Created
April 3, 2023 14:16
-
-
Save MattiaCostamagna/c65129d4de6680acbdfd24aa063ae919 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
from awsglue.transforms import * | |
from awsglue.utils import getResolvedOptions | |
from awsglue.context import GlueContext | |
from awsglue.job import Job | |
from awsglue.gluetypes import Field | |
from awsglue import DynamicFrame | |
from pyspark.context import SparkContext | |
from pyspark.sql.functions import from_json, col, lit, current_timestamp | |
from pyspark.sql.types import StructField, StructType, StringType, IntegerType, DoubleType, FloatType, DecimalType, \ | |
DateType, TimestampType, BooleanType, LongType | |
from pyspark.sql import DataFrame | |
args = getResolvedOptions(sys.argv, ["JOB_NAME", "kinesis_stream_arn"]) | |
job_run_id = args['JOB_RUN_ID'] | |
sc = SparkContext() | |
glue_context = GlueContext(sc) | |
spark = glue_context.spark_session | |
job = Job(glue_context) | |
def process_batch(data_frame: DataFrame, _batch_id: int): | |
job.init(args["JOB_NAME"], args) | |
if data_frame.count() <= 0: | |
job.commit() | |
return | |
data_frame.printSchema() | |
data_frame.show() | |
job.commit() | |
amazon_kinesis_dataframe = glue_context.create_data_frame.from_options( | |
connection_type="kinesis", | |
connection_options={ | |
"typeOfData": "kinesis", | |
"streamARN": args["kinesis_stream_arn"], | |
"classification": "json", | |
"startingPosition": "TRIM_HORIZON", | |
"inferSchema": "false", | |
"avoidEmptyBatches": "true", | |
"schema": "`data` string, `metadata` STRUCT<`timestamp`: TIMESTAMP, `record-type`: STRING, `operation`: STRING, `partition-key-type`: STRING, `schema-name`: STRING, `table-name`: STRING, `transaction-id`: BIGINT> NOT NULL" | |
}, | |
transformation_ctx="amazon_kinesis_dataframe", | |
) | |
glue_context.forEachBatch( | |
frame=amazon_kinesis_dataframe, | |
batch_function=process_batch, | |
options={ | |
"windowSize": "100 seconds", | |
"checkpointLocation": args["TempDir"] + "/" + args["JOB_NAME"] + "/checkpoint/", | |
}, | |
) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment