSize) {
// round size to the nearest tenth so that we don't explode the cache
size = Math.round(10 * size) / 10;
curTextFont = PFont.get(curFontName, size);
curTextSize = size;
// recache metrics
curTextAscent = curTextFont.ascent;
curTextDescent = curTextFont.descent;
curTextLeading = curTextFont.leading;
var curContext = drawing.$ensureContext();
curContext.font = curTextFont.css;
}
};
/**
* textAscent() returns the maximum height a character extends above the baseline of the
* current font at its current size, in pixels.
*
* @returns {float} height of the current font above the baseline, at its current size, in pixels
*
* @see #textDescent
*/
p.textAscent = function() {
return curTextAscent;
};
/**
* textDescent() returns the maximum depth a character will protrude below the baseline of
* the current font at its current size, in pixels.
*
* @returns {float} depth of the current font below the baseline, at its current size, in pixels
*
* @see #textAscent
*/
p.textDescent = function() {
return curTextDescent;
};
/**
* textLeading() Sets the current font's leading, which is the distance
* from baseline to baseline over consecutive lines, with additional vertical
* spacing taking into account. Usually this value is 1.2 or 1.25 times the
* textsize, but this value can be changed to effect vertically compressed
* or stretched text.
*
* @param {int|float} the desired baseline-to-baseline size in pixels
*/
p.textLeading = function(leading) {
curTextLeading = leading;
};
/**
* textAlign() Sets the current alignment for drawing text.
*
* @param {int} ALIGN Horizontal alignment, either LEFT, CENTER, or RIGHT
* @param {int} YALIGN optional vertical alignment, either TOP, BOTTOM, CENTER, or BASELINE
*
* @see #loadFont
* @see #PFont
* @see #text
*/
p.textAlign = function(xalign, yalign) {
horizontalTextAlignment = xalign;
verticalTextAlignment = yalign || PConstants.BASELINE;
};
/**
* toP5String converts things with arbitrary data type into
* string values, for text rendering.
*
* @param {any} any object that can be converted into a string
*
* @return {String} the string representation of the input
*/
function toP5String(obj) {
if(obj instanceof String) {
return obj;
}
if(typeof obj === 'number') {
// check if an int
if(obj === (0 | obj)) {
return obj.toString();
}
return p.nf(obj, 0, 3);
}
if(obj === null || obj === undef) {
return "";
}
return obj.toString();
}
/**
* textWidth() Calculates and returns the width of any character or text string in pixels.
*
* @param {char|String} str char or String to be measured
*
* @return {float} width of char or String in pixels
*
* @see #loadFont
* @see #PFont
* @see #text
* @see #textFont
*/
Drawing2D.prototype.textWidth = function(str) {
var lines = toP5String(str).split(/\r?\n/g), width = 0;
var i, linesCount = lines.length;
curContext.font = curTextFont.css;
for (i = 0; i < linesCount; ++i) {
width = Math.max(width, curTextFont.measureTextWidth(lines[i]));
}
return width | 0;
};
Drawing3D.prototype.textWidth = function(str) {
var lines = toP5String(str).split(/\r?\n/g), width = 0;
var i, linesCount = lines.length;
if (textcanvas === undef) {
textcanvas = document.createElement("canvas");
}
var textContext = textcanvas.getContext("2d");
textContext.font = curTextFont.css;
for (i = 0; i < linesCount; ++i) {
width = Math.max(width, textContext.measureText(lines[i]).width);
}
return width | 0;
};
// A lookup table for characters that can not be referenced by Object
p.glyphLook = function(font, chr) {
try {
switch (chr) {
case "1":
return font.one;
case "2":
return font.two;
case "3":
return font.three;
case "4":
return font.four;
case "5":
return font.five;
case "6":
return font.six;
case "7":
return font.seven;
case "8":
return font.eight;
case "9":
return font.nine;
case "0":
return font.zero;
case " ":
return font.space;
case "$":
return font.dollar;
case "!":
return font.exclam;
case '"':
return font.quotedbl;
case "#":
return font.numbersign;
case "%":
return font.percent;
case "&":
return font.ampersand;
case "'":
return font.quotesingle;
case "(":
return font.parenleft;
case ")":
return font.parenright;
case "*":
return font.asterisk;
case "+":
return font.plus;
case ",":
return font.comma;
case "-":
return font.hyphen;
case ".":
return font.period;
case "/":
return font.slash;
case "_":
return font.underscore;
case ":":
return font.colon;
case ";":
return font.semicolon;
case "<":
return font.less;
case "=":
return font.equal;
case ">":
return font.greater;
case "?":
return font.question;
case "@":
return font.at;
case "[":
return font.bracketleft;
case "\\":
return font.backslash;
case "]":
return font.bracketright;
case "^":
return font.asciicircum;
case "`":
return font.grave;
case "{":
return font.braceleft;
case "|":
return font.bar;
case "}":
return font.braceright;
case "~":
return font.asciitilde;
// If the character is not 'special', access it by object reference
default:
return font[chr];
}
} catch(e) {
Processing.debug(e);
}
};
// Print some text to the Canvas
Drawing2D.prototype.text$line = function(str, x, y, z, align) {
var textWidth = 0, xOffset = 0;
// If the font is a standard Canvas font...
if (!curTextFont.glyph) {
if (str && ("fillText" in curContext)) {
if (isFillDirty) {
curContext.fillStyle = p.color.toString(currentFillColor);
isFillDirty = false;
}
// horizontal offset/alignment
if(align === PConstants.RIGHT || align === PConstants.CENTER) {
textWidth = curTextFont.measureTextWidth(str);
if(align === PConstants.RIGHT) {
xOffset = -textWidth;
} else { // if(align === PConstants.CENTER)
xOffset = -textWidth/2;
}
}
curContext.fillText(str, x+xOffset, y);
}
} else {
// If the font is a Batik SVG font...
var font = p.glyphTable[curFontName];
saveContext();
curContext.translate(x, y + curTextSize);
// horizontal offset/alignment
if(align === PConstants.RIGHT || align === PConstants.CENTER) {
textWidth = font.width(str);
if(align === PConstants.RIGHT) {
xOffset = -textWidth;
} else { // if(align === PConstants.CENTER)
xOffset = -textWidth/2;
}
}
var upem = font.units_per_em,
newScale = 1 / upem * curTextSize;
curContext.scale(newScale, newScale);
for (var i=0, len=str.length; i < len; i++) {
// Test character against glyph table
try {
p.glyphLook(font, str[i]).draw();
} catch(e) {
Processing.debug(e);
}
}
restoreContext();
}
};
Drawing3D.prototype.text$line = function(str, x, y, z, align) {
// handle case for 3d text
if (textcanvas === undef) {
textcanvas = document.createElement("canvas");
}
var oldContext = curContext;
curContext = textcanvas.getContext("2d");
curContext.font = curTextFont.css;
var textWidth = curTextFont.measureTextWidth(str);
textcanvas.width = textWidth;
textcanvas.height = curTextSize;
curContext = textcanvas.getContext("2d"); // refreshes curContext
curContext.font = curTextFont.css;
curContext.textBaseline="top";
// paint on 2D canvas
Drawing2D.prototype.text$line(str,0,0,0,PConstants.LEFT);
// use it as a texture
var aspect = textcanvas.width/textcanvas.height;
curContext = oldContext;
curContext.bindTexture(curContext.TEXTURE_2D, textTex);
curContext.texImage2D(curContext.TEXTURE_2D, 0, curContext.RGBA, curContext.RGBA, curContext.UNSIGNED_BYTE, textcanvas);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_MAG_FILTER, curContext.LINEAR);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_MIN_FILTER, curContext.LINEAR);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_WRAP_T, curContext.CLAMP_TO_EDGE);
curContext.texParameteri(curContext.TEXTURE_2D, curContext.TEXTURE_WRAP_S, curContext.CLAMP_TO_EDGE);
// If we don't have a power of two texture, we can't mipmap it.
// curContext.generateMipmap(curContext.TEXTURE_2D);
// horizontal offset/alignment
var xOffset = 0;
if (align === PConstants.RIGHT) {
xOffset = -textWidth;
} else if(align === PConstants.CENTER) {
xOffset = -textWidth/2;
}
var model = new PMatrix3D();
var scalefactor = curTextSize * 0.5;
model.translate(x+xOffset-scalefactor/2, y-scalefactor, z);
model.scale(-aspect*scalefactor, -scalefactor, scalefactor);
model.translate(-1, -1, -1);
model.transpose();
var view = new PMatrix3D();
view.scale(1, -1, 1);
view.apply(modelView.array());
view.transpose();
curContext.useProgram(programObject2D);
vertexAttribPointer("vertex2d", programObject2D, "Vertex", 3, textBuffer);
vertexAttribPointer("aTextureCoord2d", programObject2D, "aTextureCoord", 2, textureBuffer);
uniformi("uSampler2d", programObject2D, "uSampler", [0]);
uniformi("picktype2d", programObject2D, "picktype", 1);
uniformMatrix("model2d", programObject2D, "model", false, model.array());
uniformMatrix("view2d", programObject2D, "view", false, view.array());
uniformf("color2d", programObject2D, "color", fillStyle);
curContext.bindBuffer(curContext.ELEMENT_ARRAY_BUFFER, indexBuffer);
curContext.drawElements(curContext.TRIANGLES, 6, curContext.UNSIGNED_SHORT, 0);
};
/**
* unbounded text function (z is an optional argument)
*/
function text$4(str, x, y, z) {
var lines, linesCount;
if(str.indexOf('\n') < 0) {
lines = [str];
linesCount = 1;
} else {
lines = str.split(/\r?\n/g);
linesCount = lines.length;
}
// handle text line-by-line
var yOffset = 0;
if(verticalTextAlignment === PConstants.TOP) {
yOffset = curTextAscent + curTextDescent;
} else if(verticalTextAlignment === PConstants.CENTER) {
yOffset = curTextAscent/2 - (linesCount-1)*curTextLeading/2;
} else if(verticalTextAlignment === PConstants.BOTTOM) {
yOffset = -(curTextDescent + (linesCount-1)*curTextLeading);
}
for(var i=0;i<linesCount;++i) {
var line = lines[i];
drawing.text$line(line, x, y + yOffset, z, horizontalTextAlignment);
yOffset += curTextLeading;
}
}
/**
* box-bounded text function (z is an optional argument)
*/
function text$6(str, x, y, width, height, z) {
// 'fail' on 0-valued dimensions
if (str.length === 0 || width === 0 || height === 0) {
return;
}
// also 'fail' if the text height is larger than the bounding height
if(curTextSize > height) {
return;
}
var spaceMark = -1;
var start = 0;
var lineWidth = 0;
var drawCommands = [];
// run through text, character-by-character
for (var charPos=0, len=str.length; charPos < len; charPos++)
{
var currentChar = str[charPos];
var spaceChar = (currentChar === " ");
var letterWidth = curTextFont.measureTextWidth(currentChar);
// if we aren't looking at a newline, and the text still fits, keep processing
if (currentChar !== "\n" && (lineWidth + letterWidth <= width)) {
if (spaceChar) { spaceMark = charPos; }
lineWidth += letterWidth;
}
// if we're looking at a newline, or the text no longer fits, push the section that fit into the drawcommand list
else
{
if (spaceMark + 1 === start) {
if(charPos>0) {
// Whole line without spaces so far.
spaceMark = charPos;
} else {
// 'fail', because the line can't even fit the first character
return;
}
}
if (currentChar === "\n") {
drawCommands.push({text:str.substring(start, charPos), width: lineWidth});
start = charPos + 1;
} else {
// current is not a newline, which means the line doesn't fit in box. push text.
// In Processing 1.5.1, the space is also pushed, so we push up to spaceMark+1,
// rather than up to spaceMark, as was the case for Processing 1.5 and earlier.
drawCommands.push({text:str.substring(start, spaceMark+1), width: lineWidth});
start = spaceMark + 1;
}
// newline + return
lineWidth = 0;
charPos = start - 1;
}
}
// push the remaining text
if (start < len) {
drawCommands.push({text:str.substring(start), width: lineWidth});
}
// resolve horizontal alignment
var xOffset = 1,
yOffset = curTextAscent;
if (horizontalTextAlignment === PConstants.CENTER) {
xOffset = width/2;
} else if (horizontalTextAlignment === PConstants.RIGHT) {
xOffset = width;
}
// resolve vertical alignment
var linesCount = drawCommands.length,
visibleLines = Math.min(linesCount, Math.floor(height/curTextLeading));
if(verticalTextAlignment === PConstants.TOP) {
yOffset = curTextAscent + curTextDescent;
} else if(verticalTextAlignment === PConstants.CENTER) {
yOffset = (height/2) - curTextLeading * (visibleLines/2 - 1);
} else if(verticalTextAlignment === PConstants.BOTTOM) {
yOffset = curTextDescent + curTextLeading;
}
var command,
drawCommand,
leading;
for (command = 0; command < linesCount; command++) {
leading = command * curTextLeading;
// stop if not enough space for one more line draw
if (yOffset + leading > height - curTextDescent) {
break;
}
drawCommand = drawCommands[command];
drawing.text$line(drawCommand.text, x + xOffset, y + yOffset + leading, z, horizontalTextAlignment);
}
}
/**
* text() Draws text to the screen.
*
* @param {String|char|int|float} data the alphanumeric symbols to be displayed
* @param {int|float} x x-coordinate of text
* @param {int|float} y y-coordinate of text
* @param {int|float} z optional z-coordinate of text
* @param {String} stringdata optional letters to be displayed
* @param {int|float} width optional width of text box
* @param {int|float} height optional height of text box
*
* @see #textAlign
* @see #textMode
* @see #loadFont
* @see #PFont
* @see #textFont
*/
p.text = function() {
//XXX(jeresig): Fix font constantly resetting
if (curContext.font !== curTextFont.css) {
curContext.font = curTextFont.css;
}
if (textMode === PConstants.SHAPE) {
// TODO: requires beginRaw function
return;
}
if (arguments.length === 3) { // for text( str, x, y)
text$4(toP5String(arguments[0]), arguments[1], arguments[2], 0);
} else if (arguments.length === 4) { // for text( str, x, y, z)
text$4(toP5String(arguments[0]), arguments[1], arguments[2], arguments[3]);
} else if (arguments.length === 5) { // for text( str, x, y , width, height)
text$6(toP5String(arguments[0]), arguments[1], arguments[2], arguments[3], arguments[4], 0);
} else if (arguments.length === 6) { // for text( stringdata, x, y , width, height, z)
text$6(toP5String(arguments[0]), arguments[1], arguments[2], arguments[3], arguments[4], arguments[5]);
}
};
/**
* Sets the way text draws to the screen. In the default configuration (the MODEL mode), it's possible to rotate,
* scale, and place letters in two and three dimensional space. <br /><br /> Changing to SCREEN mode draws letters
* directly to the front of the window and greatly increases rendering quality and speed when used with the P2D and
* P3D renderers. textMode(SCREEN) with OPENGL and JAVA2D (the default) renderers will generally be slower, though
* pixel accurate with P2D and P3D. With textMode(SCREEN), the letters draw at the actual size of the font (in pixels)
* and therefore calls to <b>textSize()</b> will not affect the size of the letters. To create a font at the size you
* desire, use the "Create font..." option in the Tools menu, or use the createFont() function. When using textMode(SCREEN),
* any z-coordinate passed to a text() command will be ignored, because your computer screen is...flat!
*
* @param {int} MODE Either MODEL, SCREEN or SHAPE (not yet supported)
*
* @see loadFont
* @see PFont
* @see text
* @see textFont
* @see createFont
*/
p.textMode = function(mode){
textMode = mode;
};
// Load Batik SVG Fonts and parse to pre-def objects for quick rendering
p.loadGlyphs = function(url) {
var x, y, cx, cy, nx, ny, d, a, lastCom, lenC, horiz_adv_x, getXY = '[0-9\\-]+', path;
// Return arrays of SVG commands and coords
// get this to use p.matchAll() - will need to work around the lack of null return
var regex = function(needle, hay) {
var i = 0,
results = [],
latest, regexp = new RegExp(needle, "g");
latest = results[i] = regexp.exec(hay);
while (latest) {
i++;
latest = results[i] = regexp.exec(hay);
}
return results;
};
var buildPath = function(d) {
var c = regex("[A-Za-z][0-9\\- ]+|Z", d);
var beforePathDraw = function() {
saveContext();
return drawing.$ensureContext();
};
var afterPathDraw = function() {
executeContextFill();
executeContextStroke();
restoreContext();
};
// Begin storing path object
path = "return {draw:function(){var curContext=beforePathDraw();curContext.beginPath();";
x = 0;
y = 0;
cx = 0;
cy = 0;
nx = 0;
ny = 0;
d = 0;
a = 0;
lastCom = "";
lenC = c.length - 1;
// Loop through SVG commands translating to canvas eqivs functions in path object
for (var j = 0; j < lenC; j++) {
var com = c[j][0], xy = regex(getXY, com);
switch (com[0]) {
case "M":
//curContext.moveTo(x,-y);
x = parseFloat(xy[0][0]);
y = parseFloat(xy[1][0]);
path += "curContext.moveTo(" + x + "," + (-y) + ");";
break;
case "L":
//curContext.lineTo(x,-y);
x = parseFloat(xy[0][0]);
y = parseFloat(xy[1][0]);
path += "curContext.lineTo(" + x + "," + (-y) + ");";
break;
case "H":
//curContext.lineTo(x,-y)
x = parseFloat(xy[0][0]);
path += "curContext.lineTo(" + x + "," + (-y) + ");";
break;
case "V":
//curContext.lineTo(x,-y);
y = parseFloat(xy[0][0]);
path += "curContext.lineTo(" + x + "," + (-y) + ");";
break;
case "T":
//curContext.quadraticCurveTo(cx,-cy,nx,-ny);
nx = parseFloat(xy[0][0]);
ny = parseFloat(xy[1][0]);
if (lastCom === "Q" || lastCom === "T") {
d = Math.sqrt(Math.pow(x - cx, 2) + Math.pow(cy - y, 2));
// XXX(jeresig)
a = (p.angleMode === "degrees" ? 180 : Math.PI) + p.atan2(cx - x, cy - y);
cx = x + p.sin(a) * d;
cy = y + p.cos(a) * d;
} else {
cx = x;
cy = y;
}
path += "curContext.quadraticCurveTo(" + cx + "," + (-cy) + "," + nx + "," + (-ny) + ");";
x = nx;
y = ny;
break;
case "Q":
//curContext.quadraticCurveTo(cx,-cy,nx,-ny);
cx = parseFloat(xy[0][0]);
cy = parseFloat(xy[1][0]);
nx = parseFloat(xy[2][0]);
ny = parseFloat(xy[3][0]);
path += "curContext.quadraticCurveTo(" + cx + "," + (-cy) + "," + nx + "," + (-ny) + ");";
x = nx;
y = ny;
break;
case "Z":
//curContext.closePath();
path += "curContext.closePath();";
break;
}
lastCom = com[0];
}
path += "afterPathDraw();";
path += "curContext.translate(" + horiz_adv_x + ",0);";
path += "}}";
return ((new Function("beforePathDraw", "afterPathDraw", path))(beforePathDraw, afterPathDraw));
};
// Parse SVG font-file into block of Canvas commands
var parseSVGFont = function(svg) {
// Store font attributes
var font = svg.getElementsByTagName("font");
p.glyphTable[url].horiz_adv_x = font[0].getAttribute("horiz-adv-x");
var font_face = svg.getElementsByTagName("font-face")[0];
p.glyphTable[url].units_per_em = parseFloat(font_face.getAttribute("units-per-em"));
p.glyphTable[url].ascent = parseFloat(font_face.getAttribute("ascent"));
p.glyphTable[url].descent = parseFloat(font_face.getAttribute("descent"));
var glyph = svg.getElementsByTagName("glyph"),
len = glyph.length;
// Loop through each glyph in the SVG
for (var i = 0; i < len; i++) {
// Store attributes for this glyph
var unicode = glyph[i].getAttribute("unicode");
var name = glyph[i].getAttribute("glyph-name");
horiz_adv_x = glyph[i].getAttribute("horiz-adv-x");
if (horiz_adv_x === null) {
horiz_adv_x = p.glyphTable[url].horiz_adv_x;
}
d = glyph[i].getAttribute("d");
// Split path commands in glpyh
if (d !== undef) {
path = buildPath(d);
// Store glyph data to table object
p.glyphTable[url][name] = {
name: name,
unicode: unicode,
horiz_adv_x: horiz_adv_x,
draw: path.draw
};
}
} // finished adding glyphs to table
};
// Load and parse Batik SVG font as XML into a Processing Glyph object
var loadXML = function() {
var xmlDoc;
try {
xmlDoc = document.implementation.createDocument("", "", null);
}
catch(e_fx_op) {
Processing.debug(e_fx_op.message);
return;
}
try {
xmlDoc.async = false;
xmlDoc.load(url);
parseSVGFont(xmlDoc.getElementsByTagName("svg")[0]);
}
catch(e_sf_ch) {
// Google Chrome, Safari etc.
Processing.debug(e_sf_ch);
try {
var xmlhttp = new window.XMLHttpRequest();
xmlhttp.open("GET", url, false);
xmlhttp.send(null);
parseSVGFont(xmlhttp.responseXML.documentElement);
}
catch(e) {
Processing.debug(e_sf_ch);
}
}
};
// Create a new object in glyphTable to store this font
p.glyphTable[url] = {};
// Begin loading the Batik SVG font...
loadXML(url);
// Return the loaded font for attribute grabbing
return p.glyphTable[url];
};
/**
* Gets the sketch parameter value. The parameter can be defined as the canvas attribute with
* the "data-processing-" prefix or provided in the pjs directive (e.g. param-test="52").
* The function tries the canvas attributes, then the pjs directive content.
*
* @param {String} name The name of the param to read.
*
* @returns {String} The parameter value, or null if parameter is not defined.
*/
p.param = function(name) {
// trying attribute that was specified in CANVAS
var attributeName = "data-processing-" + name;
if (curElement.hasAttribute(attributeName)) {
return curElement.getAttribute(attributeName);
}
// trying child PARAM elements of the CANVAS
for (var i = 0, len = curElement.childNodes.length; i < len; ++i) {
var item = curElement.childNodes.item(i);
if (item.nodeType !== 1 || item.tagName.toLowerCase() !== "param") {
continue;
}
if (item.getAttribute("name") === name) {
return item.getAttribute("value");
}
}
// fallback to default params
if (curSketch.params.hasOwnProperty(name)) {
return curSketch.params[name];
}
return null;
};
////////////////////////////////////////////////////////////////////////////
// 2D/3D methods wiring utils
////////////////////////////////////////////////////////////////////////////
function wireDimensionalFunctions(mode) {
// Drawing2D/Drawing3D
if (mode === '3D') {
drawing = new Drawing3D();
} else if (mode === '2D') {
drawing = new Drawing2D();
} else {
drawing = new DrawingPre();
}
// Wire up functions (Use DrawingPre properties names)
for (var i in DrawingPre.prototype) {
if (DrawingPre.prototype.hasOwnProperty(i) && i.indexOf("$") < 0) {
p[i] = drawing[i];
}
}
// Run initialization
drawing.$init();
}
function createDrawingPreFunction(name) {
return function() {
wireDimensionalFunctions("2D");
return drawing[name].apply(this, arguments);
};
}
DrawingPre.prototype.translate = createDrawingPreFunction("translate");
DrawingPre.prototype.scale = createDrawingPreFunction("scale");
DrawingPre.prototype.pushMatrix = createDrawingPreFunction("pushMatrix");
DrawingPre.prototype.popMatrix = createDrawingPreFunction("popMatrix");
DrawingPre.prototype.resetMatrix = createDrawingPreFunction("resetMatrix");
DrawingPre.prototype.applyMatrix = createDrawingPreFunction("applyMatrix");
DrawingPre.prototype.rotate = createDrawingPreFunction("rotate");
DrawingPre.prototype.rotateZ = createDrawingPreFunction("rotateZ");
DrawingPre.prototype.redraw = createDrawingPreFunction("redraw");
DrawingPre.prototype.toImageData = createDrawingPreFunction("toImageData");
DrawingPre.prototype.ambientLight = createDrawingPreFunction("ambientLight");
DrawingPre.prototype.directionalLight = createDrawingPreFunction("directionalLight");
DrawingPre.prototype.lightFalloff = createDrawingPreFunction("lightFalloff");
DrawingPre.prototype.lightSpecular = createDrawingPreFunction("lightSpecular");
DrawingPre.prototype.pointLight = createDrawingPreFunction("pointLight");
DrawingPre.prototype.noLights = createDrawingPreFunction("noLights");
DrawingPre.prototype.spotLight = createDrawingPreFunction("spotLight");
DrawingPre.prototype.beginCamera = createDrawingPreFunction("beginCamera");
DrawingPre.prototype.endCamera = createDrawingPreFunction("endCamera");
DrawingPre.prototype.frustum = createDrawingPreFunction("frustum");
DrawingPre.prototype.box = createDrawingPreFunction("box");
DrawingPre.prototype.sphere = createDrawingPreFunction("sphere");
DrawingPre.prototype.ambient = createDrawingPreFunction("ambient");
DrawingPre.prototype.emissive = createDrawingPreFunction("emissive");
DrawingPre.prototype.shininess = createDrawingPreFunction("shininess");
DrawingPre.prototype.specular = createDrawingPreFunction("specular");
DrawingPre.prototype.fill = createDrawingPreFunction("fill");
DrawingPre.prototype.stroke = createDrawingPreFunction("stroke");
DrawingPre.prototype.strokeWeight = createDrawingPreFunction("strokeWeight");
DrawingPre.prototype.smooth = createDrawingPreFunction("smooth");
DrawingPre.prototype.noSmooth = createDrawingPreFunction("noSmooth");
DrawingPre.prototype.point = createDrawingPreFunction("point");
DrawingPre.prototype.vertex = createDrawingPreFunction("vertex");
DrawingPre.prototype.endShape = createDrawingPreFunction("endShape");
DrawingPre.prototype.bezierVertex = createDrawingPreFunction("bezierVertex");
DrawingPre.prototype.curveVertex = createDrawingPreFunction("curveVertex");
DrawingPre.prototype.curve = createDrawingPreFunction("curve");
DrawingPre.prototype.line = createDrawingPreFunction("line");
DrawingPre.prototype.bezier = createDrawingPreFunction("bezier");
DrawingPre.prototype.rect = createDrawingPreFunction("rect");
DrawingPre.prototype.ellipse = createDrawingPreFunction("ellipse");
DrawingPre.prototype.background = createDrawingPreFunction("background");
DrawingPre.prototype.image = createDrawingPreFunction("image");
DrawingPre.prototype.textWidth = createDrawingPreFunction("textWidth");
DrawingPre.prototype.text$line = createDrawingPreFunction("text$line");
DrawingPre.prototype.$ensureContext = createDrawingPreFunction("$ensureContext");
DrawingPre.prototype.$newPMatrix = createDrawingPreFunction("$newPMatrix");
DrawingPre.prototype.size = function(aWidth, aHeight, aMode) {
wireDimensionalFunctions(aMode === PConstants.WEBGL ? "3D" : "2D");
p.size(aWidth, aHeight, aMode);
};
DrawingPre.prototype.$init = nop;
Drawing2D.prototype.$init = function() {
// Setup default 2d canvas context.
// Moving this here removes the number of times we need to check the 3D variable
p.size(p.width, p.height);
curContext.lineCap = 'round';
// Set default stroke and fill color
p.noSmooth();
p.disableContextMenu();
};
Drawing3D.prototype.$init = function() {
// For ref/perf test compatibility until those are fixed
p.use3DContext = true;
};
DrawingShared.prototype.$ensureContext = function() {
return curContext;
};
//////////////////////////////////////////////////////////////////////////
// Touch and Mouse event handling
//////////////////////////////////////////////////////////////////////////
function calculateOffset(curElement, event) {
var element = curElement,
offsetX = 0,
offsetY = 0;
p.pmouseX = p.mouseX;
p.pmouseY = p.mouseY;
// Find element offset
if (element.offsetParent) {
do {
offsetX += element.offsetLeft;
offsetY += element.offsetTop;
} while (!!(element = element.offsetParent));
}
// Find Scroll offset
element = curElement;
do {
offsetX -= element.scrollLeft || 0;
offsetY -= element.scrollTop || 0;
} while (!!(element = element.parentNode));
// Add padding and border style widths to offset
offsetX += stylePaddingLeft;
offsetY += stylePaddingTop;
offsetX += styleBorderLeft;
offsetY += styleBorderTop;
// Take into account any scrolling done
offsetX += window.pageXOffset;
offsetY += window.pageYOffset;
return {'X':offsetX,'Y':offsetY};
}
function updateMousePosition(curElement, event) {
var offset = calculateOffset(curElement, event);
// Dropping support for IE clientX and clientY, switching to pageX and pageY so we don't have to calculate scroll offset.
// Removed in ticket #184. See rev: 2f106d1c7017fed92d045ba918db47d28e5c16f4
p.mouseX = event.pageX - offset.X;
p.mouseY = event.pageY - offset.Y;
}
// Return a TouchEvent with canvas-specific x/y co-ordinates
function addTouchEventOffset(t) {
var offset = calculateOffset(t.changedTouches[0].target, t.changedTouches[0]),
i;
for (i = 0; i < t.touches.length; i++) {
var touch = t.touches[i];
touch.offsetX = touch.pageX - offset.X;
touch.offsetY = touch.pageY - offset.Y;
}
for (i = 0; i < t.targetTouches.length; i++) {
var targetTouch = t.targetTouches[i];
targetTouch.offsetX = targetTouch.pageX - offset.X;
targetTouch.offsetY = targetTouch.pageY - offset.Y;
}
for (i = 0; i < t.changedTouches.length; i++) {
var changedTouch = t.changedTouches[i];
changedTouch.offsetX = changedTouch.pageX - offset.X;
changedTouch.offsetY = changedTouch.pageY - offset.Y;
}
return t;
}
attachEventHandler(curElement, "touchstart", function (t) {
// Removes unwanted behaviour of the canvas when touching canvas
curElement.setAttribute("style","-webkit-user-select: none");
curElement.setAttribute("onclick","void(0)");
curElement.setAttribute("style","-webkit-tap-highlight-color:rgba(0,0,0,0)");
// Loop though eventHandlers and remove mouse listeners
for (var i=0, ehl=eventHandlers.length; i<ehl; i++) {
var type = eventHandlers[i].type;
// Have this function remove itself from the eventHandlers list too
if (type === "mouseout" || type === "mousemove" ||
type === "mousedown" || type === "mouseup" ||
type === "DOMMouseScroll" || type === "mousewheel" || type === "touchstart") {
detachEventHandler(eventHandlers[i]);
}
}
// If there are any native touch events defined in the sketch, connect all of them
// Otherwise, connect all of the emulated mouse events
if (p.touchStart !== undef || p.touchMove !== undef ||
p.touchEnd !== undef || p.touchCancel !== undef) {
attachEventHandler(curElement, "touchstart", function(t) {
if (p.touchStart !== undef) {
t = addTouchEventOffset(t);
p.touchStart(t);
}
});
attachEventHandler(curElement, "touchmove", function(t) {
if (p.touchMove !== undef) {
t.preventDefault(); // Stop the viewport from scrolling
t = addTouchEventOffset(t);
p.touchMove(t);
}
});
attachEventHandler(curElement, "touchend", function(t) {
if (p.touchEnd !== undef) {
t = addTouchEventOffset(t);
p.touchEnd(t);
}
});
attachEventHandler(curElement, "touchcancel", function(t) {
if (p.touchCancel !== undef) {
t = addTouchEventOffset(t);
p.touchCancel(t);
}
});
} else {
// Emulated touch start/mouse down event
attachEventHandler(curElement, "touchstart", function(e) {
updateMousePosition(curElement, e.touches[0]);
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
p.mouseIsPressed = p.__mousePressed = true;
p.mouseDragging = false;
p.mouseButton = PConstants.LEFT;
if (typeof p.mousePressed === "function") {
p.mousePressed();
}
});
// Emulated touch move/mouse move event
attachEventHandler(curElement, "touchmove", function(e) {
e.preventDefault();
updateMousePosition(curElement, e.touches[0]);
if (typeof p.mouseMoved === "function" && !p.__mousePressed) {
p.mouseMoved();
}
if (typeof p.mouseDragged === "function" && p.__mousePressed) {
p.mouseDragged();
p.mouseDragging = true;
}
});
// Emulated touch up/mouse up event
attachEventHandler(curElement, "touchend", function(e) {
p.__mousePressed = false;
if (typeof p.mouseClicked === "function" && !p.mouseDragging) {
p.mouseClicked();
}
if (typeof p.mouseReleased === "function") {
p.mouseReleased();
}
});
}
// Refire the touch start event we consumed in this function
curElement.dispatchEvent(t);
});
(function() {
var enabled = true,
contextMenu = function(e) {
e.preventDefault();
e.stopPropagation();
};
p.disableContextMenu = function() {
if (!enabled) {
return;
}
attachEventHandler(curElement, 'contextmenu', contextMenu);
enabled = false;
};
p.enableContextMenu = function() {
if (enabled) {
return;
}
detachEventHandler({elem: curElement, type: 'contextmenu', fn: contextMenu});
enabled = true;
};
}());
// updateMousePosition should only be called once per user event.
// When using the iframe-overlay this is not the case.
// If the user moves the mouse from a position outside the iframe
// to a position inside the iframe this counts as one user event.
// This one user event generates two mouse events "mouseover" followed
// by a "mousemove". Unfortunately, both events have the same coordinates
// which causes (pmouseX, pmouseY) === (mouseX, mouseY) when the cursor
// re-enters the iframe which results in a gap in the line in the paint
// test program. The reason why this bug ddoesn't appear when using just
// the canvas is that the canvas doesn't get "mousemove" events which occur
// outside the canvas.
// TODO(kevinb7): verify that this solution works with just the canvas
var mouseOverOccurredFlag = false;
attachEventHandler(curElement, "mousemove", function(e) {
if (mouseOverOccurredFlag) {
mouseOverOccurredFlag = false;
} else {
updateMousePosition(curElement, e);
}
if (typeof p.mouseMoved === "function" && !p.__mousePressed) {
p.mouseMoved();
}
if (typeof p.mouseDragged === "function" && p.__mousePressed) {
p.mouseDragged();
p.mouseDragging = true;
}
});
attachEventHandler(curElement, "mouseout", function(e) {
if (typeof p.mouseOut === "function") {
p.mouseOut();
}
});
attachEventHandler(curElement, "mouseover", function(e) {
mouseOverOccurredFlag = true;
updateMousePosition(curElement, e);
if (typeof p.mouseOver === "function") {
p.mouseOver();
}
});
attachEventHandler(curElement, "mousedown", function(e) {
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
p.mouseIsPressed = p.__mousePressed = true;
p.mouseDragging = false;
switch (e.which) {
case 1:
p.mouseButton = PConstants.LEFT;
break;
case 2:
p.mouseButton = PConstants.CENTER;
break;
case 3:
p.mouseButton = PConstants.RIGHT;
break;
}
if (typeof p.mousePressed === "function") {
p.mousePressed();
}
});
attachEventHandler(curElement, "mouseup", function(e) {
p.__mousePressed = false;
if (typeof p.mouseClicked === "function" && !p.mouseDragging) {
p.mouseClicked();
}
if (typeof p.mouseReleased === "function") {
p.mouseReleased();
}
});
var mouseWheelHandler = function(e) {
var delta = 0;
if (e.wheelDelta) {
delta = e.wheelDelta / 120;
if (window.opera) {
delta = -delta;
}
} else if (e.detail) {
delta = -e.detail / 3;
}
p.mouseScroll = delta;
if (delta && typeof p.mouseScrolled === 'function') {
p.mouseScrolled();
}
};
// Support Gecko and non-Gecko scroll events
attachEventHandler(document, 'DOMMouseScroll', mouseWheelHandler);
attachEventHandler(document, 'mousewheel', mouseWheelHandler);
//////////////////////////////////////////////////////////////////////////
// Keyboard Events
//////////////////////////////////////////////////////////////////////////
// Get the DOM element if string was passed
if (typeof curElement === "string") {
curElement = document.getElementById(curElement);
}
// In order to catch key events in a canvas, it needs to be "specially focusable",
// by assigning it a tabindex. If no tabindex is specified on-page, set this to 0.
if (!curElement.getAttribute("tabindex")) {
curElement.setAttribute("tabindex", 0);
}
function getKeyCode(e) {
var code = e.which || e.keyCode;
switch (code) {
case 13: // ENTER
return 10;
case 91: // META L (Saf/Mac)
case 93: // META R (Saf/Mac)
case 224: // META (FF/Mac)
return 157;
case 57392: // CONTROL (Op/Mac)
return 17;
case 46: // DELETE
return 127;
case 45: // INSERT
return 155;
}
return code;
}
function getKeyChar(e) {
var c = e.which || e.keyCode;
var anyShiftPressed = e.shiftKey || e.ctrlKey || e.altKey || e.metaKey;
switch (c) {
case 13:
c = anyShiftPressed ? 13 : 10; // RETURN vs ENTER (Mac)
break;
case 8:
c = anyShiftPressed ? 127 : 8; // DELETE vs BACKSPACE (Mac)
break;
}
return new Char(c);
}
function suppressKeyEvent(e) {
if (typeof e.preventDefault === "function") {
e.preventDefault();
} else if (typeof e.stopPropagation === "function") {
e.stopPropagation();
}
return false;
}
function updateKeyPressed() {
var ch;
for (ch in pressedKeysMap) {
if (pressedKeysMap.hasOwnProperty(ch)) {
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
p.keyIsPressed = p.__keyPressed = true;
return;
}
}
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
p.keyIsPressed = p.__keyPressed = false;
}
function resetKeyPressed() {
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
p.keyIsPressed = p.__keyPressed = false;
pressedKeysMap = [];
lastPressedKeyCode = null;
}
function simulateKeyTyped(code, c) {
pressedKeysMap[code] = c;
lastPressedKeyCode = null;
p.key = c;
p.keyCode = code;
p.keyPressed();
if (!p.__usingDebugger) {
p.keyCode = 0;
// When the debugger is in use all callbacks are queued and thus not
// run synchronously therefore, setting keyCode = 0; immediatedly as
// it is without this check results keyCode being 0 when keyPressed()
// is finally run which is not the behaviour we want.
// The ProcessingDebugger sets keyCode to 0 right before it calls
// keyTyped().
// https://github.com/kevinb7/stepper/blob/master/src/processing-debugger.ts#L41-L43
}
p.keyTyped();
updateKeyPressed();
}
function handleKeydown(e) {
var code = getKeyCode(e);
if (code === PConstants.DELETE || code === PConstants.BACKSPACE) {
simulateKeyTyped(code, new Char(code));
return suppressKeyEvent(e);
}
if (codedKeys.indexOf(code) < 0) {
lastPressedKeyCode = code;
return;
}
var c = new Char(PConstants.CODED);
p.key = c;
p.keyCode = code;
pressedKeysMap[code] = c;
p.keyPressed();
lastPressedKeyCode = null;
updateKeyPressed();
return suppressKeyEvent(e);
}
function handleKeypress(e) {
if (lastPressedKeyCode === null) {
return; // processed in handleKeydown
}
var code = lastPressedKeyCode, c = getKeyChar(e);
simulateKeyTyped(code, c);
return suppressKeyEvent(e);
}
function handleKeyup(e) {
var code = getKeyCode(e), c = pressedKeysMap[code];
if (c === undef) {
return; // no keyPressed event was generated.
}
p.key = c;
p.keyCode = code;
p.keyReleased();
delete pressedKeysMap[code];
updateKeyPressed();
}
// Send aCode Processing syntax to be converted to JavaScript
if (!pgraphicsMode) {
if (aCode instanceof Processing.Sketch) {
// Use sketch as is
curSketch = aCode;
} else if (typeof aCode === "function") {
// Wrap function with default sketch parameters
curSketch = new Processing.Sketch(aCode);
} else if (!aCode) {
// Empty sketch
curSketch = new Processing.Sketch(function (){});
} else {
//#if PARSER
// Compile the code
curSketch = Processing.compile(aCode);
//#else
// throw "PJS compile is not supported";
//#endif
}
// Expose internal field for diagnostics and testing
p.externals.sketch = curSketch;
wireDimensionalFunctions();
// the onfocus and onblur events are handled in two parts.
// 1) the p.focused property is handled per sketch
curElement.onfocus = function() {
p.focused = true;
};
curElement.onblur = function() {
p.focused = false;
if (!curSketch.options.globalKeyEvents) {
resetKeyPressed();
}
};
// 2) looping status is handled per page, based on the pauseOnBlur @pjs directive
if (curSketch.options.pauseOnBlur) {
attachEventHandler(window, 'focus', function() {
if (doLoop) {
p.loop();
}
});
attachEventHandler(window, 'blur', function() {
if (doLoop && loopStarted) {
p.noLoop();
doLoop = true; // make sure to keep this true after the noLoop call
}
resetKeyPressed();
});
}
// if keyboard events should be handled globally, the listeners should
// be bound to the document window, rather than to the current canvas
var keyTrigger = curSketch.options.globalKeyEvents ? window : curElement;
attachEventHandler(keyTrigger, "keydown", handleKeydown);
attachEventHandler(keyTrigger, "keypress", handleKeypress);
attachEventHandler(keyTrigger, "keyup", handleKeyup);
// Step through the libraries that were attached at doc load...
for (var i in Processing.lib) {
if (Processing.lib.hasOwnProperty(i)) {
if(Processing.lib[i].hasOwnProperty("attach")) {
// use attach function if present
Processing.lib[i].attach(p);
} else if(Processing.lib[i] instanceof Function) {
// Init the libraries in the context of this p_instance (legacy)
Processing.lib[i].call(this);
}
}
}
// sketch execute test interval, used to reschedule
// an execute when preloads have not yet finished.
var retryInterval = 100;
var executeSketch = function(processing) {
// Don't start until all specified images and fonts in the cache are preloaded
if (!(curSketch.imageCache.pending || PFont.preloading.pending(retryInterval))) {
// the opera preload cache can only be cleared once we start
if (window.opera) {
var link,
element,
operaCache=curSketch.imageCache.operaCache;
for (link in operaCache) {
if(operaCache.hasOwnProperty(link)) {
element = operaCache[link];
if (element !== null) {
document.body.removeChild(element);
}
delete(operaCache[link]);
}
}
}
curSketch.attach(processing, defaultScope);
// pass a reference to the p instance for this sketch.
curSketch.onLoad(processing);
// Run void setup()
if (processing.setup) {
processing.setup();
// if any transforms were performed in setup reset to identity matrix
// so draw loop is unpolluted
processing.resetMatrix();
curSketch.onSetup();
}
// some pixels can be cached, flushing
resetContext();
if (processing.draw) {
if (!doLoop) {
processing.redraw();
} else {
processing.loop();
}
}
} else {
window.setTimeout(function() { executeSketch(processing); }, retryInterval);
}
};
// Only store an instance of non-createGraphics instances.
addInstance(this);
// The parser adds custom methods to the processing context
// this renames p to processing so these methods will run
executeSketch(p);
} else {
// No executable sketch was specified
// or called via createGraphics
curSketch = new Processing.Sketch();
wireDimensionalFunctions();
// Hack to make PGraphics work again after splitting size()
p.size = function(w, h, render) {
if (render && render === PConstants.WEBGL) {
wireDimensionalFunctions('3D');
} else {
wireDimensionalFunctions('2D');
}
p.size(w, h, render);
};
}
}; // Processing() ends
// Place-holder for overridable debugging function
Processing.debug = debug;
Processing.prototype = defaultScope;
//#if PARSER
// Processing global methods and constants for the parser
function getGlobalMembers() {
// The names array contains the names of everything that is inside "p."
// When something new is added to "p." it must also be added to this list.
var names = [ /* this code is generated by jsglobals.js */
"abs", "acos", "alpha", "ambient", "ambientLight", "append", "applyMatrix",
"arc", "arrayCopy", "asin", "atan", "atan2", "background", "beginCamera",
"beginDraw", "beginShape", "bezier", "bezierDetail", "bezierPoint",
"bezierTangent", "bezierVertex", "binary", "blend", "blendColor",
"blit_resize", "blue", "box", "breakShape", "brightness",
"camera", "ceil", "Character", "color", "colorMode",
"concat", "constrain", "copy", "cos", "createFont",
"createGraphics", "createImage", "cursor", "curve", "curveDetail",
"curvePoint", "curveTangent", "curveTightness", "curveVertex", "day",
"degrees", "directionalLight", "disableContextMenu",
"dist", "draw", "ellipse", "ellipseMode", "emissive", "enableContextMenu",
"endCamera", "endDraw", "endShape", "exit", "exp", "expand", "externals",
"fill", "filter", "floor", "focused", "frameCount", "frameRate", "frustum",
"get", "glyphLook", "glyphTable", "green", "height", "hex", "hint", "hour",
"hue", "image", "imageMode", "intersect", "join", "key",
"keyCode", "keyPressed", "keyReleased", "keyTyped", "lerp", "lerpColor",
"lightFalloff", "lights", "lightSpecular", "line", "link", "loadBytes",
"loadFont", "loadGlyphs", "loadImage", "loadPixels", "loadShape",
"loadStrings", "log", "loop", "mag", "map", "match", "matchAll", "max",
"millis", "min", "minute", "mix", "modelX", "modelY", "modelZ", "modes",
"month", "mouseButton", "mouseClicked", "mouseDragged", "mouseMoved",
"mouseOut", "mouseOver", "mousePressed", "mouseReleased", "mouseScroll",
"mouseScrolled", "mouseX", "mouseY", "name", "nf", "nfc", "nfp", "nfs",
"noCursor", "noFill", "noise", "noiseDetail", "noiseSeed", "noLights",
"noLoop", "norm", "normal", "noSmooth", "noStroke", "noTint", "ortho",
"param", "parseBoolean", "parseByte", "parseChar", "parseFloat",
"parseInt", "peg", "perspective", "PImage", "pixels", "PMatrix2D",
"PMatrix3D", "PMatrixStack", "pmouseX", "pmouseY", "point",
"pointLight", "popMatrix", "popStyle", "pow", "print", "printCamera",
"println", "printMatrix", "printProjection", "PShape", "PShapeSVG",
"pushMatrix", "pushStyle", "quad", "radians", "random", "Random",
"randomSeed", "rect", "rectMode", "red", "redraw", "requestImage",
"resetMatrix", "reverse", "rotate", "rotateX", "rotateY", "rotateZ",
"round", "saturation", "save", "saveFrame", "saveStrings", "scale",
"screenX", "screenY", "screenZ", "second", "set", "setup", "shape",
"shapeMode", "shared", "shininess", "shorten", "sin", "size", "smooth",
"sort", "specular", "sphere", "sphereDetail", "splice", "split",
"splitTokens", "spotLight", "sq", "sqrt", "status", "str", "stroke",
"strokeCap", "strokeJoin", "strokeWeight", "subset", "tan", "text",
"textAlign", "textAscent", "textDescent", "textFont", "textLeading",
"textMode", "textSize", "texture", "textureMode", "textWidth", "tint", "toImageData",
"touchCancel", "touchEnd", "touchMove", "touchStart", "translate",
"triangle", "trim", "unbinary", "unhex", "updatePixels", "use3DContext",
"vertex", "width", "XMLElement", "year", "__contains", "__equals",
"__equalsIgnoreCase", "__frameRate", "__hashCode", "__int_cast",
// XXX(jeresig): Added mouseIsPressed/keyIsPressed
"mouseIsPressed", "keyIsPressed",
"__instanceof", "__keyPressed", "__mousePressed", "__printStackTrace",
"__replace", "__replaceAll", "__replaceFirst", "__toCharArray", "__split",
"__codePointAt", "__startsWith", "__endsWith"];
var members = {};
var i, l;
for (i = 0, l = names.length; i < l ; ++i) {
members[names[i]] = null;
}
for (var lib in Processing.lib) {
if (Processing.lib.hasOwnProperty(lib)) {
if (Processing.lib[lib].exports) {
var exportedNames = Processing.lib[lib].exports;
for (i = 0, l = exportedNames.length; i < l; ++i) {
members[exportedNames[i]] = null;
}
}
}
}
return members;
}
/*
Parser converts Java-like syntax into JavaScript.
Creates an Abstract Syntax Tree -- "Light AST" from the Java-like code.
It is an object tree. The root object is created from the AstRoot class, which contains statements.
A statement object can be of type: AstForStatement, AstCatchStatement, AstPrefixStatement, AstMethod, AstClass,
AstInterface, AstFunction, AstStatementBlock and AstLabel.
AstPrefixStatement can be a statement of type: if, switch, while, with, do, else, finally, return, throw, try, break, and continue.
These object's toString function returns the JavaScript code for the statement.
Any processing calls need "processing." prepended to them.
Similarly, calls from inside classes need "$this_1.", prepended to them,
with 1 being the depth level for inner classes.
This includes members passed down from inheritance.
The resulting code is then eval'd and run.
*/
function parseProcessing(code) {
var globalMembers = getGlobalMembers();
// masks parentheses, brackets and braces with '"A5"'
// where A is the bracket type, and 5 is the index in an array containing all brackets split into atoms
// 'while(true){}' -> 'while"B1""A2"'
// parentheses() = B, brackets[] = C and braces{} = A
function splitToAtoms(code) {
var atoms = [];
var items = code.split(/([\{\[\(\)\]\}])/);
var result = items[0];
var stack = [];
for(var i=1; i < items.length; i += 2) {
var item = items[i];
if(item === '[' || item === '{' || item === '(') {
stack.push(result); result = item;
} else if(item === ']' || item === '}' || item === ')') {
var kind = item === '}' ? 'A' : item === ')' ? 'B' : 'C';
var index = atoms.length; atoms.push(result + item);
result = stack.pop() + '"' + kind + (index + 1) + '"';
}
result += items[i + 1];
}
atoms.unshift(result);
return atoms;
}
// replaces strings and regexs keyed by index with an array of strings
function injectStrings(code, strings) {
return code.replace(/'(\d+)'/g, function(all, index) {
var val = strings[index];
if(val.charAt(0) === "/") {
return val;
}
return (/^'((?:[^'\\\n])|(?:\\.[0-9A-Fa-f]*))'$/).test(val) ? "(new $p.Character(" + val + "))" : val;
});
}
// trims off leading and trailing spaces
// returns an object. object.left, object.middle, object.right, object.untrim
function trimSpaces(string) {
var m1 = /^\s*/.exec(string), result;
if(m1[0].length === string.length) {
result = {left: m1[0], middle: "", right: ""};
} else {
var m2 = /\s*$/.exec(string);
result = {left: m1[0], middle: string.substring(m1[0].length, m2.index), right: m2[0]};
}
result.untrim = function(t) { return this.left + t + this.right; };
return result;
}
// simple trim of leading and trailing spaces
function trim(string) {
return string.replace(/^\s+/,'').replace(/\s+$/,'');
}
function appendToLookupTable(table, array) {
for(var i=0,l=array.length;i<l;++i) {
table[array[i]] = null;
}
return table;
}
function isLookupTableEmpty(table) {
for(var i in table) {
if(table.hasOwnProperty(i)) {
return false;
}
}
return true;
}
function getAtomIndex(templ) { return templ.substring(2, templ.length - 1); }
// remove carriage returns "\r"
var codeWoExtraCr = code.replace(/\r\n?|\n\r/g, "\n");
// masks strings and regexs with "'5'", where 5 is the index in an array containing all strings and regexs
// also removes all comments
var strings = [];
var codeWoStrings = codeWoExtraCr.replace(/("(?:[^"\\\n]|\\.)*")|('(?:[^'\\\n]|\\.)*')|(([\[\(=|&!\^:?]\s*)(\/(?![*\/])(?:[^\/\\\n]|\\.)*\/[gim]*)\b)|(\/\/[^\n]*\n)|(\/\*(?:(?!\*\/)(?:.|\n))*\*\/)/g,
function(all, quoted, aposed, regexCtx, prefix, regex, singleComment, comment) {
var index;
if(quoted || aposed) { // replace strings
index = strings.length; strings.push(all);
return "'" + index + "'";
}
if(regexCtx) { // replace RegExps
index = strings.length; strings.push(regex);
return prefix + "'" + index + "'";
}
// kill comments
return comment !== "" ? " " : "\n";
});
// removes generics
var genericsWereRemoved;
var codeWoGenerics = codeWoStrings;
var replaceFunc = function(all, before, types, after) {
if(!!before || !!after) {
return all;
}
genericsWereRemoved = true;
return "";
};
do {
genericsWereRemoved = false;
codeWoGenerics = codeWoGenerics.replace(/([<]?)<\s*((?:\?|[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)(?:\s+(?:extends|super)\s+[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)?(?:\s*,\s*(?:\?|[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)(?:\s+(?:extends|super)\s+[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)?)*)\s*>([=]?)/g, replaceFunc);
} while (genericsWereRemoved);
var atoms = splitToAtoms(codeWoGenerics);
var replaceContext;
var declaredClasses = {}, currentClassId, classIdSeed = 0;
function addAtom(text, type) {
var lastIndex = atoms.length;
atoms.push(text);
return '"' + type + lastIndex + '"';
}
function generateClassId() {
return "class" + (++classIdSeed);
}
function appendClass(class_, classId, scopeId) {
class_.classId = classId;
class_.scopeId = scopeId;
declaredClasses[classId] = class_;
}
// functions defined below
var transformClassBody, transformInterfaceBody, transformStatementsBlock, transformStatements, transformMain, transformExpression;
var classesRegex = /\b((?:(?:public|private|final|protected|static|abstract)\s+)*)(class|interface)\s+([A-Za-z_$][\w$]*\b)(\s+extends\s+[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*,\s*[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*\b)*)?(\s+implements\s+[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*,\s*[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*\b)*)?\s*("A\d+")/g;
var methodsRegex = /\b((?:(?:public|private|final|protected|static|abstract|synchronized)\s+)*)((?!(?:else|new|return|throw|function|public|private|protected)\b)[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*"C\d+")*)\s*([A-Za-z_$][\w$]*\b)\s*("B\d+")(\s*throws\s+[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*,\s*[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)*)?\s*("A\d+"|;)/g;
var fieldTest = /^((?:(?:public|private|final|protected|static)\s+)*)((?!(?:else|new|return|throw)\b)[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*"C\d+")*)\s*([A-Za-z_$][\w$]*\b)\s*(?:"C\d+"\s*)*([=,]|$)/;
var cstrsRegex = /\b((?:(?:public|private|final|protected|static|abstract)\s+)*)((?!(?:new|return|throw)\b)[A-Za-z_$][\w$]*\b)\s*("B\d+")(\s*throws\s+[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*,\s*[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)*)?\s*("A\d+")/g;
var attrAndTypeRegex = /^((?:(?:public|private|final|protected|static)\s+)*)((?!(?:new|return|throw)\b)[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*(?:\s*"C\d+")*)\s*/;
var functionsRegex = /\bfunction(?:\s+([A-Za-z_$][\w$]*))?\s*("B\d+")\s*("A\d+")/g;
// This converts classes, methods and functions into atoms, and adds them to the atoms array.
// classes = E, methods = D and functions = H
function extractClassesAndMethods(code) {
var s = code;
s = s.replace(classesRegex, function(all) {
return addAtom(all, 'E');
});
s = s.replace(methodsRegex, function(all) {
return addAtom(all, 'D');
});
s = s.replace(functionsRegex, function(all) {
return addAtom(all, 'H');
});
return s;
}
// This converts constructors into atoms, and adds them to the atoms array.
// constructors = G
function extractConstructors(code, className) {
var result = code.replace(cstrsRegex, function(all, attr, name, params, throws_, body) {
if(name !== className) {
return all;
}
return addAtom(all, 'G');
});
return result;
}
// AstParam contains the name of a parameter inside a function declaration
function AstParam(name) {
this.name = name;
}
AstParam.prototype.toString = function() {
return this.name;
};
// AstParams contains an array of AstParam objects
function AstParams(params) {
this.params = params;
}
AstParams.prototype.getNames = function() {
var names = [];
for(var i=0,l=this.params.length;i<l;++i) {
names.push(this.params[i].name);
}
return names;
};
AstParams.prototype.toString = function() {
if(this.params.length === 0) {
return "()";
}
var result = "(";
for(var i=0,l=this.params.length;i<l;++i) {
result += this.params[i] + ", ";
}
return result.substring(0, result.length - 2) + ")";
};
function transformParams(params) {
var paramsWoPars = trim(params.substring(1, params.length - 1));
var result = [];
if(paramsWoPars !== "") {
var paramList = paramsWoPars.split(",");
for(var i=0; i < paramList.length; ++i) {
var param = /\b([A-Za-z_$][\w$]*\b)(\s*"[ABC][\d]*")*\s*$/.exec(paramList[i]);
result.push(new AstParam(param[1]));
}
}
return new AstParams(result);
}
function preExpressionTransform(expr) {
var s = expr;
// new type[] {...} --> {...}
s = s.replace(/\bnew\s+([A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)(?:\s*"C\d+")+\s*("A\d+")/g, function(all, type, init) {
return init;
});
// new Runnable() {...} --> "F???"
s = s.replace(/\bnew\s+([A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)(?:\s*"B\d+")\s*("A\d+")/g, function(all, type, init) {
return addAtom(all, 'F');
});
// function(...) { } --> "H???"
s = s.replace(functionsRegex, function(all) {
return addAtom(all, 'H');
});
// new type[?] --> createJavaArray('type', [?])
s = s.replace(/\bnew\s+([A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)\s*("C\d+"(?:\s*"C\d+")*)/g, function(all, type, index) {
var args = index.replace(/"C(\d+)"/g, function(all, j) { return atoms[j]; })
.replace(/\[\s*\]/g, "[null]").replace(/\s*\]\s*\[\s*/g, ", ");
var arrayInitializer = "{" + args.substring(1, args.length - 1) + "}";
var createArrayArgs = "('" + type + "', " + addAtom(arrayInitializer, 'A') + ")";
return '$p.createJavaArray' + addAtom(createArrayArgs, 'B');
});
// .length() --> .length
s = s.replace(/(\.\s*length)\s*"B\d+"/g, "$1");
// #000000 --> 0x000000
s = s.replace(/#([0-9A-Fa-f]{6})\b/g, function(all, digits) {
return "0xFF" + digits;
});
// delete (type)???, except (int)???
s = s.replace(/"B(\d+)"(\s*(?:[\w$']|"B))/g, function(all, index, next) {
var atom = atoms[index];
if(!/^\(\s*[A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*\s*(?:"C\d+"\s*)*\)$/.test(atom)) {
return all;
}
if(/^\(\s*int\s*\)$/.test(atom)) {
return "(int)" + next;
}
var indexParts = atom.split(/"C(\d+)"/g);
if(indexParts.length > 1) {
// even items contains atom numbers, can check only first
if(! /^\[\s*\]$/.test(atoms[indexParts[1]])) {
return all; // fallback - not a cast
}
}
return "" + next;
});
// (int)??? -> __int_cast(???)
s = s.replace(/\(int\)([^,\]\)\}\?\:\*\+\-\/\^\|\%\&\~<\>\=]+)/g, function(all, arg) {
var trimmed = trimSpaces(arg);
return trimmed.untrim("__int_cast(" + trimmed.middle + ")");
});
// super() -> $superCstr(), super. -> $super.;
s = s.replace(/\bsuper(\s*"B\d+")/g, "$$superCstr$1").replace(/\bsuper(\s*\.)/g, "$$super$1");
// 000.43->0.43 and 0010f->10, but not 0010
s = s.replace(/\b0+((\d*)(?:\.[\d*])?(?:[eE][\-\+]?\d+)?[fF]?)\b/, function(all, numberWo0, intPart) {
if( numberWo0 === intPart) {
return all;
}
return intPart === "" ? "0" + numberWo0 : numberWo0;
});
// 3.0f -> 3.0
s = s.replace(/\b(\.?\d+\.?)[fF]\b/g, "$1");
// Weird (?) parsing errors with %
s = s.replace(/([^\s])%([^=\s])/g, "$1 % $2");
// Since frameRate() and frameRate are different things,
// we need to differentiate them somehow. So when we parse
// the Processing.js source, replace frameRate so it isn't
// confused with frameRate(), as well as keyPressed and mousePressed
s = s.replace(/\b(frameRate|keyPressed|mousePressed)\b(?!\s*"B)/g, "__$1");
// "boolean", "byte", "int", etc. => "parseBoolean", "parseByte", "parseInt", etc.
s = s.replace(/\b(boolean|byte|char|float|int)\s*"B/g, function(all, name) {
return "parse" + name.substring(0, 1).toUpperCase() + name.substring(1) + "\"B";
});
// "pixels" replacements:
// pixels[i] = c => pixels.setPixel(i,c) | pixels[i] => pixels.getPixel(i)
// pixels.length => pixels.getLength()
// pixels = ar => pixels.set(ar) | pixels => pixels.toArray()
s = s.replace(/\bpixels\b\s*(("C(\d+)")|\.length)?(\s*=(?!=)([^,\]\)\}]+))?/g,
function(all, indexOrLength, index, atomIndex, equalsPart, rightSide) {
if(index) {
var atom = atoms[atomIndex];
if(equalsPart) {
return "pixels.setPixel" + addAtom("(" +atom.substring(1, atom.length - 1) +
"," + rightSide + ")", 'B');
}
return "pixels.getPixel" + addAtom("(" + atom.substring(1, atom.length - 1) +
")", 'B');
}
if(indexOrLength) {
// length
return "pixels.getLength" + addAtom("()", 'B');
}
if(equalsPart) {
return "pixels.set" + addAtom("(" + rightSide + ")", 'B');
}
return "pixels.toArray" + addAtom("()", 'B');
});
// Java method replacements for: replace, replaceAll, replaceFirst, equals, hashCode, etc.
// xxx.replace(yyy) -> __replace(xxx, yyy)
// "xx".replace(yyy) -> __replace("xx", yyy)
var repeatJavaReplacement;
function replacePrototypeMethods(all, subject, method, atomIndex) {
var atom = atoms[atomIndex];
repeatJavaReplacement = true;
var trimmed = trimSpaces(atom.substring(1, atom.length - 1));
return "__" + method + ( trimmed.middle === "" ? addAtom("(" + subject.replace(/\.\s*$/, "") + ")", 'B') :
addAtom("(" + subject.replace(/\.\s*$/, "") + "," + trimmed.middle + ")", 'B') );
}
do {
repeatJavaReplacement = false;
s = s.replace(/((?:'\d+'|\b[A-Za-z_$][\w$]*\s*(?:"[BC]\d+")*)\s*\.\s*(?:[A-Za-z_$][\w$]*\s*(?:"[BC]\d+"\s*)*\.\s*)*)(replace|replaceAll|replaceFirst|contains|equals|equalsIgnoreCase|hashCode|toCharArray|printStackTrace|split|startsWith|endsWith|codePointAt)\s*"B(\d+)"/g,
replacePrototypeMethods);
} while (repeatJavaReplacement);
// xxx instanceof yyy -> __instanceof(xxx, yyy)
function replaceInstanceof(all, subject, type) {
repeatJavaReplacement = true;
return "__instanceof" + addAtom("(" + subject + ", " + type + ")", 'B');
}
do {
repeatJavaReplacement = false;
s = s.replace(/((?:'\d+'|\b[A-Za-z_$][\w$]*\s*(?:"[BC]\d+")*)\s*(?:\.\s*[A-Za-z_$][\w$]*\s*(?:"[BC]\d+"\s*)*)*)instanceof\s+([A-Za-z_$][\w$]*\s*(?:\.\s*[A-Za-z_$][\w$]*)*)/g,
replaceInstanceof);
} while (repeatJavaReplacement);
// this() -> $constr()
s = s.replace(/\bthis(\s*"B\d+")/g, "$$constr$1");
return s;
}
function AstInlineClass(baseInterfaceName, body) {
this.baseInterfaceName = baseInterfaceName;
this.body = body;
body.owner = this;
}
AstInlineClass.prototype.toString = function() {
return "new (" + this.body + ")";
};
function transformInlineClass(class_) {
var m = new RegExp(/\bnew\s*([A-Za-z_$][\w$]*\s*(?:\.\s*[A-Za-z_$][\w$]*)*)\s*"B\d+"\s*"A(\d+)"/).exec(class_);
var oldClassId = currentClassId, newClassId = generateClassId();
currentClassId = newClassId;
var uniqueClassName = m[1] + "$" + newClassId;
var inlineClass = new AstInlineClass(uniqueClassName,
transformClassBody(atoms[m[2]], uniqueClassName, "", "implements " + m[1]));
appendClass(inlineClass, newClassId, oldClassId);
currentClassId = oldClassId;
return inlineClass;
}
function AstFunction(name, params, body) {
this.name = name;
this.params = params;
this.body = body;
}
AstFunction.prototype.toString = function() {
var oldContext = replaceContext;
// saving "this." and parameters
var names = appendToLookupTable({"this":null}, this.params.getNames());
replaceContext = function (subject) {
return names.hasOwnProperty(subject.name) ? subject.name : oldContext(subject);
};
var result = "function";
if(this.name) {
result += " " + this.name;
}
result += this.params + " " + this.body;
replaceContext = oldContext;
return result;
};
function transformFunction(class_) {
var m = new RegExp(/\b([A-Za-z_$][\w$]*)\s*"B(\d+)"\s*"A(\d+)"/).exec(class_);
return new AstFunction( m[1] !== "function" ? m[1] : null,
transformParams(atoms[m[2]]), transformStatementsBlock(atoms[m[3]]));
}
function AstInlineObject(members) {
this.members = members;
}
AstInlineObject.prototype.toString = function() {
var oldContext = replaceContext;
replaceContext = function (subject) {
return subject.name === "this" ? "this" : oldContext(subject); // saving "this."
};
var result = "";
for(var i=0,l=this.members.length;i<l;++i) {
if(this.members[i].label) {
result += this.members[i].label + ": ";
}
result += this.members[i].value.toString() + ", ";
}
replaceContext = oldContext;
return result.substring(0, result.length - 2);
};
function transformInlineObject(obj) {
var members = obj.split(',');
for(var i=0; i < members.length; ++i) {
var label = members[i].indexOf(':');
if(label < 0) {
members[i] = { value: transformExpression(members[i]) };
} else {
members[i] = { label: trim(members[i].substring(0, label)),
value: transformExpression( trim(members[i].substring(label + 1)) ) };
}
}
return new AstInlineObject(members);
}
function expandExpression(expr) {
if(expr.charAt(0) === '(' || expr.charAt(0) === '[') {
return expr.charAt(0) + expandExpression(expr.substring(1, expr.length - 1)) + expr.charAt(expr.length - 1);
}
if(expr.charAt(0) === '{') {
if(/^\{\s*(?:[A-Za-z_$][\w$]*|'\d+')\s*:/.test(expr)) {
return "{" + addAtom(expr.substring(1, expr.length - 1), 'I') + "}";
}
return "[" + expandExpression(expr.substring(1, expr.length - 1)) + "]";
}
var trimmed = trimSpaces(expr);
var result = preExpressionTransform(trimmed.middle);
result = result.replace(/"[ABC](\d+)"/g, function(all, index) {
return expandExpression(atoms[index]);
});
return trimmed.untrim(result);
}
function replaceContextInVars(expr) {
return expr.replace(/(\.\s*)?((?:\b[A-Za-z_]|\$)[\w$]*)(\s*\.\s*([A-Za-z_$][\w$]*)(\s*\()?)?/g,
function(all, memberAccessSign, identifier, suffix, subMember, callSign) {
if(memberAccessSign) {
return all;
}
var subject = { name: identifier, member: subMember, callSign: !!callSign };
return replaceContext(subject) + (suffix === undef ? "" : suffix);
});
}
function AstExpression(expr, transforms) {
this.expr = expr;
this.transforms = transforms;
}
AstExpression.prototype.toString = function() {
var transforms = this.transforms;
var expr = replaceContextInVars(this.expr);
return expr.replace(/"!(\d+)"/g, function(all, index) {
return transforms[index].toString();
});
};
transformExpression = function(expr) {
var transforms = [];
var s = expandExpression(expr);
s = s.replace(/"H(\d+)"/g, function(all, index) {
transforms.push(transformFunction(atoms[index]));
return '"!' + (transforms.length - 1) + '"';
});
s = s.replace(/"F(\d+)"/g, function(all, index) {
transforms.push(transformInlineClass(atoms[index]));
return '"!' + (transforms.length - 1) + '"';
});
s = s.replace(/"I(\d+)"/g, function(all, index) {
transforms.push(transformInlineObject(atoms[index]));
return '"!' + (transforms.length - 1) + '"';
});
return new AstExpression(s, transforms);
};
function AstVarDefinition(name, value, isDefault) {
this.name = name;
this.value = value;
this.isDefault = isDefault;
}
AstVarDefinition.prototype.toString = function() {
return this.name + ' = ' + this.value;
};
function transformVarDefinition(def, defaultTypeValue) {
var eqIndex = def.indexOf("=");
var name, value, isDefault;
if(eqIndex < 0) {
name = def;
value = defaultTypeValue;
isDefault = true;
} else {
name = def.substring(0, eqIndex);
value = transformExpression(def.substring(eqIndex + 1));
isDefault = false;
}
return new AstVarDefinition( trim(name.replace(/(\s*"C\d+")+/g, "")),
value, isDefault);
}
function getDefaultValueForType(type) {
if(type === "int" || type === "float") {
return "0";
}
if(type === "boolean") {
return "false";
}
if(type === "color") {
return "0x00000000";
}
return "null";
}
function AstVar(definitions, varType) {
this.definitions = definitions;
this.varType = varType;
}
AstVar.prototype.getNames = function() {
var names = [];
for(var i=0,l=this.definitions.length;i<l;++i) {
names.push(this.definitions[i].name);
}
return names;
};
AstVar.prototype.toString = function() {
return "var " + this.definitions.join(",");
};
function AstStatement(expression) {
this.expression = expression;
}
AstStatement.prototype.toString = function() {
return this.expression.toString();
};
function transformStatement(statement) {
if(fieldTest.test(statement)) {
var attrAndType = attrAndTypeRegex.exec(statement);
var definitions = statement.substring(attrAndType[0].length).split(",");
var defaultTypeValue = getDefaultValueForType(attrAndType[2]);
for(var i=0; i < definitions.length; ++i) {
definitions[i] = transformVarDefinition(definitions[i], defaultTypeValue);
}
return new AstVar(definitions, attrAndType[2]);
}
return new AstStatement(transformExpression(statement));
}
function AstForExpression(initStatement, condition, step) {
this.initStatement = initStatement;
this.condition = condition;
this.step = step;
}
AstForExpression.prototype.toString = function() {
return "(" + this.initStatement + "; " + this.condition + "; " + this.step + ")";
};
function AstForInExpression(initStatement, container) {
this.initStatement = initStatement;
this.container = container;
}
AstForInExpression.prototype.toString = function() {
var init = this.initStatement.toString();
if(init.indexOf("=") >= 0) { // can be without var declaration
init = init.substring(0, init.indexOf("="));
}
return "(" + init + " in " + this.container + ")";
};
function AstForEachExpression(initStatement, container) {
this.initStatement = initStatement;
this.container = container;
}
AstForEachExpression.iteratorId = 0;
AstForEachExpression.prototype.toString = function() {
var init = this.initStatement.toString();
var iterator = "$it" + (AstForEachExpression.iteratorId++);
var variableName = init.replace(/^\s*var\s*/, "").split("=")[0];
var initIteratorAndVariable = "var " + iterator + " = new $p.ObjectIterator(" + this.container + "), " +
variableName + " = void(0)";
var nextIterationCondition = iterator + ".hasNext() && ((" +
variableName + " = " + iterator + ".next()) || true)";
return "(" + initIteratorAndVariable + "; " + nextIterationCondition + ";)";
};
function transformForExpression(expr) {
var content;
if (/\bin\b/.test(expr)) {
content = expr.substring(1, expr.length - 1).split(/\bin\b/g);
return new AstForInExpression( transformStatement(trim(content[0])),
transformExpression(content[1]));
}
if (expr.indexOf(":") >= 0 && expr.indexOf(";") < 0) {
content = expr.substring(1, expr.length - 1).split(":");
return new AstForEachExpression( transformStatement(trim(content[0])),
transformExpression(content[1]));
}
content = expr.substring(1, expr.length - 1).split(";");
return new AstForExpression( transformStatement(trim(content[0])),
transformExpression(content[1]), transformExpression(content[2]));
}
function sortByWeight(array) {
array.sort(function (a,b) {
return b.weight - a.weight;
});
}
function AstInnerInterface(name, body, isStatic) {
this.name = name;
this.body = body;
this.isStatic = isStatic;
body.owner = this;
}
AstInnerInterface.prototype.toString = function() {
return "" + this.body;
};
function AstInnerClass(name, body, isStatic) {
this.name = name;
this.body = body;
this.isStatic = isStatic;
body.owner = this;
}
AstInnerClass.prototype.toString = function() {
return "" + this.body;
};
function transformInnerClass(class_) {
var m = classesRegex.exec(class_); // 1 - attr, 2 - class|int, 3 - name, 4 - extends, 5 - implements, 6 - body
classesRegex.lastIndex = 0;
var isStatic = m[1].indexOf("static") >= 0;
var body = atoms[getAtomIndex(m[6])], innerClass;
var oldClassId = currentClassId, newClassId = generateClassId();
currentClassId = newClassId;
if(m[2] === "interface") {
innerClass = new AstInnerInterface(m[3], transformInterfaceBody(body, m[3], m[4]), isStatic);
} else {
innerClass = new AstInnerClass(m[3], transformClassBody(body, m[3], m[4], m[5]), isStatic);
}
appendClass(innerClass, newClassId, oldClassId);
currentClassId = oldClassId;
return innerClass;
}
function AstClassMethod(name, params, body, isStatic) {
this.name = name;
this.params = params;
this.body = body;
this.isStatic = isStatic;
}
AstClassMethod.prototype.toString = function(){
var paramNames = appendToLookupTable({}, this.params.getNames());
var oldContext = replaceContext;
replaceContext = function (subject) {
return paramNames.hasOwnProperty(subject.name) ? subject.name : oldContext(subject);
};
var result = "function " + this.methodId + this.params + " " + this.body +"\n";
replaceContext = oldContext;
return result;
};
function transformClassMethod(method) {
var m = methodsRegex.exec(method);
methodsRegex.lastIndex = 0;
var isStatic = m[1].indexOf("static") >= 0;
var body = m[6] !== ';' ? atoms[getAtomIndex(m[6])] : "{}";
return new AstClassMethod(m[3], transformParams(atoms[getAtomIndex(m[4])]),
transformStatementsBlock(body), isStatic );
}
function AstClassField(definitions, fieldType, isStatic) {
this.definitions = definitions;
this.fieldType = fieldType;
this.isStatic = isStatic;
}
AstClassField.prototype.getNames = function() {
var names = [];
for(var i=0,l=this.definitions.length;i<l;++i) {
names.push(this.definitions[i].name);
}
return names;
};
AstClassField.prototype.toString = function() {
var thisPrefix = replaceContext({ name: "[this]" });
if(this.isStatic) {
var className = this.owner.name;
var staticDeclarations = [];
for(var i=0,l=this.definitions.length;i<l;++i) {
var definition = this.definitions[i];
var name = definition.name, staticName = className + "." + name;
var declaration = "if(" + staticName + " === void(0)) {\n" +
" " + staticName + " = " + definition.value + "; }\n" +
"$p.defineProperty(" + thisPrefix + ", " +
"'" + name + "', { get: function(){return " + staticName + ";}, " +
"set: function(val){" + staticName + " = val;} });\n";
staticDeclarations.push(declaration);
}
return staticDeclarations.join("");
}
return thisPrefix + "." + this.definitions.join("; " + thisPrefix + ".");
};
function transformClassField(statement) {
var attrAndType = attrAndTypeRegex.exec(statement);
var isStatic = attrAndType[1].indexOf("static") >= 0;
var definitions = statement.substring(attrAndType[0].length).split(/,\s*/g);
var defaultTypeValue = getDefaultValueForType(attrAndType[2]);
for(var i=0; i < definitions.length; ++i) {
definitions[i] = transformVarDefinition(definitions[i], defaultTypeValue);
}
return new AstClassField(definitions, attrAndType[2], isStatic);
}
function AstConstructor(params, body) {
this.params = params;
this.body = body;
}
AstConstructor.prototype.toString = function() {
var paramNames = appendToLookupTable({}, this.params.getNames());
var oldContext = replaceContext;
replaceContext = function (subject) {
return paramNames.hasOwnProperty(subject.name) ? subject.name : oldContext(subject);
};
var prefix = "function $constr_" + this.params.params.length + this.params.toString();
var body = this.body.toString();
if(!/\$(superCstr|constr)\b/.test(body)) {
body = "{\n$superCstr();\n" + body.substring(1);
}
replaceContext = oldContext;
return prefix + body + "\n";
};
function transformConstructor(cstr) {
var m = new RegExp(/"B(\d+)"\s*"A(\d+)"/).exec(cstr);
var params = transformParams(atoms[m[1]]);
return new AstConstructor(params, transformStatementsBlock(atoms[m[2]]));
}
function AstInterfaceBody(name, interfacesNames, methodsNames, fields, innerClasses, misc) {
var i,l;
this.name = name;
this.interfacesNames = interfacesNames;
this.methodsNames = methodsNames;
this.fields = fields;
this.innerClasses = innerClasses;
this.misc = misc;
for(i=0,l=fields.length; i<l; ++i) {
fields[i].owner = this;
}
}
AstInterfaceBody.prototype.getMembers = function(classFields, classMethods, classInners) {
if(this.owner.base) {
this.owner.base.body.getMembers(classFields, classMethods, classInners);
}
var i, j, l, m;
for(i=0,l=this.fields.length;i<l;++i) {
var fieldNames = this.fields[i].getNames();
for(j=0,m=fieldNames.length;j<m;++j) {
classFields[fieldNames[j]] = this.fields[i];
}
}
for(i=0,l=this.methodsNames.length;i<l;++i) {
var methodName = this.methodsNames[i];
classMethods[methodName] = true;
}
for(i=0,l=this.innerClasses.length;i<l;++i) {
var innerClass = this.innerClasses[i];
classInners[innerClass.name] = innerClass;
}
};
AstInterfaceBody.prototype.toString = function() {
function getScopeLevel(p) {
var i = 0;
while(p) {
++i;
p=p.scope;
}
return i;
}
var scopeLevel = getScopeLevel(this.owner);
var className = this.name;
var staticDefinitions = "";
var metadata = "";
var thisClassFields = {}, thisClassMethods = {}, thisClassInners = {};
this.getMembers(thisClassFields, thisClassMethods, thisClassInners);
var i, l, j, m;
if (this.owner.interfaces) {
// interface name can be present, but interface is not
var resolvedInterfaces = [], resolvedInterface;
for (i = 0, l = this.interfacesNames.length; i < l; ++i) {
if (!this.owner.interfaces[i]) {
continue;
}
resolvedInterface = replaceContext({name: this.interfacesNames[i]});
resolvedInterfaces.push(resolvedInterface);
staticDefinitions += "$p.extendInterfaceMembers(" + className + ", " + resolvedInterface + ");\n";
}
metadata += className + ".$interfaces = [" + resolvedInterfaces.join(", ") + "];\n";
}
metadata += className + ".$isInterface = true;\n";
metadata += className + ".$methods = [\'" + this.methodsNames.join("\', \'") + "\'];\n";
sortByWeight(this.innerClasses);
for (i = 0, l = this.innerClasses.length; i < l; ++i) {
var innerClass = this.innerClasses[i];
if (innerClass.isStatic) {
staticDefinitions += className + "." + innerClass.name + " = " + innerClass + ";\n";
}
}
for (i = 0, l = this.fields.length; i < l; ++i) {
var field = this.fields[i];
if (field.isStatic) {
staticDefinitions += className + "." + field.definitions.join(";\n" + className + ".") + ";\n";
}
}
return "(function() {\n" +
"function " + className + "() { throw \'Unable to create the interface\'; }\n" +
staticDefinitions +
metadata +
"return " + className + ";\n" +
"})()";
};
transformInterfaceBody = function(body, name, baseInterfaces) {
var declarations = body.substring(1, body.length - 1);
declarations = extractClassesAndMethods(declarations);
declarations = extractConstructors(declarations, name);
var methodsNames = [], classes = [];
declarations = declarations.replace(/"([DE])(\d+)"/g, function(all, type, index) {
if(type === 'D') { methodsNames.push(index); }
else if(type === 'E') { classes.push(index); }
return "";
});
var fields = declarations.split(/;(?:\s*;)*/g);
var baseInterfaceNames;
var i, l;
if(baseInterfaces !== undef) {
baseInterfaceNames = baseInterfaces.replace(/^\s*extends\s+(.+?)\s*$/g, "$1").split(/\s*,\s*/g);
}
for(i = 0, l = methodsNames.length; i < l; ++i) {
var method = transformClassMethod(atoms[methodsNames[i]]);
methodsNames[i] = method.name;
}
for(i = 0, l = fields.length - 1; i < l; ++i) {
var field = trimSpaces(fields[i]);
fields[i] = transformClassField(field.middle);
}
var tail = fields.pop();
for(i = 0, l = classes.length; i < l; ++i) {
classes[i] = transformInnerClass(atoms[classes[i]]);
}
return new AstInterfaceBody(name, baseInterfaceNames, methodsNames, fields, classes, { tail: tail });
};
function AstClassBody(name, baseClassName, interfacesNames, functions, methods, fields, cstrs, innerClasses, misc) {
var i,l;
this.name = name;
this.baseClassName = baseClassName;
this.interfacesNames = interfacesNames;
this.functions = functions;
this.methods = methods;
this.fields = fields;
this.cstrs = cstrs;
this.innerClasses = innerClasses;
this.misc = misc;
for(i=0,l=fields.length; i<l; ++i) {
fields[i].owner = this;
}
}
AstClassBody.prototype.getMembers = function(classFields, classMethods, classInners) {
if(this.owner.base) {
this.owner.base.body.getMembers(classFields, classMethods, classInners);
}
var i, j, l, m;
for(i=0,l=this.fields.length;i<l;++i) {
var fieldNames = this.fields[i].getNames();
for(j=0,m=fieldNames.length;j<m;++j) {
classFields[fieldNames[j]] = this.fields[i];
}
}
for(i=0,l=this.methods.length;i<l;++i) {
var method = this.methods[i];
classMethods[method.name] = method;
}
for(i=0,l=this.innerClasses.length;i<l;++i) {
var innerClass = this.innerClasses[i];
classInners[innerClass.name] = innerClass;
}
};
AstClassBody.prototype.toString = function() {
function getScopeLevel(p) {
var i = 0;
while(p) {
++i;
p=p.scope;
}
return i;
}
var scopeLevel = getScopeLevel(this.owner);
var selfId = "$this_" + scopeLevel;
var className = this.name;
var result = "var " + selfId + " = this;\n";
var staticDefinitions = "";
var metadata = "";
var thisClassFields = {}, thisClassMethods = {}, thisClassInners = {};
this.getMembers(thisClassFields, thisClassMethods, thisClassInners);
var oldContext = replaceContext;
replaceContext = function (subject) {
var name = subject.name;
if(name === "this") {
// returns "$this_N.$self" pointer instead of "this" in cases:
// "this()", "this.XXX()", "this", but not for "this.XXX"
return subject.callSign || !subject.member ? selfId + ".$self" : selfId;
}
if(thisClassFields.hasOwnProperty(name)) {
return thisClassFields[name].isStatic ? className + "." + name : selfId + "." + name;
}
if(thisClassInners.hasOwnProperty(name)) {
return selfId + "." + name;
}
if(thisClassMethods.hasOwnProperty(name)) {
return thisClassMethods[name].isStatic ? className + "." + name : selfId + ".$self." + name;
}
return oldContext(subject);
};
var resolvedBaseClassName;
if (this.baseClassName) {
resolvedBaseClassName = oldContext({name: this.baseClassName});
result += "var $super = { $upcast: " + selfId + " };\n";
result += "function $superCstr(){" + resolvedBaseClassName +
".apply($super,arguments);if(!('$self' in $super)) $p.extendClassChain($super)}\n";
metadata += className + ".$base = " + resolvedBaseClassName + ";\n";
} else {
result += "function $superCstr(){$p.extendClassChain("+ selfId +")}\n";
}
if (this.owner.base) {
// base class name can be present, but class is not
staticDefinitions += "$p.extendStaticMembers(" + className + ", " + resolvedBaseClassName + ");\n";
}
var i, l, j, m;
if (this.owner.interfaces) {
// interface name can be present, but interface is not
var resolvedInterfaces = [], resolvedInterface;
for (i = 0, l = this.interfacesNames.length; i < l; ++i) {
if (!this.owner.interfaces[i]) {
continue;
}
resolvedInterface = oldContext({name: this.interfacesNames[i]});
resolvedInterfaces.push(resolvedInterface);
staticDefinitions += "$p.extendInterfaceMembers(" + className + ", " + resolvedInterface + ");\n";
}
metadata += className + ".$interfaces = [" + resolvedInterfaces.join(", ") + "];\n";
}
if (this.functions.length > 0) {
result += this.functions.join('\n') + '\n';
}
sortByWeight(this.innerClasses);
for (i = 0, l = this.innerClasses.length; i < l; ++i) {
var innerClass = this.innerClasses[i];
if (innerClass.isStatic) {
staticDefinitions += className + "." + innerClass.name + " = " + innerClass + ";\n";
result += selfId + "." + innerClass.name + " = " + className + "." + innerClass.name + ";\n";
} else {
result += selfId + "." + innerClass.name + " = " + innerClass + ";\n";
}
}
for (i = 0, l = this.fields.length; i < l; ++i) {
var field = this.fields[i];
if (field.isStatic) {
staticDefinitions += className + "." + field.definitions.join(";\n" + className + ".") + ";\n";
for (j = 0, m = field.definitions.length; j < m; ++j) {
var fieldName = field.definitions[j].name, staticName = className + "." + fieldName;
result += "$p.defineProperty(" + selfId + ", '" + fieldName + "', {" +
"get: function(){return " + staticName + "}, " +
"set: function(val){" + staticName + " = val}});\n";
}
} else {
result += selfId + "." + field.definitions.join(";\n" + selfId + ".") + ";\n";
}
}
var methodOverloads = {};
for (i = 0, l = this.methods.length; i < l; ++i) {
var method = this.methods[i];
var overload = methodOverloads[method.name];
var methodId = method.name + "$" + method.params.params.length;
if (overload) {
++overload;
methodId += "_" + overload;
} else {
overload = 1;
}
method.methodId = methodId;
methodOverloads[method.name] = overload;
if (method.isStatic) {
staticDefinitions += method;
staticDefinitions += "$p.addMethod(" + className + ", '" + method.name + "', " + methodId + ");\n";
result += "$p.addMethod(" + selfId + ", '" + method.name + "', " + methodId + ");\n";
} else {
result += method;
result += "$p.addMethod(" + selfId + ", '" + method.name + "', " + methodId + ");\n";
}
}
result += trim(this.misc.tail);
if (this.cstrs.length > 0) {
result += this.cstrs.join('\n') + '\n';
}
result += "function $constr() {\n";
var cstrsIfs = [];
for (i = 0, l = this.cstrs.length; i < l; ++i) {
var paramsLength = this.cstrs[i].params.params.length;
cstrsIfs.push("if(arguments.length === " + paramsLength + ") { " +
"$constr_" + paramsLength + ".apply(" + selfId + ", arguments); }");
}
if(cstrsIfs.length > 0) {
result += cstrsIfs.join(" else ") + " else ";
}
// ??? add check if length is 0, otherwise fail
result += "$superCstr();\n}\n";
result += "$constr.apply(null, arguments);\n";
replaceContext = oldContext;
return "(function() {\n" +
"function " + className + "() {\n" + result + "}\n" +
staticDefinitions +
metadata +
"return " + className + ";\n" +
"})()";
};
transformClassBody = function(body, name, baseName, interfaces) {
var declarations = body.substring(1, body.length - 1);
declarations = extractClassesAndMethods(declarations);
declarations = extractConstructors(declarations, name);
var methods = [], classes = [], cstrs = [], functions = [];
declarations = declarations.replace(/"([DEGH])(\d+)"/g, function(all, type, index) {
if(type === 'D') { methods.push(index); }
else if(type === 'E') { classes.push(index); }
else if(type === 'H') { functions.push(index); }
else { cstrs.push(index); }
return "";
});
var fields = declarations.replace(/^(?:\s*;)+/, "").split(/;(?:\s*;)*/g);
var baseClassName, interfacesNames;
var i;
if(baseName !== undef) {
baseClassName = baseName.replace(/^\s*extends\s+([A-Za-z_$][\w$]*\b(?:\s*\.\s*[A-Za-z_$][\w$]*\b)*)\s*$/g, "$1");
}
if(interfaces !== undef) {
interfacesNames = interfaces.replace(/^\s*implements\s+(.+?)\s*$/g, "$1").split(/\s*,\s*/g);
}
for(i = 0; i < functions.length; ++i) {
functions[i] = transformFunction(atoms[functions[i]]);
}
for(i = 0; i < methods.length; ++i) {
methods[i] = transformClassMethod(atoms[methods[i]]);
}
for(i = 0; i < fields.length - 1; ++i) {
var field = trimSpaces(fields[i]);
fields[i] = transformClassField(field.middle);
}
var tail = fields.pop();
for(i = 0; i < cstrs.length; ++i) {
cstrs[i] = transformConstructor(atoms[cstrs[i]]);
}
for(i = 0; i < classes.length; ++i) {
classes[i] = transformInnerClass(atoms[classes[i]]);
}
return new AstClassBody(name, baseClassName, interfacesNames, functions, methods, fields, cstrs,
classes, { tail: tail });
};
function AstInterface(name, body) {
this.name = name;
this.body = body;
body.owner = this;
}
AstInterface.prototype.toString = function() {
return "var " + this.name + " = " + this.body + ";\n" +
"$p." + this.name + " = " + this.name + ";\n";
};
function AstClass(name, body) {
this.name = name;
this.body = body;
body.owner = this;
}
AstClass.prototype.toString = function() {
return "var " + this.name + " = " + this.body + ";\n" +
"$p." + this.name + " = " + this.name + ";\n";
};
function transformGlobalClass(class_) {
var m = classesRegex.exec(class_); // 1 - attr, 2 - class|int, 3 - name, 4 - extends, 5 - implements, 6 - body
classesRegex.lastIndex = 0;
var body = atoms[getAtomIndex(m[6])];
var oldClassId = currentClassId, newClassId = generateClassId();
currentClassId = newClassId;
var globalClass;
if(m[2] === "interface") {
globalClass = new AstInterface(m[3], transformInterfaceBody(body, m[3], m[4]) );
} else {
globalClass = new AstClass(m[3], transformClassBody(body, m[3], m[4], m[5]) );
}
appendClass(globalClass, newClassId, oldClassId);
currentClassId = oldClassId;
return globalClass;
}
function AstMethod(name, params, body) {
this.name = name;
this.params = params;
this.body = body;
}
AstMethod.prototype.toString = function(){
var paramNames = appendToLookupTable({}, this.params.getNames());
var oldContext = replaceContext;
replaceContext = function (subject) {
return paramNames.hasOwnProperty(subject.name) ? subject.name : oldContext(subject);
};
var result = "function " + this.name + this.params + " " + this.body + "\n" +
"$p." + this.name + " = " + this.name + ";";
replaceContext = oldContext;
return result;
};
function transformGlobalMethod(method) {
var m = methodsRegex.exec(method);
var result =
methodsRegex.lastIndex = 0;
return new AstMethod(m[3], transformParams(atoms[getAtomIndex(m[4])]),
transformStatementsBlock(atoms[getAtomIndex(m[6])]));
}
function preStatementsTransform(statements) {
var s = statements;
// turns multiple catch blocks into one, because we have no way to properly get into them anyway.
s = s.replace(/\b(catch\s*"B\d+"\s*"A\d+")(\s*catch\s*"B\d+"\s*"A\d+")+/g, "$1");
return s;
}
function AstForStatement(argument, misc) {
this.argument = argument;
this.misc = misc;
}
AstForStatement.prototype.toString = function() {
return this.misc.prefix + this.argument.toString();
};
function AstCatchStatement(argument, misc) {
this.argument = argument;
this.misc = misc;
}
AstCatchStatement.prototype.toString = function() {
return this.misc.prefix + this.argument.toString();
};
function AstPrefixStatement(name, argument, misc) {
this.name = name;
this.argument = argument;
this.misc = misc;
}
AstPrefixStatement.prototype.toString = function() {
var result = this.misc.prefix;
if(this.argument !== undef) {
result += this.argument.toString();
}
return result;
};
function AstSwitchCase(expr) {
this.expr = expr;
}
AstSwitchCase.prototype.toString = function() {
return "case " + this.expr + ":";
};
function AstLabel(label) {
this.label = label;
}
AstLabel.prototype.toString = function() {
return this.label;
};
transformStatements = function(statements, transformMethod, transformClass) {
var nextStatement = new RegExp(/\b(catch|for|if|switch|while|with)\s*"B(\d+)"|\b(do|else|finally|return|throw|try|break|continue)\b|("[ADEH](\d+)")|\b(case)\s+([^:]+):|\b([A-Za-z_$][\w$]*\s*:)|(;)/g);
var res = [];
statements = preStatementsTransform(statements);
var lastIndex = 0, m, space;
// m contains the matches from the nextStatement regexp, null if there are no matches.
// nextStatement.exec starts searching at nextStatement.lastIndex.
while((m = nextStatement.exec(statements)) !== null) {
if(m[1] !== undef) { // catch, for ...
var i = statements.lastIndexOf('"B', nextStatement.lastIndex);
var statementsPrefix = statements.substring(lastIndex, i);
if(m[1] === "for") {
res.push(new AstForStatement(transformForExpression(atoms[m[2]]),
{ prefix: statementsPrefix }) );
} else if(m[1] === "catch") {
res.push(new AstCatchStatement(transformParams(atoms[m[2]]),
{ prefix: statementsPrefix }) );
} else {
res.push(new AstPrefixStatement(m[1], transformExpression(atoms[m[2]]),
{ prefix: statementsPrefix }) );
}
} else if(m[3] !== undef) { // do, else, ...
res.push(new AstPrefixStatement(m[3], undef,
{ prefix: statements.substring(lastIndex, nextStatement.lastIndex) }) );
} else if(m[4] !== undef) { // block, class and methods
space = statements.substring(lastIndex, nextStatement.lastIndex - m[4].length);
if(trim(space).length !== 0) { continue; } // avoiding new type[] {} construct
res.push(space);
var kind = m[4].charAt(1), atomIndex = m[5];
if(kind === 'D') {
res.push(transformMethod(atoms[atomIndex]));
} else if(kind === 'E') {
res.push(transformClass(atoms[atomIndex]));
} else if(kind === 'H') {
res.push(transformFunction(atoms[atomIndex]));
} else {
res.push(transformStatementsBlock(atoms[atomIndex]));
}
} else if(m[6] !== undef) { // switch case
res.push(new AstSwitchCase(transformExpression(trim(m[7]))));
} else if(m[8] !== undef) { // label
space = statements.substring(lastIndex, nextStatement.lastIndex - m[8].length);
if(trim(space).length !== 0) { continue; } // avoiding ?: construct
res.push(new AstLabel(statements.substring(lastIndex, nextStatement.lastIndex)) );
} else { // semicolon
var statement = trimSpaces(statements.substring(lastIndex, nextStatement.lastIndex - 1));
res.push(statement.left);
res.push(transformStatement(statement.middle));
res.push(statement.right + ";");
}
lastIndex = nextStatement.lastIndex;
}
var statementsTail = trimSpaces(statements.substring(lastIndex));
res.push(statementsTail.left);
if(statementsTail.middle !== "") {
res.push(transformStatement(statementsTail.middle));
res.push(";" + statementsTail.right);
}
return res;
};
function getLocalNames(statements) {
var localNames = [];
for(var i=0,l=statements.length;i<l;++i) {
var statement = statements[i];
if(statement instanceof AstVar) {
localNames = localNames.concat(statement.getNames());
} else if(statement instanceof AstForStatement &&
statement.argument.initStatement instanceof AstVar) {
localNames = localNames.concat(statement.argument.initStatement.getNames());
} else if(statement instanceof AstInnerInterface || statement instanceof AstInnerClass ||
statement instanceof AstInterface || statement instanceof AstClass ||
statement instanceof AstMethod || statement instanceof AstFunction) {
localNames.push(statement.name);
}
}
return appendToLookupTable({}, localNames);
}
function AstStatementsBlock(statements) {
this.statements = statements;
}
AstStatementsBlock.prototype.toString = function() {
var localNames = getLocalNames(this.statements);
var oldContext = replaceContext;
// replacing context only when necessary
if(!isLookupTableEmpty(localNames)) {
replaceContext = function (subject) {
return localNames.hasOwnProperty(subject.name) ? subject.name : oldContext(subject);
};
}
var result = "{\n" + this.statements.join('') + "\n}";
replaceContext = oldContext;
return result;
};
transformStatementsBlock = function(block) {
var content = trimSpaces(block.substring(1, block.length - 1));
return new AstStatementsBlock(transformStatements(content.middle));
};
function AstRoot(statements) {
this.statements = statements;
}
AstRoot.prototype.toString = function() {
var classes = [], otherStatements = [], statement;
for (var i = 0, len = this.statements.length; i < len; ++i) {
statement = this.statements[i];
if (statement instanceof AstClass || statement instanceof AstInterface) {
classes.push(statement);
} else {
otherStatements.push(statement);
}
}
sortByWeight(classes);
var localNames = getLocalNames(this.statements);
replaceContext = function (subject) {
var name = subject.name;
if(localNames.hasOwnProperty(name)) {
return name;
}
if(globalMembers.hasOwnProperty(name) ||
PConstants.hasOwnProperty(name) ||
defaultScope.hasOwnProperty(name)) {
return "$p." + name;
}
return name;
};
var result = "// this code was autogenerated from PJS\n" +
"(function($p) {\n" +
classes.join('') + "\n" +
otherStatements.join('') + "\n})";
replaceContext = null;
return result;
};
transformMain = function() {
var statements = extractClassesAndMethods(atoms[0]);
statements = statements.replace(/\bimport\s+[^;]+;/g, "");
return new AstRoot( transformStatements(statements,
transformGlobalMethod, transformGlobalClass) );
};
function generateMetadata(ast) {
var globalScope = {};
var id, class_;
for(id in declaredClasses) {
if(declaredClasses.hasOwnProperty(id)) {
class_ = declaredClasses[id];
var scopeId = class_.scopeId, name = class_.name;
if(scopeId) {
var scope = declaredClasses[scopeId];
class_.scope = scope;
if(scope.inScope === undef) {
scope.inScope = {};
}
scope.inScope[name] = class_;
} else {
globalScope[name] = class_;
}
}
}
function findInScopes(class_, name) {
var parts = name.split('.');
var currentScope = class_.scope, found;
while(currentScope) {
if(currentScope.hasOwnProperty(parts[0])) {
found = currentScope[parts[0]]; break;
}
currentScope = currentScope.scope;
}
if(found === undef) {
found = globalScope[parts[0]];
}
for(var i=1,l=parts.length;i<l && found;++i) {
found = found.inScope[parts[i]];
}
return found;
}
for(id in declaredClasses) {
if(declaredClasses.hasOwnProperty(id)) {
class_ = declaredClasses[id];
var baseClassName = class_.body.baseClassName;
if(baseClassName) {
var parent = findInScopes(class_, baseClassName);
if (parent) {
class_.base = parent;
if (!parent.derived) {
parent.derived = [];
}
parent.derived.push(class_);
}
}
var interfacesNames = class_.body.interfacesNames,
interfaces = [], i, l;
if (interfacesNames && interfacesNames.length > 0) {
for (i = 0, l = interfacesNames.length; i < l; ++i) {
var interface_ = findInScopes(class_, interfacesNames[i]);
interfaces.push(interface_);
if (!interface_) {
continue;
}
if (!interface_.derived) {
interface_.derived = [];
}
interface_.derived.push(class_);
}
if (interfaces.length > 0) {
class_.interfaces = interfaces;
}
}
}
}
}
function setWeight(ast) {
var queue = [], tocheck = {};
var id, scopeId, class_;
// queue most inner and non-inherited
for (id in declaredClasses) {
if (declaredClasses.hasOwnProperty(id)) {
class_ = declaredClasses[id];
if (!class_.inScope && !class_.derived) {
queue.push(id);
class_.weight = 0;
} else {
var dependsOn = [];
if (class_.inScope) {
for (scopeId in class_.inScope) {
if (class_.inScope.hasOwnProperty(scopeId)) {
dependsOn.push(class_.inScope[scopeId]);
}
}
}
if (class_.derived) {
dependsOn = dependsOn.concat(class_.derived);
}
tocheck[id] = dependsOn;
}
}
}
function removeDependentAndCheck(targetId, from) {
var dependsOn = tocheck[targetId];
if (!dependsOn) {
return false; // no need to process
}
var i = dependsOn.indexOf(from);
if (i < 0) {
return false;
}
dependsOn.splice(i, 1);
if (dependsOn.length > 0) {
return false;
}
delete tocheck[targetId];
return true;
}
while (queue.length > 0) {
id = queue.shift();
class_ = declaredClasses[id];
if (class_.scopeId && removeDependentAndCheck(class_.scopeId, class_)) {
queue.push(class_.scopeId);
declaredClasses[class_.scopeId].weight = class_.weight + 1;
}
if (class_.base && removeDependentAndCheck(class_.base.classId, class_)) {
queue.push(class_.base.classId);
class_.base.weight = class_.weight + 1;
}
if (class_.interfaces) {
var i, l;
for (i = 0, l = class_.interfaces.length; i < l; ++i) {
if (!class_.interfaces[i] ||
!removeDependentAndCheck(class_.interfaces[i].classId, class_)) {
continue;
}
queue.push(class_.interfaces[i].classId);
class_.interfaces[i].weight = class_.weight + 1;
}
}
}
}
var transformed = transformMain();
generateMetadata(transformed);
setWeight(transformed);
var redendered = transformed.toString();
// remove empty extra lines with space
redendered = redendered.replace(/\s*\n(?:[\t ]*\n)+/g, "\n\n");
return injectStrings(redendered, strings);
}// Parser ends
function preprocessCode(aCode, sketch) {
// Parse out @pjs directive, if any.
var dm = new RegExp(/\/\*\s*@pjs\s+((?:[^\*]|\*+[^\*\/])*)\*\//g).exec(aCode);
if (dm && dm.length === 2) {
// masks contents of a JSON to be replaced later
// to protect the contents from further parsing
var jsonItems = [],
directives = dm.splice(1, 2)[0].replace(/\{([\s\S]*?)\}/g, (function() {
return function(all, item) {
jsonItems.push(item);
return "{" + (jsonItems.length-1) + "}";
};
}())).replace('\n', '').replace('\r', '').split(";");
// We'll L/RTrim, and also remove any surrounding double quotes (e.g., just take string contents)
var clean = function(s) {
return s.replace(/^\s*["']?/, '').replace(/["']?\s*$/, '');
};
for (var i = 0, dl = directives.length; i < dl; i++) {
var pair = directives[i].split('=');
if (pair && pair.length === 2) {
var key = clean(pair[0]),
value = clean(pair[1]),
list = [];
// A few directives require work beyond storying key/value pairings
if (key === "preload") {
list = value.split(',');
// All pre-loaded images will get put in imageCache, keyed on filename
for (var j = 0, jl = list.length; j < jl; j++) {
var imageName = clean(list[j]);
sketch.imageCache.add(imageName);
}
// fonts can be declared as a string containing a url,
// or a JSON object, containing a font name, and a url
} else if (key === "font") {
list = value.split(",");
for (var x = 0, xl = list.length; x < xl; x++) {
var fontName = clean(list[x]),
index = /^\{(\d*?)\}$/.exec(fontName);
// if index is not null, send JSON, otherwise, send string
PFont.preloading.add(index ? JSON.parse("{" + jsonItems[index[1]] + "}") : fontName);
}
} else if (key === "pauseOnBlur") {
sketch.options.pauseOnBlur = value === "true";
} else if (key === "globalKeyEvents") {
sketch.options.globalKeyEvents = value === "true";
} else if (key.substring(0, 6) === "param-") {
sketch.params[key.substring(6)] = value;
} else {
sketch.options[key] = value;
}
}
}
}
return aCode;
}
// Parse/compiles Processing (Java-like) syntax to JavaScript syntax
Processing.compile = function(pdeCode) {
var sketch = new Processing.Sketch();
var code = preprocessCode(pdeCode, sketch);
var compiledPde = parseProcessing(code);
sketch.sourceCode = compiledPde;
return sketch;
};
//#endif
// tinylog lite JavaScript library
// http://purl.eligrey.com/tinylog/lite
/*global tinylog,print*/
var tinylogLite = (function() {
"use strict";
var tinylogLite = {},
undef = "undefined",
func = "function",
False = !1,
True = !0,
logLimit = 512,
log = "log";
if (typeof tinylog !== undef && typeof tinylog[log] === func) {
// pre-existing tinylog present
tinylogLite[log] = tinylog[log];
} else if (typeof document !== undef && !document.fake) {
(function() {
// DOM document
var doc = document,
$div = "div",
$style = "style",
$title = "title",
containerStyles = {
zIndex: 10000,
position: "fixed",
bottom: "0px",
width: "100%",
height: "15%",
fontFamily: "sans-serif",
color: "#ccc",
backgroundColor: "black",
paddingBottom: "5px"
},
outputStyles = {
position: "relative",
fontFamily: "monospace",
overflow: "auto",
height: "100%",
paddingTop: "5px"
},
resizerStyles = {
height: "5px",
marginTop: "-5px",
cursor: "n-resize",
backgroundColor: "darkgrey"
},
closeButtonStyles = {
position: "absolute",
top: "5px",
right: "20px",
color: "#111",
MozBorderRadius: "4px",
webkitBorderRadius: "4px",
borderRadius: "4px",
cursor: "pointer",
fontWeight: "normal",
textAlign: "center",
padding: "3px 5px",
backgroundColor: "#333",
fontSize: "12px"
},
entryStyles = {
//borderBottom: "1px solid #d3d3d3",
minHeight: "16px"
},
entryTextStyles = {
fontSize: "12px",
margin: "0 8px 0 8px",
maxWidth: "100%",
whiteSpace: "pre-wrap",
overflow: "auto"
},
view = doc.defaultView,
docElem = doc.body || doc.documentElement,
docElemStyle = docElem[$style],
setStyles = function() {
var i = arguments.length,
elemStyle, styles, style;
while (i--) {
styles = arguments[i--];
elemStyle = arguments[i][$style];
for (style in styles) {
if (styles.hasOwnProperty(style)) {
elemStyle[style] = styles[style];
}
}
}
},
observer = function(obj, event, handler) {
if (obj.addEventListener) {
obj.addEventListener(event, handler, False);
} else if (obj.attachEvent) {
obj.attachEvent("on" + event, handler);
}
return [obj, event, handler];
},
unobserve = function(obj, event, handler) {
if (obj.removeEventListener) {
obj.removeEventListener(event, handler, False);
} else if (obj.detachEvent) {
obj.detachEvent("on" + event, handler);
}
},
clearChildren = function(node) {
var children = node.childNodes,
child = children.length;
while (child--) {
node.removeChild(children.item(0));
}
},
append = function(to, elem) {
return to.appendChild(elem);
},
createElement = function(localName) {
return doc.createElement(localName);
},
createTextNode = function(text) {
return doc.createTextNode(text);
},
createLog = tinylogLite[log] = function(message) {
// don't show output log until called once
var uninit,
originalPadding = docElemStyle.paddingBottom,
container = createElement($div),
containerStyle = container[$style],
resizer = append(container, createElement($div)),
output = append(container, createElement($div)),
closeButton = append(container, createElement($div)),
resizingLog = False,
previousHeight = False,
previousScrollTop = False,
messages = 0,
updateSafetyMargin = function() {
// have a blank space large enough to fit the output box at the page bottom
docElemStyle.paddingBottom = container.clientHeight + "px";
},
setContainerHeight = function(height) {
var viewHeight = view.innerHeight,
resizerHeight = resizer.clientHeight;
// constrain the container inside the viewport's dimensions
if (height < 0) {
height = 0;
} else if (height + resizerHeight > viewHeight) {
height = viewHeight - resizerHeight;
}
containerStyle.height = height / viewHeight * 100 + "%";
updateSafetyMargin();
},
observers = [
observer(doc, "mousemove", function(evt) {
if (resizingLog) {
setContainerHeight(view.innerHeight - evt.clientY);
output.scrollTop = previousScrollTop;
}
}),
observer(doc, "mouseup", function() {
if (resizingLog) {
resizingLog = previousScrollTop = False;
}
}),
observer(resizer, "dblclick", function(evt) {
evt.preventDefault();
if (previousHeight) {
setContainerHeight(previousHeight);
previousHeight = False;
} else {
previousHeight = container.clientHeight;
containerStyle.height = "0px";
}
}),
observer(resizer, "mousedown", function(evt) {
evt.preventDefault();
resizingLog = True;
previousScrollTop = output.scrollTop;
}),
observer(resizer, "contextmenu", function() {
resizingLog = False;
}),
observer(closeButton, "click", function() {
uninit();
})
];
uninit = function() {
// remove observers
var i = observers.length;
while (i--) {
unobserve.apply(tinylogLite, observers[i]);
}
// remove tinylog lite from the DOM
docElem.removeChild(container);
docElemStyle.paddingBottom = originalPadding;
clearChildren(output);
clearChildren(container);
tinylogLite[log] = createLog;
};
setStyles(
container, containerStyles, output, outputStyles, resizer, resizerStyles, closeButton, closeButtonStyles);
closeButton[$title] = "Close Log";
append(closeButton, createTextNode("\u2716"));
resizer[$title] = "Double-click to toggle log minimization";
docElem.insertBefore(container, docElem.firstChild);
tinylogLite[log] = function(message) {
if (messages === logLimit) {
output.removeChild(output.firstChild);
} else {
messages++;
}
var entry = append(output, createElement($div)),
entryText = append(entry, createElement($div));
entry[$title] = (new Date()).toLocaleTimeString();
setStyles(
entry, entryStyles, entryText, entryTextStyles);
append(entryText, createTextNode(message));
output.scrollTop = output.scrollHeight;
};
tinylogLite.clear = function() {
messages = 0;
clearChildren(output);
};
tinylogLite[log](message);
updateSafetyMargin();
};
}());
} else if (typeof print === func) { // JS shell
tinylogLite[log] = print;
}
return tinylogLite;
}());
// end of tinylog lite JavaScript library
Processing.logger = tinylogLite;
Processing.version = "@VERSION@";
// Share lib space
Processing.lib = {};
Processing.registerLibrary = function(name, desc) {
Processing.lib[name] = desc;
if(desc.hasOwnProperty("init")) {
desc.init(defaultScope);
}
};
// Store Processing instances. Only Processing.instances,
// Processing.getInstanceById are exposed.
Processing.instances = processingInstances;
Processing.getInstanceById = function(name) {
return processingInstances[processingInstanceIds[name]];
};
Processing.Sketch = function(attachFunction) {
this.attachFunction = attachFunction; // can be optional
this.options = {
pauseOnBlur: false,
globalKeyEvents: false
};
/* Optional Sketch event hooks:
* onLoad - parsing/preloading is done, before sketch starts
* onSetup - setup() has been called, before first draw()
* onPause - noLoop() has been called, pausing draw loop
* onLoop - loop() has been called, resuming draw loop
* onFrameStart - draw() loop about to begin
* onFrameEnd - draw() loop finished
* onExit - exit() done being called
*/
this.onLoad = nop;
this.onSetup = nop;
this.onPause = nop;
this.onLoop = nop;
this.onFrameStart = nop;
this.onFrameEnd = nop;
this.onExit = nop;
this.params = {};
this.imageCache = {
pending: 0,
images: {},
// Opera requires special administration for preloading
operaCache: {},
// Specify an optional img arg if the image is already loaded in the DOM,
// otherwise href will get loaded.
add: function(href, img) {
// Prevent muliple loads for an image, in case it gets
// preloaded more than once, or is added via JS and then preloaded.
if (this.images[href]) {
return;
}
if (!isDOMPresent) {
this.images[href] = null;
}
// No image in the DOM, kick-off a background load
if (!img) {
img = new Image();
img.onload = (function(owner) {
return function() {
owner.pending--;
};
}(this));
this.pending++;
img.src = href;
}
this.images[href] = img;
// Opera will not load images until they are inserted into the DOM.
if (window.opera) {
var div = document.createElement("div");
div.appendChild(img);
// we can't use "display: none", since that makes it invisible, and thus not load
div.style.position = "absolute";
div.style.opacity = 0;
div.style.width = "1px";
div.style.height= "1px";
if (!this.operaCache[href]) {
document.body.appendChild(div);
this.operaCache[href] = div;
}
}
}
};
this.sourceCode = undefined;
this.attach = function(processing) {
// either attachFunction or sourceCode must be present on attach
if(typeof this.attachFunction === "function") {
this.attachFunction(processing);
} else if(this.sourceCode) {
var func = ((new Function("return (" + this.sourceCode + ");"))());
func(processing);
this.attachFunction = func;
} else {
throw "Unable to attach sketch to the processing instance";
}
};
//#if PARSER
this.toString = function() {
var i;
var code = "((function(Sketch) {\n";
code += "var sketch = new Sketch(\n" + this.sourceCode + ");\n";
for(i in this.options) {
if(this.options.hasOwnProperty(i)) {
var value = this.options[i];
code += "sketch.options." + i + " = " +
(typeof value === 'string' ? '\"' + value + '\"' : "" + value) + ";\n";
}
}
for(i in this.imageCache) {
if(this.options.hasOwnProperty(i)) {
code += "sketch.imageCache.add(\"" + i + "\");\n";
}
}
// TODO serialize fonts
code += "return sketch;\n})(Processing.Sketch))";
return code;
};
//#endif
};
//#if PARSER
/**
* aggregate all source code into a single file, then rewrite that
* source and bind to canvas via new Processing(canvas, sourcestring).
* @param {CANVAS} canvas The html canvas element to bind to
* @param {String[]} source The array of files that must be loaded
*/
var loadSketchFromSources = function(canvas, sources) {
var code = [], errors = [], sourcesCount = sources.length, loaded = 0;
function ajaxAsync(url, callback) {
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
if (xhr.readyState === 4) {
var error;
if (xhr.status !== 200 && xhr.status !== 0) {
error = "Invalid XHR status " + xhr.status;
} else if (xhr.responseText === "") {
// Give a hint when loading fails due to same-origin issues on file:/// urls
if ( ("withCredentials" in new XMLHttpRequest()) &&
(new XMLHttpRequest()).withCredentials === false &&
window.location.protocol === "file:" ) {
error = "XMLHttpRequest failure, possibly due to a same-origin policy violation. You can try loading this page in another browser, or load it from http://localhost using a local webserver. See the Processing.js README for a more detailed explanation of this problem and solutions.";
} else {
error = "File is empty.";
}
}
callback(xhr.responseText, error);
}
};
xhr.open("GET", url, true);
if (xhr.overrideMimeType) {
xhr.overrideMimeType("application/json");
}
xhr.setRequestHeader("If-Modified-Since", "Fri, 01 Jan 1960 00:00:00 GMT"); // no cache
xhr.send(null);
}
function loadBlock(index, filename) {
function callback(block, error) {
code[index] = block;
++loaded;
if (error) {
errors.push(filename + " ==> " + error);
}
if (loaded === sourcesCount) {
if (errors.length === 0) {
try {
return new Processing(canvas, code.join("\n"));
} catch(e) {
throw "Processing.js: Unable to execute pjs sketch: " + e;
}
} else {
throw "Processing.js: Unable to load pjs sketch files: " + errors.join("\n");
}
}
}
if (filename.charAt(0) === '#') {
// trying to get script from the element
var scriptElement = document.getElementById(filename.substring(1));
if (scriptElement) {
callback(scriptElement.text || scriptElement.textContent);
} else {
callback("", "Unable to load pjs sketch: element with id \'" + filename.substring(1) + "\' was not found");
}
return;
}
ajaxAsync(filename, callback);
}
for (var i = 0; i < sourcesCount; ++i) {
loadBlock(i, sources[i]);
}
};
/**
* Automatic initialization function.
*/
var init = function() {
document.removeEventListener('DOMContentLoaded', init, false);
var canvas = document.getElementsByTagName('canvas'),
filenames;
for (var i = 0, l = canvas.length; i < l; i++) {
// datasrc and data-src are deprecated.
var processingSources = canvas[i].getAttribute('data-processing-sources');
if (processingSources === null) {
// Temporary fallback for datasrc and data-src
processingSources = canvas[i].getAttribute('data-src');
if (processingSources === null) {
processingSources = canvas[i].getAttribute('datasrc');
}
}
if (processingSources) {
filenames = processingSources.split(' ');
for (var j = 0; j < filenames.length;) {
if (filenames[j]) {
j++;
} else {
filenames.splice(j, 1);
}
}
loadSketchFromSources(canvas[i], filenames);
}
}
// also process all <script>-indicated sketches, if there are any
var scripts = document.getElementsByTagName('script');
var s, source, instance;
for (s = 0; s < scripts.length; s++) {
var script = scripts[s];
if (!script.getAttribute) {
continue;
}
var type = script.getAttribute("type");
if (type && (type.toLowerCase() === "text/processing" || type.toLowerCase() === "application/processing")) {
var target = script.getAttribute("data-processing-target");
canvas = undef;
if (target) {
canvas = document.getElementById(target);
} else {
var nextSibling = script.nextSibling;
while (nextSibling && nextSibling.nodeType !== 1) {
nextSibling = nextSibling.nextSibling;
}
if (nextSibling.nodeName.toLowerCase() === "canvas") {
canvas = nextSibling;
}
}
if (canvas) {
if (script.getAttribute("src")) {
filenames = script.getAttribute("src").split(/\s+/);
loadSketchFromSources(canvas, filenames);
continue;
}
source = script.textContent || script.text;
instance = new Processing(canvas, source);
}
}
}
};
/**
* Make loadSketchFromSources publically visible
*/
Processing.loadSketchFromSources = loadSketchFromSources;
/**
* Disable the automatic loading of all sketches on the page
*/
Processing.disableInit = function() {
if(isDOMPresent) {
document.removeEventListener('DOMContentLoaded', init, false);
}
};
//#endif
if(isDOMPresent) {
window['Processing'] = Processing;
//#if PARSER
document.addEventListener('DOMContentLoaded', init, false);
//#endif
} else {
// DOM is not found
this.Processing = Processing;
}
}(window, window.document, Math));
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment